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Abstract

In dendrochronology wood samples are dated according to the tree rings they contain. The
process consists of comparing the sequence of tree ring widths in the sample to a dated
sequence. Assuming that a tree forms exactly one ring per year a simple sliding algorithm sol
matching task.

But sometimes a tree produces no ring or even two rings in a year. If a sample sequence c
this kind of inconsistencies it cannot be dated correctly by the simple sliding algorithm. We the
introduce aO(α2mn+α4(m+n)) algorithm for dating such a sample sequence against an erro
master sequence, wheren andm are the lengths of the sequences. Our algorithm takes into ac
that the sample might contain up toα missing or double rings and suggests possible positions
these kind of inconsistencies. This is done by employing anedit distanceas the distance measure.
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1. Introduction
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1.1. Dendrochronology

The tree ring structure in wood samples is important in many research areas, for in
in archeology, climatology, geomorphology and glaciology. The reason for that is th
growth of a tree and therefore its rings depend on the environmental conditions th
tree has been exposed to, so that the tree rings build an archive of these environ
conditions. The science that deals with the dating of tree rings in order to answer que
related to natural history is called dendrochronology. The name is derived from the
wordsdendron(wood),chronos(time) andlogos(the science of ).

A horizontal cross-section of the stem of a tree visually consists of a number o
centric annuli, the tree rings. A tree ring is a growth layer that the tree forms und
bark during the vegetation period. It consists of big, thinwalled cells that are built a
beginning of the growth period and of thin, thickwalled cells built at the end. The first
of cell ensures the food supply to the shoots, whereas the other type accounts for
bility of the stem. Since the second type of cell looks much darker than the first type
possible to visually detect the border between two successive tree rings. In areas
annual vegetation and winter period a tree usually adds exactly one tree ring per ye
width of a tree ring is the width of the annulus it describes in a horizontal cross-sect
the stem.

In dendrochronology a wood sample is characterized by the sequence of its tre
widths.2 Such a sequence consists of positive real values each describing the width
tree ring, in the same order as the tree rings occur in the sample. Since trees growin
similar conditions (especially climatic conditions like rainfall) build similar tree rings,
possible to successfully compare certain tree ring sequences. In fact, the usual way
ing tree ring sequences in dendrochronology is to compare the undated sequence to
sequence. This procedure, calledcrossdating, is a fundamental task in dendrochronolog

1.2. Crossdating

In practice, before two tree ring width sequences are compared they have to be fi
This so-calledstandardizationprocess cleans the data from individual trends, which u
ally are long term trends. For instance with growing age the tree rings usually be
thinner. Thus after standardization only general trends which occur in several tree r
quences remain. Typically high-pass filters like the percentage of a five-year running
or the logarithmic difference are used. In the sequel a tree ring sequence will thu
standardized sequence of tree ring widths, which is a sequence of real values.

Assuming that the trees being considered have built exactly one ring each year, a
dating can be performed by sliding the undated sample sequence along the dated
sequence, which is usually quite longer, starting and ending with a certain constan
imum overlap of e.g., 50 rings. At each position the distance (according to a pred

2 Depending on the application there are also other tree ring characteristics than the width used (s
[11]), but in this article we will regard tree ring widths only.
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position yielding the best distance is proposed as the correct dating position. The
common distance measures are thet-value, and the so-calledGleichläufigkeitskoeffizien
(percentage of slope equivalence).

Let x = x0, . . . , xN−1 andy = y0, . . . , yN−1 be the two sequences being compared
one step of the sliding algorithm. Then thet-value (also known asStudent’st) is defined
as

(1)t = r
√(

N − 2

1− r2

)

wherer is the correlation coefficient

(2)r =
∑N−1
i=0 (xi − x̄)(yi − ȳ)√∑N−1

i=0 (xi − x̄)2
∑N−1
i=0 (yi − ȳ)2

(3)= N
∑N−1
i=0 xiyi −

∑N−1
i=0 xi

∑N−1
i=0 yi√(

N
∑N−1
i=0 x

2
i − (∑N−1

i=0 xi
)2)(

N
∑N−1
i=0 y

2
i − (∑N−1

i=0 yi
)2)

with the arithmetic means̄x andȳ. TheGleichläufigkeitskoeffizient Glkis the percentag
of slope equivalence of the two sequences,

(4)Glk = 1

N − 1

N−2∑
i=0

χ
(
sign(xi+1 − xi)= sign(yi+1 − yi)

)

(5)= 1

N − 1

1∑
k=−1

N−2∑
i=0

χ
(
sign(xi+1 − xi)= k

) · χ(sign(yi+1 − yi)= k
)

with the signum function sign and the characteristic function

χ(a = b)=
{

1, if a = b,
0, if a �= b.

