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The U3 long terminal repeat (LTR) region of the avian 
retroviruses has been extensively characterized as a 
model of a strong transcription regulatory unit. This com- 
pact enhancer and promoter drives high levels of viral 
and cellular gene transcription in many cell types in birds 
and in mammals. Viral mRNA and genomic RNA tran- 
scripts can comprise up to 20% of the total RNA in in- 
fected cells (Varmus and Swanstrom, 1984). The high 
level expression of the retroviral LTR has been exploited 
in the development of reporter gene expression vectors 
(Gorman eta/., 1982) and of expression vectors for mam- 
malian gene therapy studies (Yoshimura et a/., t992). 
Infectious avian retroviral constructs have also been en- 
gineered for gene expression studies (Garber eta/., 1991; 
Hughes eta/., 1987) and for development of transgenic 
chickens (Salter et al., 1987). Analysis of this potent tran- 
scription regulatory unit will provide insight to the molec- 
ular basis for enhancer and promoter function and will 
help in the design of improved retroviral vectors. 

The avian retroviral LTR is also of interest because of 
its essential role in oncogenesis. The Rous sarcoma vi- 
rus carries a transduced v-src oncogene and rapidly in- 
duces fibrosarcoma in chickens, caused by deregulated 
LTR-driven v-src expression (Bishop and Varmus, 1984). 
Related strains of viruses carry other oncogenes such 
as v-fps or v-ms. The slowly transforming avian leukosis 
viruses (ALV) also known as Rous-associated virus (RAV) 
strains do not carry a viral oncogene, but instead induce 
tumors following integration of proviral sequences next 
to cellular protooncogenes, which gives high levels of 
LTR-driven oncogene transcription. These integrated 
proviruses often show large deletions of viral sequences, 
although the LTR is preserved to drive high level viral 
and cellular oncogene transcription (Goodenow and Hay- 
ward, 1987; Linial and Groudine, 1985). The most com- 
mon ALV tumors observed are bursal lymphomas which 
show integration next to the c-myc protooncogene (Neel 
etaL, 1981; Payne et aL, 1981) and in some cases next 
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to c-myb (Kanter et al., 1988). ALV induction of B cell 
lymphoma may be regulated by LTR enhancer binding 
proteins that are labile (decreased after protein synthesis 
inhibition) in the target pre-B cells of ALV-susceptible 
strains (Ruddell eta/.,  1988). Developmental regulation 
of LTR transcription by these labile factors could influ- 
ence c-myc hyperexpression in a manner essential for 
tumor induction in the bursa (Bowers et al., 1994). 

Further evidence that the LTR enhancer is important 
for retroviral oncogenesis comes from studies of the en- 
dogenous avian retroviruses. These viruses are related 
to the ALV and RSV strains, although they show a number 
of deletions in the enhancer and promoter region of the 
LTR (Cullen et a/., 1983). The ability of the endogenous 
viruses to induce tumors in birds is greatly reduced, prob- 
ably due to the weak transcription activity of the LTR 
(Cullen eta/., 1985a; Motta et aL, 1985). Replacement of 
the endogenous virus U3 LTR region with that of ALV 
increases the oncogenic activity of the virus (Robinson 
et al., 1982). These and other experiments suggest that 
the LTR and its associated transcription activity is essen- 
tial in determining oncogenic potential. A number of stud- 
ies have led to a fairly complete picture of the LTR se- 
quences and binding proteins involved in retroviral tran- 
scription and tumorigenesis, as discussed in this review. 

IDENTIFICATION OF LTR ENHANCER AND 
PROMOTER ELEMENTS 

The RSV LTR was one of the first regulatory elements 
sequenced and analyzed for transcription activity, using 
transient transfection assays in tissue culture ceils (Ger- 
man et aL, 1982; Mitsialis eta/. ,  1983). The enhancer 
region has been mapped to the 110-bp region positioned 
at roughly -250 to -140 bp with respect to the transcrip- 
tion start site at the U3-R LTR boundary (Cullen et al., 
1985b). This corresponds to the region 5' of the Sphl site 
shown in Fig. 1. The enhancer can function in either 
orientation 5' or 3' of genes, although the highest levels 
of transcription enhancement are obtained in the natural 
configuration 5 r of the gene (Norton and Coffin, 1987; 
Gowda et aL, 1988). The promoter region maps from 
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A.  U3 LTR s e q u e n c e  c o m p a r i s o n  

enhancer 
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promoter 

viral strain 

ALV (RAV) 

