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The purpose of this paper is to lay the ground work for a treatment of 
higher degree forms which is analogous to the treatment initiated by Witt of 
quadratic forms (see [3]). 

In our first section we set up notation and state a cancellation theorem 
which generalizes Witt’s cancellation theorem to arbitrary degree greater 
than one for fields whose characteristic is zero or larger than the degree. In 

the second section we prove this together with the uniqueness of the decom- 
position of a form into a direct sum of indecomposable forms. In the third 
section we put the forms together to get a sort of Grothendieck ring of forms. 
In the fourth section we prove that over an algebraically closed field, the 
tensor product of two indecomposable forms is indecomposable. This means 
that the Grothendieck ring is just a semigroup ring-the semigroup being 
the set of additively indecomposable forms with tensor product as operation. 
In the case of a field which is not algebraically closed, we define the center of 
a form, show that a nonsingular form is a sort of generalized separable 

algebra, and show how to reduce considerations, at least for nonsingular 
forms, to forms which stay indecomposable over any field extension. 

We are mainly interested in forms over fields which have characteristic 
zero or sufficiently large. For these there is no loss of generality in assuming 
no variable can be removed (i.e., have its coefficients made zero) by a linear 
change of variables; such forms are called nondegenerate. Sometimes it seems 
appropriate to consider forms over Noetherian rings, in which case we restrict 
attention to those forms which are nondegenerate when considered modulo 
any maximal ideal. We call these nondegenerate, but use an equivalent and 
easier to handle definition for them. 
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1. I\;o~rAno~ AND TERMINOLOGY 

I f  .q is a set, All demotes il x i3 :, ... x A (n copies). Let F be a field. 
For n and Y nonnegative integers, we wish to consider forms of degree Y in n 
indeterminants with coefficients in F; in other words, elements of the poly- 
nomial ring FIXl , dY2 ,..., &] which arc sums of monomials of degree 1. Two 
forms f  and g are called eyuivnlent and we write f  z g if f  can be gotten 

from g by a reversible linear change of variables; i.e., if f  and g have the 
same number of indeterminants n and there exists an invertable n by n 
matrix [CXJ with entries in F with 

f(zzY,,jXj ) zar,jxj )..., &jXj) = g(X1 , x2 )...) X,). 

We shall only consider forms of degree T where the characteristic of F is zero 
or greater than Y. In other words, we assume r! ;/- 0 in F where rl denotes 
I + 1 + ... + 1 (1 . 2 . 3 ... r copies). With this assumption, if f  and g are 
forms of degree Y in n indeterminants, f(ui ,..., a,) = g(a, ,..., a,) for all 

a1 >..., a, E F if and only if f  - g. Also, forf a form of degree Y, there exists a 
unique symmetric multilinear map 0, from Y copies of F” to F (i.e., from 
(F”)’ to F) with 

~,@l >*.., a,), (a1 >..., %),..., (a1 ,..., 4) =- f(Ul ,‘.., a,) 

for all a, ,..., a, EF (that this exists is a tedious induction). Here Fn is made 

into a vector space in the usual way. Any vector space of dimension n over F 
is isomorphic to F”, so Fn may be replaced simply by a vector space of dimen- 
sion n. By a symmetric space of degree r over F we mean a pair (V, O), where V 
is a finite dimensional vector space over F and 0 is a symmetric multilinear 
map from V to F. Two symmetric spaces (V, 19) and (V’, 0’) are called 
isomorphic if there is a bijective linear map t from V to V’ with 0’(t(s), 
t(n.J ,..., t(vr)) = O(vl , z~a ,..., v,.) for all vl , v’2 ,..., ZJ, E V. Such a t is called 

an isomovphism from ( V, 0) to (V’, 0’). Thus since r! # 0 in F, the equivalence 
classes of forms of degree Y, and the isomorphism classes of symmetric spaces 
of degree Y are in bijective correspondence. A symmetric space (V, 0) corre- 
sponds to the set of all forms equivalent to f where f  is defined by choosing 
a basis al , v2 ,..., U, of V and lettingf be that form with 

B(xlvl -I- ... + x,0,, xlvl + ... + x,,Vn ,..., XIV1 i- .” + X,V,) =f(X1, X2 ,..., X,) 

for all x1 , x2 ,..., x, E F. We write f t) (V, 0) by z’i , v2 ,..., v, if the above 
displayed formula holds for the particular basis vr , vz ,..., ZI, of V. 

Let (I/, 0) be a symmetric space of degree Y. Let Y > 1. Let z’ E V. We 
define a symmetric multilinear map SC) from L’(‘pr) to V by 

B”‘(V, , Z$ )...) ii,.%J : qv, v1 ) v2 )..., vrpl) 
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for all ru’r , ~7~ ,..., ‘u,_r E I;. We call (V, B(s‘)) the derivative of (L’, 8) in the 

direction of v, since it can be checked that ifjtt ( V, 0) by zlr , vz ,..., vu, , and 
v  = c~vr + 01~r+ + ... + ~,v~with ~(r, (Ye ,..., + EF, thenC(l/r) 01~ ;Ifl?X,:<-+ 
(C’, P’)) by zlr , v2 ,..., vu, . 