A sequential computation of all distances takesθ(nm) time, wherem andn are the
lengths of the master and the sample sequences, respectively. Considering (3)
sequential computation of all correlation coefficients depends on the efficient calcu
of the correlation terms

∑
xiyi , since all other terms can be computed in linear time. N

that the inner sum in (5) is also a correlation term. Employing the Fast Fourier Tran
(FFT) all such correlation terms can be computed in timeθ((n+m) log(n+m)) instead
of the brute forceθ(nm), see, e.g., [2,7,8]. Due to the discretization of the slope of
sequences the Gleichläufigkeitskoeffizient usually gives less information than thet-value.

Since the data is very noisy it usually does not suffice to simply date the samp
quence according to the crossing position which yields the best distance. The result
matching algorithm are always visually checked by a dendrochronologist.
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1.3. Missing and double rings
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However, the assumption made above that a tree ring sequence contains exac
value per year is not always true. It happens that due to bad growing conditions a tre
not build a ring around the whole stem or even not at all, which can result in amissing ring
in the tree ring sequence. Also mistakes during the measurement of very narrow rin
lead to missing rings. Moreover, climatic variations during a year can cause a tree to
two rings a year, adouble ring.

If the sequences to be compared contain missing or double rings most matching
rithms do not produce satisfying results since they do not take into account the transp
in time which is caused by a missing or a double ring. The usual approach to date
ple sequence which may contain inconsistencies against a clean master sequen
split up the sample into shorter parts and to date each part on its own (either manu
using Cofecha [4]). Finally possible positions for missing or double rings are man
concluded. Cofecha [4] is a quality control tool which checks a set of dated sampl
mutual dating consistency by splitting up each sequence into small pieces and com
these to the other sequences. This leads to a lot of information to be evaluated. Th
mation needed to deduce a possible missing ring (i.e., when the pieces to the rig
missing ring position date all to one year later) is then available, but a missing ring
explicitly proposed.

1.4. Overview

The remaining part of the article is structured as follows: Section 2 concentrates
edit distance as a distance measure. First a simple edit distance, similar to that b
strings, is introduced. Then a first approach to restrict the number of possible miss
double rings is introduced, which however does not fully succeed. Last theα-edit distance
is introduced, which guarantees to restrict the number of edit operations. In Section
present the crossdating algorithm based on theα-edit distance, consider several heuristi
and finally present the enhanced crossdating algorithm including all heuristics. Sec
is devoted to test results and Section 5 contains conclusions.

2. Edit distances

2.1. A simple edit distance

Let A = a0, . . . , an−1 andB = b0, . . . , bm−1 be two standardized tree ring width s
quences, whereAmay contain missing or double rings (representing the sample sequ
whereasB is known to be a clean reference sequence (representing a part of the
sequence). In order to get a notion of how muchA differs fromB we look for a transfor-
mation transformingA by inserting rings (which compensates a missing ring) or mer
two rings into one (which compensates a double ring) into a sequence close toB. Closeness
is defined by considering the sum of the squared differences. The transformations a
are described bytransformation sequenceswhich are defined as follows:
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A 3 2︸︷︷︸ 1 2︸︷︷︸ 5 3

τ (A) 5 3 5 4 4 3

Fig. 1. An example of a sequenceA, a transformation sequenceτ and the transformed sequenceτ (A).

Definition 1. A transformation sequenceis a sequence over the alphabet{I,M,N}, where
I stands forinsert, M for merge, andN for identity operation. For a transformation se
quenceτ we call the number of merge operations it containsγτ , the number of inser
operationsιτ and the number of identity operationsντ . We denote byTn,m the set of all
transformation sequencesτ of length|τ | =m= γτ + ιτ + ντ such thatn= 2γτ + ντ .

Definition 2. Let τ = τ0, . . . , τm−1 ∈ Tn,m be a transformation sequence. LetA =
a0, . . . , an−1 be a sequence of real values, possibly embedded into a sequence. . . , a−1,A,

an, . . . . Then thetransformation thatτ effects onA is defined as

(6)τ (A)i =


a2γi+νi + a2γi+νi+1, if τi =M,
a2γi+νi , if τi =N,
(a2γi+νi−1 + a2γi+νi )/2, if τi = I,

for 0 � i �m−1, and whereγi andνi denote the number of merge or identity operation
the prefixτ0, . . . , τi−1 of τ . If A is not embedded into a larger sequence such that eithea−1
or an do not exist, then a transformation sequence with leading or ending insert oper
respectively, does not define a valid transformation.

The transformationτ effects onA can be best visualized by aligningA and τ and
performing the transformation sequentially from left to right. Let for example beA =
3,2,1,2,5,3 and consider a transformation sequenceτ = MMNIIN, see Fig. 1. Then th
transformation merges 3 and 2 to 5 (M), it merges 1 and 2 to 3 (M), it does not change
(N ), it inserts a ring which is done by taking the average5+3

2 = 4 of the two surrounding
rings(I), it inserts another ring in the same manner(I) and finally it keeps the last ring
(N ).