Pr-RSV-C 1 I I I I I I II II 1 ! 
A 

SR-RSV-A I I I I I II I II /k  /k  

B. LTR b inding pro te ins  

binding protein 

1 2 3 
sequence element CCAAT/enh CCAAT/enh CCAAT/enh CArG box Y box CArG box Y box TATA r 

I I I 
Sph I Eco RI 

-250 bp -140 bp -50 bp 

FIG. 1. Map of avian retroviral LTR binding proteins. (A) The U3 sequence of an ALV LTR (BK25 RAV-2 strain) is compared with that of the PR-C 
and SR-A strain RSV LTRs. Triangles indicate deletions, and notches indicate point mutations. (B) LTR protein binding sequence elements and 
representative binding proteins. The CCAAT/enhancer (CCAAT/enh) elements are numbered 1 to 3, Restriction sites and the distance from the 
transcription start site at the U3-R border are indicated. 

roughly -140 bp to the transcription start site, including 
a TATA box at position - 24  bp (Cullen et aL, 1985b). 

The ALV and RSV strain LTRs show a number of se- 
quence differences that are summarized in Fig. 1A. The 
sequence of a typical ALV LTR that is nearly identical to 
the RAV-2 strain LTR (Schubach and Horvath, 1988) is 
compared with that of the Pr-RSV-C and SR-RSV-A strains 
(8izub et al., 1984). The RSV strains show a few small 
deletions (5-14 bp) and several point mutations relative 
to the ALV LTR sequence (Fig. 1A). The same sequence 
variations were observed in more comprehensive com- 
parisons of the ALV and RSV LTRs of different strains 
(Majors, 1990; Bizub et aL, 1984). All of these strains 
show high levels of viral transcription, suggesting that 
the sequence differences do not appreciably influence 
LTR function. 

CHARACTERIZATION OF LTR BINDING PROTEINS 

The U3 LTR region has been intensively screened to 
identify the binding factors involved in transcription regula- 
tion. The major protein binding motifs identified include 
COAAT/enhancer, CArG box, and Y box elements. A sum- 
mary of the ALV and RSV LTR protein binding sites is 
given in Fig. 1B, with minor differences in protein binding 
by each viral LTR that are discussed below. The 5' LTR 
enhancer region contains multiple direct repeats of 
closely related CCAAT/enhancer elements (from about 

-250 to -190 bp), showing four in the case of Pr-RSV-C, 
three in ALV, and two in the SR-RSV-A LTR (Ryden et al., 
1993; Smith et al., 1994). Three related motifs are also 
found in an internal enhancer found in the gag gene region 
of RSV (Karnitz et al., 1987; Ryden et al., 1993). Nuclear 
extracts from several avian cell types give a complex gel 
shift pattern with CCAAT/enhancer element probes, and 
the binding activities have been designated al and a3 
(Ruddell eta/., 1989), EFII (Sealy and Chalkley, 1987), E2BP 
(Kenny and Guntaka, 1990), or FI and Fill (Goodwin, 1988), 
as summarized in Table 1. These multiple gel shift binding 
activities could reflect the contributions of several binding 
proteins, or could represent protein multimerization (Sears 
and Sealy, 1994; Smith et al., 1994). 

The genes encoding LTR COAAT/enhancer element 
binding proteins have been cloned from mammalian cells 
(reviewed by Johnson and McKnight, 1989). These genes 
belong to the bZlP family of transcription factors, which 
share conserved carboxy terminal basic region DNA 
binding and leucine zipper dimerization motifs, while 
their amino terminal t rans-act ivat ing domains are vari- 
able. The prototype bZlP factor C/EBP~ binds the 
CCAAT/enhancer elements of several cellular gene en- 
hancers as well as the RSV LTR enhancer (consensus 
TT/GNNGC/TAAT/G; where N is any nucleotide; Ryden and 
Beemon, 1989). Additional bZlP proteins that bind RSV 
LTR CCAAT/enhancer elements include NF/IL6 (Akira et 
al., 1990) and Ig/EBP (Roman eta/ . ,  1990). 
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The genes encoding two avian bZlP factors (A1/EBP 
and VBP) have been cloned from ALV-induced bursal 
lymphoma cells (Bowers and Ruddell, 1992; Smith et aL, 
1994). A1/EBP binds overlapping but distinct subsets of 
LTR OOAAT/enhancer elements when compared with 
VBP (Smith et al., 1994). A1/EBP binds the consensus 
sequence TNA/TTGCAAN in CCAAT/enhancer elements 
1 and 2, while VBP binds TTG/ACATAAG in sites 1 and 3 
(Fig. 1B). These factors and the other members of the 
bZlP family could be responsible for the complex gel shift 
pattern of LTR COAAT/enhancer binding activity ob- 
served in many cell types and species. At least some 
members of this family can form heterodimers (Vinson 
eta/., 1993), further adding to the potential complexity of 
binding to LTR CCAAT/enhancer elements. These bZIP 
factors may encode the labile LTR binding factors 
thought to be important for ALV tumor induction in B cells 
(Bowers eta/., 1994). 