Letftt (V, 0) byv, , vz ,..., V, . Let K be an extension field of F. It is usual 

to think of F[X, ,..., XJ as a subring of K[Xr ,..., XJ and sof can be thought 
of as an element in K[X, ,..., XJ, One checks there exists a unique symmetric 
K-multilinear map 0, from (K OF I-)’ to K with 

0,(1 @ ui , 1 @ u2 ,..., 1 @ u,.) = B(u, , ua ,..., 24,) for all ui , uz ,..., u,. E I-. 

One checks ftt (K I& V, 8,) by 1 @ z’r , 1 @ 7~‘~ ,..., 1 @ v, . Let Q be 
the algebraic closure of F. A zero off is a nonzero element (Xi , A, ,..., h,) E Qn 
with f(x, , AZ ,..., h,) = 0; in other words, a nonzero element v  = 

A, 0 VI + A, @vz + ‘.. + &, @ viz of Q OF I/ with 0,(v, v,..., v) = 0. This 
zero is singular or simple according as whether iifl%x, , ?f/2x, ,..., Ef/flx, when 

evaluated at x1 = h, ,..., x, = h, , are all zero or not. This is the same as 
asking whether Og”‘il), 8:@‘+),..., 8z”‘n) when evaluated at (v, v,..., n) are 
all zero or not. Since 1 @ Vr ,..., I @ v, are a basis of 0 OF V, this is the 
same as asking whether B,(u, v, P,..., v) = 0 for all u E .C? OF I-. Thus the 
symmetric space (v, 0) is nonsinguZar (meaning it corresponds to an equivalence 
class of nonsingular forms) if and only if the only v  E Q OF V with 

en(u, v,..., n) = 0 for all u E Q OF V is ZI = 0. We call (v, 6’) nondegenerate if 
the only v  E I’ with 6(v, W, u, ,..., w) = 0 for all w E V is 2! = 0 (or equival- 
ently 0(V, 20r , 2uz ,..., 20,-i) = 0 for all wr , z0’2 ,..., w,-i E V implies zI : 0). 
For quadratic forms (i.e., Y =- 2) one can check that nonsingular and non- 
degenerate arc equivalent concepts. If  ftt (V, 0) by vr , v2 ,..., V~ , one can 
check that f  is degenerate (meaning (V, 0) is degenerate) if and only if there 
is a form g equivalent to f  with g(-Xi , Xi, ,..., X,) = g(Xi , X, ,..., X,-i , 0) 
(i.e., the indeterminant -Xn can be “removed”). I f  h(X, , X, ,..., X,) and 

K(X, , X2 ,..., X,) are forms of degree Y, we write h @ K for h(X, , X, ,..., XT,) + 

wG&+, 7 A+2 ,..., Xn+nJ. This operation preserves equivalence of forms. 
One can check that if Y f  0 and if f  is any form of degree r then there exists 
a nondegenerate form h and a zero form k (meaning K(Xr , X, ,..., X,) = 0) 
with f = h @ k, and both h and k are unique up to equivalence with this 
property. The forms of degree 0 and 1 are trivial, se we may ignore them. 
Hence there is no loss of generality in restricting attention to nondegenerate 
forms. 

Our aim now is to prove a generalization of Witt’s theorem for quadratic 
forms; namely, iff, g, and h are forms of degree r with Y > 1 and if f  @ g s 

f  @ h, then g g h (if r! # 0). Using the decomposition of the last paragraph, 
there is no loss of generality in assumingf, g, and h are all nondegenerate. The 

481/35/1-3-9 
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case Y 2 is exactly Witt’s theorem ([3]), so we may assume Y z, 3. First 
we give the general result: 

LEMIUA 1.1. Let ( V, 0) be a yrwnetric space of degree Y ovey a jield F. 
Assume Y > I. Then ( V, 0) is nondegenerate if and only if there is a positive nz 
and elements ai( j) E V, i == 1 ,..., m, j 1 ,..., T zcith 

XO(ai(l), a,(2) ,..., ai(r - l), v) a,(r) = v  

for all v  t: T7. 

Proof. I f  this formula holds and B(w, , z+ ,..., zc,-i , c) = 0 for all 

7% a..., ~,,~i E V, then v  == 0. Conversely, suppose (V, 0) is nondegenerate. 