Note that in Definition 2 the possibility thatA is embedded into a another sequen
is technically necessary, because otherwise leading or ending insert operations wo
properly be defined. But these are necessary in the sequel, e.g., when considering
overlap of the sample and the master, or in Lemma 2 where edit distances between p
are considered. If in the following a transformation sequence is considered which
leading or ending insert operations does not define a valid transformation we will s
neglect it, in order not to overcomplicate the notation. However, this little sloppy not
does not affect the validity of the stated results. Furthermore, note that merge and
operations operate only on the values given in the original sequence and not on
values that have been created by previous merge or insert operations. This definit
been chosen on the one hand with respect to the application where a modification
original sequence is performed by taking the surrounding original values into accou
the other hand this definition enables us to subsequently derive a recurrence for t
distance, whereas a different definition would cause problems in this point.



372 C. Wenk / Journal of Discrete Algorithms 1 (2003) 367–385

Definition 3. Thesimple edit distanceDsimp(A,B) is defined as
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(7)Dsimp(A,B)=
{

minτ∈Tn,m
∑m−1
υ=0

(
τ (A)υ −Bυ

)2
, if Tn,m �= ∅,

not defined, otherwise.

We call a transformation sequence which minimizes the sumoptimal.

This notion of an edit distance is based on the edit distance for strings (see [3,12])
the dynamic time warping in speech recognition (see [6,10]). Note that strictly spe
an insert operation compensates only a ring which is actually missing, and it do
compensate a measurement error. The latter would be compensated by a split op
But since measurement errors happen only with extremely narrow rings an insert op
is a good approximation for a split operation. Technically one could easily integrate
operations into the definition of the edit distance.

Lemma 1. Tn,m �= ∅ ⇔ n� 2m.

Proof. Easy application of the equationsm= γτ + ιτ + ντ andn= 2γτ + ντ for a trans-
formation sequenceτ ∈ Tn,m. ✷

The profit of taking the sum of the squared distances as a minimization criter
the existence of a recurrence which leads to an efficient computation of the simp
distance. DefineDsimp(i, j) := Dsimp(A[0 . . i − 1],B[0 . . j − 1]) to be the simple edi
distance of the prefixes ofA andB for i � 2j . Then the definition of the transformatio
by transformation sequences implies the existence of the following recurrence:

Lemma 2.

(8)

Dsimp(0,0)= 0,

Dsimp(i, j)= min



Dsimp(i − 2, j − 1)+ (ai−2 + ai−1 − bj−1)

2,

Dsimp(i − 1, j − 1)+ (ai−1 − bj−1)
2,

Dsimp(i, j − 1)+ (
(ai−1 + ai)/2− bj−1

)2



for all 0 � i � n, 0 � j �m with i � 2j.

Proof. Via a case distinction concerning the last character of the optimal transform
sequence. ✷

Although the transformation space is exponentially big a dynamic programmin
proach allows to computeDsimp(A,B) in θ(nm) time and space. This is accomplish
by sequentially filling an(n+ 1)× (m+ 1) matrix in which cell(i, j) contains the value
Dsimp(i, j). The conditioni � 2j and the symmetrical condition(n− i)� 2(m− j) cut
two corners off the matrix which represent undefined or for the computation ofDsimp(n,m)

unnecessary values, respectively. According to Lemma 2 a value is computed out of
three values. The valueDsimp(A,B)=Dsimp(n,m) is placed in cell(n,m).

An optimal transformation can be retrieved from the filled matrix by backtracking
performed computation. This is done by starting in cell(n,m) and recursively checkin
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Fig. 2. Van Deusen’s computation matrix with a strip of widthα = 2 to each side of the diagonal. The diagon
has been shaded.

which of the three possible cells contributed its value to the examined cell (either
calculating the sums or by checking a previously saved pointer to a cell). In this w
path of cells from cell(n,m) to cell (0,0) is constructed which obviously corresponds
a transformation sequence.

2.2. Van Deusen’s edit distance

The transformation space over which the simple edit distance is minimized inc
in particular transformations containing many edit operations. Transformations lik
correspond to paths in the computation matrix with many non-diagonal sections. S
tree ring sequence usually contains only very few missing or double rings, Van Deus
reduced the transformation space by allowing only those paths in the matrix whic
inside a given strip of constant width around the diagonal starting at(0,0); see Fig. 2.

The width of a strip is given by a parameterα which denotes the width on each side
the diagonal. The in this way reduced transformation space contains only transform
in which the edit operations are locally balanced. Yet there are still transformations
many edit operations possible. For instance if the transformation sequence alterna
tween a merge and an insert operation the conforming transformation path still stays
a strip of width 1 around the diagonal.