The second major LTR protein binding motif is a CArG 
box element (Boulden and Sealy, 1990). This sequence 
element (OC(A/T)6GG) is found in two sites in the LTR 
enhancer an d promoter (Zachow and Conklin, 1992), at 
about -170 and -95  bp from the transcription start site 
(Fig. 1B). The CArG box included in the c-fos promoter 
is the best characterized of this family of elements. The 
mammalian c-fos serum response element binds multi- 
pie proteins that appear to regulate serum induction of 
c-fos promoter activity, including serum response factor 
(SRF; Treisman, 1987) p62/DBP (Ryan eta/.,  1989) and 
p62/TCF (Shaw eta/., 1989). These proteins could also 
mediate the roughly fivefold increase in RSV LTR-driven 
transcription observed in fibroblasts after serum treat- 
ment (Boulden and Sealy, 1990; Dutta et aL, 1990). An 
avian serum response factor (EFIII) has been identified 
which binds the CArG boxes in the RSV LTR and in the 
c-fos promoter (Boulden and Sealy, 1992). The EFIII activ- 
ity is recognized by a Xenopus SRF antiserum, sug- 
gesting that it encodes the avian SRF homolog. A second 
avian factor (SREBP) efficiently binds sequences 3' of 
the serum response element in the c-fos promoter, but 
shows weak affinity for the RSV LTR CArG boxes. Pro- 
teins binding the RSV LTR CArG boxes show increased 
gel shift binding activity after serum treatment of rat fibro- 
blasts, which could contribute to the serum respon- 
siveness of RSV LTR-driven transcription in mammalian 
cells (Lang et aL, 1993). 

The third major LTR protein binding motif is a Y box 
or inverted CCAAT box motif (GGTTA) present in two 
promoter sites (at -140 and -65 bp) in the ALV and RSV 
LTRs (Fig. 1B). Proteins binding to these LTR elements 
have been identified in a variety of avian cell types (EFI, 
Sealy and Chalkley, 1987; FII, Goodwin, 1988; C, Ruddell 
eta/., 1988) and in mammalian cells (CBF, Hatomochi et 
al., 1988), as summarized in Table 1. The Y box binding 
activity contains multiple components which have been 
separated by biochemical methods (Hatomochi et aL, 
1988; Faber and Sealy, 1990). The genes encoding Y 

box LTR binding proteins have been cloned from many 
species including chickens (YB-1, Grant and Deeley, 
1993; EFI, Kandala and Guntaka, 1994), rats (CBF-A, Vu- 
eric et aL, 1990; CBF-B, Malty et aL, 1990; EFla, Ozer 
et aL, 1990), and mice (NF-YA and NF-YB; Hooft van 
Huijsduijnen et aL, 1990). These genes represent two 
types of transcription factors. The YB-1/EFI factors are 
nearly identical, and they show relatively nonspecific 
binding to pyrimidine-rich double- and single-stranded 
DNA sequences such as the Aq-[-GG motif (Grant and 
Deeley, 1993). The CBF/NF-Y factors are related to the 
heterodimeric HAP2 and HAP3 yeast proteins (Hooft van 
Huijsduijnen et al., t990; Malty et aL, 1990; Vuorio et aL, 
1990). The proposed DNA binding region of these pro- 
teins is highly conserved and very different than that of 
other transcription factors (Li et a/., 1992). It is not yet 
known whether some or all of these factors contribute 
to the Y box LTR binding activity observed in nuclear 
extracts. 