2.3. α-edit distance

A straight forward improvement of Van Deusen’s edit distance is the following no
which we callα-edit distance. This type of edit distance has been proposed for string
Sankoff and Kruskal [5]. Since the number of edit operations (i.e., merges or inserts
tained in an optimal transformation should be small, the idea is to regard transform
and edit distances depending on the number of edit operations.
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Definition 4. We denote byTn,m,α the set of all transformation sequencesτ ∈ Tn,m with
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Definition 5. Theα-edit distanceis defined as

(9)D(A,B,α)=
{

minτ∈Tn,m,α
∑m−1
υ=0

(
τ (A)υ −Bυ

)2
, if Tn,m,α �= ∅,

not defined, otherwise.

Note that theα-edit distance as we defined it is the edit distance between the tw
quences when only transformations containingexactlyα edit operations are considered
is also possible to define it withup toα edit operations as in [5]. However, our definitio
allows to select possibly suboptimal edit distances with a given number of edit oper
in an easy way.

Lemma 3. Tn,m,α �= ∅ ⇔m� α andm− n= α− 2γ for a γ ∈ {0, . . . , α}.
Proof. Easy application of the equationsm= γτ + ιτ + ντ = n+ ιτ − γτ andιτ + γτ = α
for a transformation sequenceτ ∈ Tn,m,α . ✷

We defineD(i, j,α) to be theα-edit distance between the prefixesA[0 . . i − 1] and
B[0 . . j − 1]. Just as in the case of the simple edit distance theα-edit distance satisfies th
following recurrence:

Lemma 4.

(10)

D(0,0,0)= 0,

D(i, j,α)= min



D(i − 2, j − 1, α− 1)+ (ai−2 + ai−1 − bj−1)

2,

D(i − 1, j − 1, α)+ (ai−1 − bj−1)
2,

D(i, j − 1, α− 1)+ (
(ai−1 + ai)/2− bj−1

)2



for all 0� i � n, 0 � j �m
with j � kα; andj − i = α− 2γ for a γ ∈ {0, . . . , α}.

Proof. Via a case distinction concerning the last character of the optimal transform
sequence. ✷

The α-edit distance can be computed in a dynamic programming manner inO(α2 ·
min(n,m)) time and space: The storage required is a part of an(n+1)× (m+1)× (α+1)
box (see Fig. 3) in which cell(i, j, k) contains the valueD(i, j, k). Due to the condition
j − i = k − 2γ for a γ ∈ {0, . . . , k} the defined values ofD(i, j, k) form diagonals inside
the matrix. Note that for eachγ ∈ {0, . . . , k} there is one corresponding diagonal in levek.
All edit distances in one diagonal contain the same number of merge and insert ope
as shown in Fig. 3. According to Lemma 4 the valueD(i, j, k) is computed out of a
most three values (see Fig. 4) whereby a change of thek-level is performed only in the
case of an edit operation (merge or insert). The computation is carried out by fillin
diagonals level by level, thereby touching each cell only a constant number of times
finally filling cell (n,m,α). Note that this computation box (α-box) contains especially
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uences
Fig. 3. Dynamic programming box needed for the computation of the 3-edit distance between two seq
of length 4 and 7. The defined cells have been shaded. The number of merge (M) and insert (I ) operations
corresponding to the diagonals have been written next to each diagonal.
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Fig. 4. Dynamic programming computation of thek-edit distance according to Lemma 4.

all k-edit distances betweenA andB with 0 � k � α. In eachk-level there are at mos
k + 1 diagonals and each diagonal contains at most min(n,m)+ 1 cells. Therefore ther
are(min(n,m)+ 1)

∑α
k=0(k + 1)=O(α2 min(n,m)) cells to be filled.

Theorem 1. Theα-edit distance between two strings of lengthsn andm can be compute
in time=O(α2 min(n,m)).

3. Crossdating employing α-edit distances

The crossdating problem could be tackled in the following way, see, e.g., [3]:
could fill one bigα-box for the sample and the whole master sequence, whereby al
D(0, j,0), for 0� j �m−1, have to be initialized with 0 in advance. The cellsD(n, j, k),
for 0 � j �m− 1 and 0� k � α, then containk-edit distances between the sample a
different parts of the master sequence. This approach can be applied in cases wh
best edit distance for each overlap position is searched. However, since due to the
of the problem the dendrochronologists are also interested in suboptimal results, we
a different approach here. For similar reasons [3] considers also algorithms that co
suboptimal alignments.

In our crossdating algorithm we apply the crossdating technique of sliding the s
sequence across the master sequence and computing distances between the ov
parts at each crossing position. Of course the distance measure we apply is theα-edit
distance. A parameterα, which denotes the maximum number of allowed edit operati
must be specified by the user in advance. As a postprocessing step a new heuristic is
in order to further restrict the number of edit operations being contained in a transform
sequence.

3.1. Crossdating by sample sliding

The crossdating algorithm is shown in Fig. 5. It basically slides the sample alon
master sequence, computes all edit distances between the sample and a correspond
of the master sequence and finally sorts the computed results.

Let us take a closer look at theα-box which has to be filled in order to compute t
α-edit distance between the sample and a specific (coherent) piece of the master se
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Standardization of the master and the sample sequence
For all overlap positions of the sample in the master

Fill α-box
For all cells in the last row and last column of each level

Normalize edit distance
Compute optimal transformation
Store the distance, the transformation and the offset number in an
overall result structure.

Sort all results in the result structure by decreasing normalized edit distance.
Display the best results (those with the smallest normalized edit distance).

Fig. 5. Crossdating algorithm.

A good way to visualize the following description is to associate the rows of each le
theα-box with the sample and the columns with the master piece. Assume the maste
starts at yeary. Then the last row of eachk-level, 0� k � α, contains allk-edit distances
between the sample and all prefixes of the master piece, while each last column cont
k-edit distances between the master piece and all prefixes of the sample. If the mast
is a suffix of the master sequence (or if its length is the length of the sample plusα), the
α-box contains all possiblek-edit distances between the sample and those master p
which date the sample to yeary.

When we slide the sample across the master, at each position computing anα-box for
the sample and the suffix of the master sequence, especially the last row and last
of each level, we obtain all information we need to date the sample: The last rows c
results comparing the sample to the master sequence at different offsets, where eac
is represented in oneα-box. The last columns are interesting only in the case tha
sample partly overlaps the end of the master sequence, so that a prefix of the samp
be considered. In the case where the master piece is longer than the sample, the las
degenerates to one cell which is already part of the last row.

After having computed all edit distances in the last rows and last columns of each
in eachα-box, we need to compare them in order to find an acceptable dating. A s
comparison is not meaningful, since the number of terms adding up to ak-edit distance
in (9), 0� k � α, varies according to the number and kind of edit operations perfor
and also according to a partial overlap of the sequences. So we normalize each edit d
by dividing by the number of added terms which is the length of the transformed sa
sequence. Finally we sort the normalized edit distances and display the smallest norm
edit distances to the user, each together with an optimal transformation (i.e., the po
of possible missing and double rings) and the corresponding dating proposal (offset

In order to decrease the space complexity we assume that there is exactly one
transformation per edit distance, otherwise we choose exactly one. Although theore
there can be several optimal transformations associated with one edit distance, a
equality of the sums is unlikely, because of the real valued input data. Then inste
storing in each cell of theα-box a pointer to the cell which contributed its value to
sum, we collapse a path of diagonal pointers to one pointer (shortcut) directly pointing to
the position where the transformation path changes thek-level. That way a traceback of th
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Theorem 2. The crossdating algorithm shown in Fig.5 needsO(α2mn) time and
O(α3(m+ n)) space.

Proof. The standardization can be done inθ(m + n) time and space. The number
α-boxes to be filled isO(n + m), and since we needO(α2 min(n,m)) time to fill one
α-box (see Theorem 1), we can fill them all inO(α2mn) time. We do not need to stor
all α-boxes since we need only the last row and the last column of each level of
α-box. There is one last row or last column entry for each diagonal, so that we only
to count the diagonals of which there are at most(k + 1) in everyk-level. So we have
O((m+ n)∑α

k=0(k + 1))= O(α2(m+ n)) edit distances to be stored. But for each e
distance we also store its corresponding optimal transformation which needsθ(k) space,
so that the space which is altogether needed to store all results sums up to

O
(
(m+ n)

(
1+

α∑
k=1

(k + 1)k

))
=O

(
α3(m+ n)).

Additionally there isO(α2 min(n,m)) space for oneα-box needed to fill a box.
The sorting of all results takesO(α2(m+ n) log(α2(m+ n))) time. (Since we are in

terested in some of the best results only we actually do not have to sort all resul
sorting does not affect the asymptotically running time.) So altogether the algorithm
O(α2mn) time andO(α3(m+ n)) space. ✷
3.2. Heuristics

Unfortunately, the results the edit-distance based crossdating algorithm compu
not, for several reasons, match the expectations of the dendrochronologists. One re
that there is no definition of a distance measure known that correctly models the diffe
and similarities between tree ring sequences. Neither the edit distance nor thet-value or
the Gleichläufigkeitskoeffizient are therefore ultimate distance measures. In practi
crossdating task is therefore performed by an experienced dendrochronologist who
and perhaps rejects the output of a crossdating tool. However, besides this general p
there are certain heuristics that improve on the practical performance of our algo
which we describe in the sequel. The goal is to tune the algorithm in that way, that th
match it computes is the match a dendrochronologist would find. This includes th
edit operations the algorithm proposes for the best result do also match the expecta
the dendrochronologist. We will call these edit operationscorrect, and othersincorrect.