A fourth LTR binding activity has been identified in the 
region just 5' of the Sphl site (Fig. 1), by gel shift assays 
with avian B lymphoma cell extracts (Ruddell eta/., 1989). 
This b region (-145 to -155 bp) binds two factors (b 
and b*) that are expressed in many avian cell types (Rud- 
dell et aL, 1989). The responsible binding motifs have 
not been identified, and little more is known about the 
contribution of these activities to LTR transcription. 

An inducible LTR binding activity has been identified 
which is increased after Marek's disease herpesvirus 
infection of chick embryo fibroblasts (CEF). The PRE bind- 
ing activity could be encoded by the Marek's virus or it 
could represent a host cell protein induced byviral infec- 
tion (Banders and Coussens, 1994). The LTR region in- 
volved has been localized to a 20-bp region (-140 to 
-120 bp) containing PRE motifs (GGTGG) on each side 
of the 5' Y box element (Fig. 1). The interaction between 
the proteins binding the overlapping PRE and Y box ele- 
ments has not yet been examined. The inducible PRE 
binding activity is of interest because Marek's virus infec- 
tion increases ALV expression threefold in CEF (Pulaski 
et al., 1992) and because certain Marek's virus strains 
augment ALV induction of B lymphoma (Bacon et al., 
1989). 

TRANSCRIPTION ACTIVITY OF LTR PROTEIN 
BINDING SITES 

The sequences important for LTR-enhanced transcrip- 
tion have been identified by transient transfection and 
retroviral infection assays, using mutated LTR-reporter 
gene constructs expressed in avian or mammalian fibre- 
blasts. Initially, large deletions and insertions were used 
to roughly define the enhancer and promoter regions 
(Cullen et aL, 1985b; Laimins et aL, 1984). These studies 
identified two regions that are important for transcription 
activity. Deletion of the RSV LTR enhancer region 5' of 
the Sphl site removes the multiple CCAAT/enhancer ele- 
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TABLE 1 

CHARACTERISTICS OF LTR BINDING PROTEINS 

Factor ~ Species b Classification ° Binding motif ~ References 

a 1 Chicken -- TN(A/T)TGCAAN Bowers and Ruddell, 1992 
A1/EBP Chicken bZIP TN(A/-r)TGCAAN Bowers and Ruddell, 1992 
C/EBPe~ Rat bZlP T(T/G)NNG(C/T)AA(T/G) Johnson et al., 1987 

Ryden and Beemon, 1989 
EFII Chicken -- -- Sealy and Chalkley, 1987 
E2BP Quail - -  T G C A A ( T / c ) A ( C / T )  Kenny and Guntaka, 1990 
Fill Chicken -- -- Goodwin, 1988 
Ig/EBP Mouse bZtP T(T/G)NNG(C/T)AA(T/G) Roman et aL, 1990 
NF/IL6 Human bZlP T(T/G)NNGNAA(T/G) Akira et aL, 1990 

Sears and Sealy, 1994 

a3 Chicken -- qq-(G/A)CATAAG Smith et aL, 1994 
FI Chicken -- -- Goodwin, 1988 
VBP Chicken bZIP q-F(G/A)CATAAG lyer et al., 1991 

Smith et aL, 1994 

EFIII Chicken - -  c c ( A / T ) 6 G G  Boulden and Sealy, 1992 
E3BP Quail -- -- Kenny and Guntaka, 1990 
RSV-d Chicken -- cc(A/T)6GG Zachow and Conklin, 1992 

b/b* Chicken -- -- Ruddell et aL, 1989 

c Chicken -- -- Ruddell et al., 1988 
CBF-A/CBF-B Rat HAP2/HAP3 ATI-GG Malty et al., 1990 

Vuorio et al., 1990 
EFla/EFIb Chicken -- A]q-GG Faber and Sealy, 1990 
FII Chicken -- -- Goodwin, 1988 
YB-1/EFI Chicken -- -- Grant and Deeley, 1993 

Kandala and Guntaka, 1994 
PRE Chicken -- GGTGG Banders and Coussens, 1994 

a LTR binding factors identified using crude nuclear extracts or purified proteins. Factors binding the same 
b Species of origin. 
c Structural classification of proteins for which cloned sequences are available. 

Binding motif, where characterized. 

LTR region are grouped together. 

ments and one CArG box (Fig. 1), and gives a roughly 
90% decrease in LTR reporter gene transcr ipt ion in avian 

f ibroblasts (Cullen etaL,  1985b; Norton and Coffin, 1987; 
Gowda et al., 1988). The region 3' of the Sphl site that 
includes the Y box and PRE motifs is also important for 
LTR-driven transcript ion. Delet ions or insert ions in this 

region decrease LTR-driven transcr ipt ion by up to 90% 
in avian f ibroblasts. 

The contr ibut ion of individual LTR protein binding ele- 

ments to LTR transcr ipt ion activity has been analyzed. 
Point mutat ions introduced into the 5' LTR CCAAT/en- 
hancer e lements decrease RSV LTR-driven transcr ipt ion 
10-50% in t ransient t ransfect ions or retroviral vector in- 

fection exper iments in CEF (Ryden eta/., 1993). Combina-  
t ions of mutat ions in two of the three LTR CCAAT/en- 
hancer e lements give a 70% decrease in LTR-driven tran- 
scription, suggest ing that the mult ip le copies of these 
e lements are important for LTR transcr ipt ion enhancer  
function. Moreover, six copies of the RSV LTR CCAAT/ 
enhancer  e lement  are able to enhance transcr ipt ion of 

a minimal  LTR promoter up to 40-fold in CEF (Sears and 
Sealy, 1992). The COAAT/enhancer e lements in the inter- 
nal gag  gene enhancer  of the RSV provirus also contr ib- 

ute to the overall  level of viral expression in infected 
f ibroblasts, as mutat ion of this region decreases viral 

expression by 50% (Karnitz et  aL, 1987; Ryden e ta / . ,  
1993). Mutat ions of the COAAT/enhancer e lements abol-  
ish binding of several bZtP factors in vitro, including a l /  

EBP (Bowers and Ruddell, 1992), C/EBP~ (Ryden et al., 

1993), and VBP (Smith et aL, 1994), support ing the idea 
that these factors are important for LTR enhancer  activity. 

Point mutat ions in the LTR CArG boxes decrease tran- 

scription of synthetic LTR constructs roughly 50% in rat 
f ibroblasts (Lang et aL, 1993), indicat ing that the CArG 
boxes and associated binding proteins are important for 

basal LTR function. These e lements may mediate the 
f ivefold increase in RSV LTR-driven transcr ipt ion ob- 
served after serum t reatment  of avian or mammal ian  fi- 
broblasts (Boulden and Sealy, 1990; Dutta et aL, 1990). 
The isolated CArG box e lement  confers serum respon- 
s iveness to a minimal  LTR promoter  construct, giving a 
threefold increase in transcr ipt ion activity after serum 
t reatment  of CEF (Boulden and Sealy, 1992). 

The LTR Y box e lements appear  to be essential  for 
LTR promoter  function, as mutat ions in the 5' or 3' Y box 
e lements abol ish protein binding activity and decrease 
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LTR-driven transcription up to 99% in transient transfec- 
tion assays (Greuel eta/. ,  1990). The Y box binding fac- 
tors purified from murine fibroblasts activate the RSV LTR 
promoter in an in vitro transcription system, supporting 
the idea that protein binding to these elements is in- 
volved in LTR promoter function (Malty eta/. ,  1988). The 
Y box elements could also contribute to the serum re- 
sponsiveness of LTR-driven transcription in certain trans- 
formed mammalian fibroblast cell lines (Dutta et aL, 
1990), although in other fibroblast lines serum respon- 
siveness is regulated primarily by the OArG box elements 
(Lang et al., 1993). 

Marek's disease virus infection increases LTR-driven 
transcription in ALV-infected CEF and also increases the 
activity of the PRE LTR binding factor in vitro (Pulaski et 
al., 1992; Banders and Coussens, 1994). Deletion of the 
20-bp LTR region including the PRE and Y box elements 
(-140 to -120 bp) decreases basal LTR transcription, 
and also reduces the Marek's disease virus enhance- 
ment of transcription. The relative contributions of the 
PRE and Y box elements to these effects have not been 
determined, However, the correlation of PRE binding ac- 
tivity with increased LTR transcription suggests that this 
factor may be involved in the interaction of the Marek's 
virus with ALV. 