Often an optimal transformation contains two opposite edit operations (insert/me
merge/insert) almost successively. A pair of edit operations like this has no global
on the edited sequence, but only a local effect during the short time interval betwe
two edit operations. As a heuristic supplement we thus modify the edit distance
following way: Given a threshold (e.g., 10) for the minimum number of years betw
two opposite edit operations, 10 cells on the diagonal after an edit operation are ma
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Furthermore, the simple comparison of all normalized edit distances (which mean

ing them and taking the smallest as the best) proved not to be useful. The reason
is that the normalization removes the information about the length of the sequenc
the number of summands), such that short sequences cause a better edit distan
easily than long sequences do. Since thet-value is length-dependent and a commonly u
distance measure in dendrochronology (which dendrochronologists are familiar wit
take thet-value between the transformed sequence and the master piece instead of
malized edit distance as the judging criterion. I.e., we compute the edit distance in o
find a good transformation, but in the end we sort the results with respect to thet-value.

So far the algorithm described simply sorts all results in the end without taking the
ber of edit operations into account. Therefore the best results will often contain too
edit operations from the viewpoint of a dendrochronologist. A standard approach t
problem is to penalize edit operations either by a multiplicative or an additive term. U
tunately this also affects edit operations at correct positions. Indeed, it seems that in
to penalties incorrect edit operations are somehow more robust. We therefore decid
to penalize the edit operations, but we compare the obtained results in a heuristi
processing step. We store all edit distances of all last rows and last columns of eac
of eachα-box in an overall result structure. Then usually a good dating appears s
times among the best results. Those similar results then differ only in some edit oper
whereby they usually share some edit operations (the correct ones) and include som
edit operations which improve the edit distance a little but which are incorrect. We
those results that contain “too many” edit operationsredundant. By applying tworedun-
dancy checkswe try to identify some possible redundant results and delete those fro
overall result structure. For each edit distance result (that is an edit distance in the la
or column of a box-level) we do a redundancy check within the box plus another c
concerning some neighboring boxes.

During the first redundancy check it is tested, if the normalized distance is signific
smaller than each normalized edit distance associated with each last cell on the dia
on the transformation path. This captures the idea that one good match often appe
eral times, where the different occurrences share some correct edit operations and
some more incorrect edit operations. An additional edit operation should therefore
mitted only if it improves (hence decreases) the edit distance significantly. A norma
edit distancee is said to be significantly smaller than the normalized edit distanceecomp,
if e/ecomp< 0.9. If an edit distance did not pass this check it is deleted from the ov
result structure and not compared to other edit distances anymore.

The second redundancy check is established to eliminate those inter-box redund
sults, which date the sequence incorrectly by a few years according to superfluo
operations at the beginning of the transformation sequence. Call the subsequenc
transformation sequence which includes only the insert and merge operations anedit se-
quence. For every prefix of the edit sequence the time transposition it induces is calc
(a merge operation corresponds to a transposition one year to the left, an insert op
one year to the right). Theα-box at the transposed position is checked if it contains
edit distanceecompwith an edit sequence equal to the remaining suffix of the edit sequ
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Standardization of the master and the sample sequence
For all overlap positions of the sample in the master

Fill α-box
For all cells in the last row and last column of each level

Normalize edit distance
Compute optimal transformation
Redundancy check 1: Check with normalized edit distances on

transformation path.
If edit distance is not redundant:

Store the distance, thet-value, the transformation and the offset
number in an overall result structure.

Redundancy check 2: Remove inter-box-redundant results.
Sort all results in the result structure by decreasingt-value.
Display the best results (those with the highestt-values).

Fig. 6. Enhanced crossdating algorithm including all heuristics of Section 3.2.

being checked. Now the normalized edit distancee whose edit sequence probably conta
an unnecessary prefix is deleted ife/ecomp� 0.9.

3.3. Enhanced crossdating algorithm

Theorem 3. The enhanced crossdating algorithm shown in Fig.6, which includes all
heuristics of Section3.2, needsO(α2mn+ α4(m+ n)) time andO(α3(m+ n)) space.

Proof. The correlation coefficient and thus thet-value can be implicitly calculated du
ing the box filling process at no extra cost asymptotically. The first redundancy c
needsθ(k) time for each edit distance which sums up toO((m+ n)(1+∑α

k=1(k + 1)k))
= O(α3(m + n)) altogether. The second redundancy check needsO(k2) time each,
hence togetherO((m + n)(1 +∑α

k=1(k + 1)k2)) = O(α4(m + n)). For the redundanc
checks there is asymptotically no more space needed. So altogether the algorithm
O(α2mn+ α4(m+ n)) time andO(α3(m+ n)) space. ✷
4. Test results

4.1. Implementation

The enhanced crossdating algorithm has been implemented in C++ in a comman
oriented Unix environment. A program executable can be obtained from the author.

In practice a crossdating program outputs several good matchings (e.g., the best 5
and the dendrochronologist visually checks if one of them represents the correct
Likewise the program we have implemented allows the user to subsequently evalu
results according to different criteria. That is, once the results have been comput
best results in a certain time interval, those having a bigger minimum overlap or thos
lower value forα can be queried. The computation time of such modified result queri
scanning the list of the sorted results is linear in the number of results, thusO(α2(m+n)).
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the simple sliding algorithm. They can be accessed by querying the results forα = 0. Our
program therefore generalizes the simple sliding algorithm.