CONCLUSIONS 

A number of complementary studies have shown that 
several LTR protein binding sites contribute to regulating 
high levels of LTR transcription in avian and mammalian 
cells. The Y box elements appear to be essential for LTR 
promoter function, while the CCAAT/enhancer elements 
are important for enhancer function. The CArG box and 
PRE elements may mediate modulation of LTR activity 
by growth factors or by viral transactivators, respectively. 
These elements are all present in more than one copy 
in the ALV and RSV LTRs, and this repetitive organization 
may be important to drive high rates of LTR-enhanced 
transcription. The transcriptionally inactive endogenous 
retrovirus LTRs lack the COAAT/enhancer elements and 
contain only one CArG box and Y box relative to the 
exogenous ALV and RSV virus LTRs, due to extensive 
deletions in the endogenous virus LTR (Zachow and Con- 
kiln, 1992). Interestingly, if a second CArG box or Y box 
motif from the RSV LTR is introduced into the endoge- 
nous virus LTR it gains significant transcription activity 
(Habel et a/., 1993). This suggests that pairs of elements 
are required for maximal LTR function. Repetitive protein 
binding motifs are a common feature in retroviral LTRs, 
and this repetitive structure contributes to viral onco- 
genic potential. For example, duplication of the LTR en- 
hancer in the mink cell focus forming virus is important 
for leukemogenicity (Holland et aL, 1989). The human 
immunodeficiencyvirus (HIV) type 1 LTR contains a dupli- 
cated NFkB element relative to H IV-2, which may mediate 
the differential transcription response of these viruses to 
T cell activation signals (Hannibal et aL, 1993). 

The ALV and RSV U3 LTR regions are very similar, show- 
ing about 80% sequence identity (Bizub et al., 1984). Most 
of the sequence variation occurs in regions between the 
protein binding sites (Fig. 1), supporting the idea that protein 
binding to these conserved sites is important for viral tran- 
scription. The multiple proteins interacting with the ALV and 
RSV strains are the same for the most part. The major 
binding site difference observed is a 5-bp deletion in the 
SR-RSV-A strain, which abolishes binding of the VBP bZlP 
factor to this site (Smith et al., 1994). The 5' CArG box 
element also shows a point mutation from T to C in the AT 
rich core region of the RSV strains (Fig. 1) which could 
influence the serum-responsive activity of this element 
(Lang eta/ . ,  1993). These LTRs all drive high levels of 
transcription, suggesting that the protein binding differ- 
ences have little effect. However, the transcription activity 
of the LTRs has not,been directly compared, leaving open 
the possibility that they show subtle differences in transcrip- 
tion activity or oncogenic potential. 

The RSV LTR is expressed well in birds and in mam- 
mals and for the most part appears to use the same 
factor binding sites in each species. One interesting dif- 
ference is that while most proviral LTRs are active in 
avian cells, only a very small number of integrated provi- 
ruses are expressed in infected rat embryo fibroblasts 
(Wyke and Poole, 1990). This does not appear to be due 
to limited availability of LTR binding factors in rat cells 
(Lang et a/., 1993). Instead, the transcription silencing 
appears to be regulated in some way by the site and 
structure of the proviral integration site (Fincham and 
Wyke, 1991, 1992). The transcription potential of the en- 
dogenous avian viruses also appears to be influenced 
by chromatin structure and DNA methylation at the site 
of proviral integration (Conklin et aL, 1982; Conklin and 
Groudine, 1986). 

The avian retroviruses are transcribed at high levels 
in many tissues (Ruddell et al., 1988; Robinson et al., 
1993). This probably reflects the contributions of binding 
factors from several transcription factor families (Table 
1). Of the COAAT/enhancer element binding proteins, C/ 
EBPG is restricted to liver and other differentiated cell 
types (Birkenmeier eta/., 1989), while NF/IL6 is restricted 
to certain activated cell types (Akira et a/., 1990). The Ig/ 
EBP factor is more widely expressed (Roman etaL, 1990), 
as is VBP (lyer et al., 1991), and these factors could be 
used to regulate LTR transcription enhancement in many 
cell types. The CArG box factors have primarily been 
studied in fibroblasts, and it remains to be determined if 
these factors influence transcription in other cell types. 
The Y box binding proteins are expressed in many cell 
types (Faber and Sealy, 1990; Grant and Deeley, 1993). 
All of these factors may contribute (perhaps in different 
combinations) to the widespread high activity of this tran- 
scription unit in different species. The mechanism by 
which these proteins interact with RNA polymerase II to 
direct high level transcription remains to be determined. 
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