We have performed several tests which we present in the following two parag
Tests with randomly generated missing or double rings and tests on data containi
missing rings however, the automatized tests do not cover the interactive program p
ties.

4.2. Randomly generated disturbances

The program was tested on collections of already dated samples. In each collect
sample was randomly disturbed by deleting or splitting up some values, and this s
was then tried to date against the mean sequence of the remaining sequences in th
tion.

Tests were performed mainly for the parameter valuesα = 2, 3 and 4, a minimum
overlap of 50 and a redundancy threshold of 10 (see end of Section 2.3). For each s
random disturbance has been carried out 5 times. Some test results are shown in T
2, 3 and 4. Columndateshows the percentage of those data sets in the collection for w
the correct dating has been found.Date & editshows the percentage of those data sets
which the correct dating and the correct type of editation in an interval of radius 10 a
the correct position have been found. The columnk shows the average number of propos
edit operations for those results for which the correct date and editation has been
For standardization the percentage of a five-year running mean was used.

The data used was supplied by the following sources: Thekieftestdata is tree ring width
data from a German pine, which was supplied by Deutsches Archäologisches In3

TheSET01andSET02data are files which come with the crossdating program TSAP
(which does not search for missing or double rings during the crossdating). The oth
was taken from the ITRDB,4 where thegermdata sets are from German oaks, thecanadata
from Canadian white spruce, theazdata from Arizona whereaz526is ponderosa pine, th
ohdata from white oak from Ohio and thesweddata from scotch pine from Sweden.

Table 1 shows how many samples of each tested collection the algorithm dates co
when no random disturbances have been performed. Withα = 0 this equals a simple slidin
algorithm concerningt-values which dates 98% samples correctly on the average.5 With
α = 2 the percentage of correct datings decreases by up to 33% (on the average
18% though), and the number of mistakenly found edit operations increases by up.4
(on the average only by 0.1).

To see how our algorithm performs on sequences that contain missing rings, take
at Table 2 which shows test results for four data sets with one randomly deleted elem
for different values ofα. Settingα = 0 (again, this equals the simple sliding algorithm)
correct date is found in at most 51% of the cases. When allowing the algorithm to pe

3 We thank Dr. K.-U. Heußner from Deutsches Archäologisches Institut, Eurasien-Abteilung, Im Do
D-14195 Berlin.

4 The International Tree-Ring Data Bank (ITRDB) is located athttp://www.ngdc.noaa.gov/paleo/treering.htm.
5 On the average means here averaged over the tested collections shown in the tables.

http://www.ngdc.noaa.gov/paleo/treering.html
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Test results without manipulation of the data

date date k date date k

α = 0 α = 2 α = 0 α = 2

kieftest 96% 81% 0.2 az052 100% 80% 0.0
germ001 98% 82% 0.0 az526 100% 95% 0.
germ003 100% 94% 0.0 SET01 94% 63% 0.
germ004 96% 75% 0.2 SET02 96% 63% 0.4
germ006 100% 88% 0.0 oh004 100% 72% 0.
cana030 94% 78% 0.0 swed302 98% 86% 0.

Table 2
Test results with a random deletion of one sample element and different values forα

α kieftest germ001 cana030 az052
date date & k date date & k date date & k date date & k

edit edit edit edit

0 25% 0% 0.0 51% 0% 0.0 27% 0% 0.0 48% 0% 0
1 77% 66% 1.0 94% 91% 1.0 87% 80% 1.0 92% 87%
2 76% 67% 1.1 92% 89% 1.0 83% 79% 1.0 92% 86%
3 70% 61% 1.2 91% 87% 1.0 79% 74% 1.0 92% 86%
4 65% 57% 1.4 90% 87% 1.0 72% 69% 1.0 91% 85%
5 60% 53% 1.5 89% 84% 1.0 66% 64% 1.2 91% 85%

Table 3
Test results with a random deletion or a random insertion of one sample element

One random deletion One random insertion
date date date & edit k date date date & edit k

α = 0 α = 2 α = 0 α = 2

kieftest 25% 76% 67% 1.1 22% 72% 59% 1
germ001 51% 92% 89% 1.0 52% 93% 89% 1
germ003 58% 94% 83% 1.0 56% 94% 83% 1
germ004 47% 85% 78% 1.2 49% 87% 78% 1
germ006 21% 91% 84% 1.0 19% 91% 83% 1
cana030 27% 83% 79% 1.0 29% 76% 69%
az052 48% 92% 86% 1.0 47% 98% 89% 1
az526 36% 81% 74% 1.0 36% 83% 74% 1
SET01 26% 64% 53% 1.0 18% 65% 56% 1
SET02 33% 61% 44% 1.1 28% 60% 53% 1
oh004 47% 85% 83% 1.0 47% 87% 85% 1
swed302 40% 85% 69% 1.0 32% 75% 65% 1

some editations by choosingα, e.g., to be 2 or 3 the chance for a correct dating incre
dramatically. But the fartherα is away from the correct number of edit operations nee
the more false edit operations are performed and the more the chance for a corre
decreases. But since there are not many double or missing rings expected in a tr
sequence, a small value ofα (e.g., 2 or 3) should be sufficient most of the times.

Tables 3 and 4 show test results for different data collections with one random de
one random splitting and two random consecutive deletions. Although the perce
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Test results with a random deletion of two consecutive sample elements

date date date & edit k distance betw. edits
α = 0 α = 3

kieftest 14% 71% 58% 2.1 2.8
germ001 56% 91% 85% 2.0 2.2
germ003 54% 92% 74% 2.0 3.5
germ004 38% 83% 73% 2.1 3.0
germ006 16% 89% 78% 2.1 2.5
cana030 20% 77% 70% 2.0 2.6
az052 42% 92% 88% 2.0 2.0
az526 38% 82% 76% 2.0 2.6
SET01 26% 60% 53% 2.0 4.7
SET02 30% 58% 40% 2.1 3.2
oh004 43% 77% 73% 2.0 2.2
swed302 35% 80% 64% 2.0 2.9

for a correct dating with a correct editation vary from 40% to 89%, the percentage
usually extremely higher than those for a dating withα = 0. However, as can be seen
the columndatefor α > 0, the program finds the correct date more often than the co
date plus the correct editation, because it proposes some wrong, additional or not
edit operations. In fact, if the program finds the correct date, it usually proposes m
the editations at an almost correct position and skips necessary editations only if th
too close to the beginning or the end of the sequence. In any case the results of the p
give more information to the user about possible missing or double rings than the sta
crossdating methods do. Concerning two consecutive deletions, Table 4 shows tha
missing rings have been found, they lie only about 2 or 3 years apart.

4.3. Real missing rings

In this paragraph we present results from tests performed on data containing real m
rings. Test data like this is widely available because many dendrochronologists m
missing ring as a ring with width 0. Test data for double rings is rather hard to find be
dendrochronologists usually do not record the occurrence of double rings. The rea
that is that there is a chance to visually identify a double ring on the wood (e.g.,
some more preparation of the wood or using a better microscope), whereas for a m
ring there is not. We therefore restricted the tests on data with real inconsistencies
containing missing rings.

Table 5 shows test results for collections of samples where some samples contai
ing rings. During the testsα has been chosen to be 4. Thebreclavdata was supplied b
Deutsches Archäologisches Institut, the others are available at the ITRDB. Thewa data is
from a subalpine larch from Washington State, thechindata is Armand’s pine from China
and theazdata is from Arizona, as mentioned above. The column# of samplescontains the
number of samples in the collection that contain missing rings. Theave. # of miss. rings
column shows the average number of missing rings contained in the samples. Thedate &
edit column contains the number of samples (and also the percentage relative to t# of
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Test results for data with real missing rings;α = 4

# of samples ave. # of miss. rings date date & edit

wa067 19 2.53 16∼=84% 12∼=63%
wa069 13 2.44 12∼=92% 8∼=62%
wa072 19 4.76 14∼=74% 12∼=63%
wa079 23 2.22 17∼=74% 15∼=65%
breclav 7 4.40 7∼=100% 5∼=71%
chin04 13 4.66 12∼=92% 9∼=69%
az052 6 3.33 5∼=83% 4∼=67%
az526 14 3.71 13∼=93% 6∼=43%

samples) that the algorithm dates correctly with the correct number and position (w
tolerance of 10) of insertions. The master sequences to date against are built out o
samples in each collection that do not contain missing rings.

5. Implementation and conclusions

We investigated the problem of matching tree ring width sequences (crossdating)
is stated in dendrochronology. Assuming that a tree forms exactly one ring each
the matching can be performed by aθ((m + n) log(n + m)) algorithm. We presented
O(α2mn+ α4(m+ n)) crossdating algorithm which takes the possibility of up toα miss-
ing or double rings into account by employing an edit distance as a distance measu

The algorithm has been implemented and tested. The tests show that the dating
of the algorithm varies depending strongly on the input data. It is best whenα equals
the number of inconsistencies to be found. It is therefore not possible to date a tre
sequence according solely to the first dating proposition of the algorithm. However,
usual dating process results of an automatic matching are taken as dating propositio
and are always visually verified by a dendrochronologist. Since our program allow
evaluation of the computed results for some different parameter settings, e.g., for a
value forα, in rather fastO(α2(m+ n)) time, and it usually offers some good datings,
program should be eligible to serve as an additional dating tool searching for missin
double rings.

For further research it would be interesting to investigate whether it is possible to
pare several tree ring sequences at once in order to produce a mean sequencemaster
sequence, chronology). The question could also be raised as to whether similar matc
techniques based on the edit distance can be applied to other environmental archi
sea or glacier sediments, where certain environmental events produce different dist
of the underlying sequences.
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