Let V* be Hom,(V,F). For S a subspace of V*, let SA :- {a E V /f(a) -2 0 
Vf E S}. One checks SL == (0) if and only if S = V*. Choose a dual basis 

fi ,...,fn E C'", v1 )...) v, E V of V (so C fi(v) vi == v for all 21 E I’). Define a 
map r from Vr-l to V * by I’(b, , b, ,..., b,.-,)(c) = 19(b, , b, ,..., b,-, , c) for 
all 6, ,..., b,-, E V and c E V. Then if S is the image of r, Sl = (0) since 

(V, 0) is nondegenerate. But .f, ,..., fn E S so for j = I, 2 ,..., n there exist 
bij,.in V,h = I,..., . .i Y - 1, i = I,..., sj with 

for all z’ E V and all j. We can replace each sj by a larger number by simply 
letting bi,j,,L = 0 if i > sj 

Thus 

for all z! E C, where vi,i is vi for all i. Reindexing the appropriate elements 
proves the lemma. 

2. CANCELLATION AND DECOMPOSITION RESULTS 

In this section we introduce quickly- more concepts and prove the cancel- 
lation theorem just stated. To avoid being mired in details we leave most of 
the computations to the reader. Since any attempt to get information about 
equivalence classes of forms over a field must involve the structure of the 
field itself, and thus of its subrings and their factor rings, we work in a more 
general but less motivated situation than a field in which r! 5/- 0. 

Let R be a Noetherian ring. Let r be an integer with Y 1;. 1. By a s~wmetric 
space of degree Y over R we mean a pair (E, 19) where E is a finitely generated 
R-module and 19 is a symmetric multilinear map from E’ to R. Let (E, 0) 
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and (U, #) be symmetric spaces of degree r over R. Let h be a ring homo- 

morphism from R to a Noetherian ring S. Then S is an R-module by defining 
CL . s to be h(a) . s for 01 E R, s E S. We define a map 0 @ $ from (E 0 C,i)r 
to R by 

fl @ #(e, + u1 , e2 + u2 ,..., e, + u,) = B(e, , e2 ,..., e,) + O(ul , u2 ,..., u,.) 

for all e, ,..., e, E E, u1 ,..., u, E U. One checks there is a unique multilinear 
map 0 @ # from (E OR U)* to R with 

19 0 $(e, 0 u1 , e2 @ u2 ,..., e, 63 u,) = 8(e, , e2 ,..., e,) . #(ul , u2 ,..., u,) 

for all e, ,..., e,. E E, u1 ,..., u,. E U. One checks there is a unique S-multilinear 
map 8, from (S OR E)’ to S with 

@& 0 el 7 s2 @ e2 ,..., s, @ e,) = s1 . s2 ... s, . B(e, , e2 ,..., e,.) 

for all sr ,..., SUES, e, ,..., e,.EE. One checks that (E@U,d@#), 

(E OR U, 0 0 $>, and (s OR E, 0,) are symmetric spaces of degree Y which 

we denote by (E, 6) @ (U, $), (E, 0) @JR (U, #), and S OR (E, 0), respectively. 
We let 0 denote (0, r), where 0 is the zero R-module and r is the map from 
0’ to R with r(O, O,..., 0) = 0. We let 1 denote (R, A), where R is the free 

R-moduleofrank1andd:RT~Risdefinedbyd(a,,012,...,cu,)=oll.oIz...~, 
for all 01~ ,..., 01,. E R. An isomovphism from (E, 8) to (U, +) is defined to 
be a bijective R-linear map t from E to G with $(t(el), t(e,),..., t(er)) = 

e, , e2 ,..., e,) for 
FL, 0) to (U, $4) 

all e, , ea ,..., e, E E. If  there exists an isomorphism from 
we write (E, 19) g (U, 4). Let (L, A) be a symmetric space 

of degree Y over R. Let k be a ring homomorphism from S to a Noetherian 

ring T. 

PROPOSITION 2.1. 

L!! @R((U,$)@(-b A>)= (s @R (u, #) @ ('OR 6% ')), 

s@R((U, #)@R(L,A))= (s @R(U, #)) &-(s@R(L, *h 

S OR 1 gg 1, T OS (s @R (E, 6)) E T @R (E, e), R @R (E, 0) S (E, 0). 

The proof is a very tedious checking that the natural isomorphisms 
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between the modules involved are isomorphisms in our sense; we leave it 
to the reader. 

\!‘e call a symmetric space (E, 0) of degree Y over R nondegenerate if there 
exists elements ui(j) E E, j :L I,..., r, i _ I,..., m (for some m) with 

z’e(Ui(l), aj(2),..., q(r - l), e) ai =: e 

for all e E E. If  R is a field with r! + 0, by Lemma 1.1 this concept is equiv- 
alent to the one defined earlier, while if Y = 2, one checks it is equivalent 
to the usual one for quadratic forms. If  bk(s) E Lr, h := I,..., Y, s 2 I ,..., 4 

(for some 4) with 

Z1B(b,<(l), b,;(2) ,...) b,(r - I), 24) b,(r) L= zl 

for all u E r,T, one checks that the ui(j) @ b,(s), the 1 3 a,(j), and the 

ai + 0 with the 0 f  b,(s) g’ Ives a similar set for (E, 19) OR (U, +), 
S OR (E, e), and (I?, 0) @ (U, #J), respectively (using Y > 1). Hence being 
nondegenerate is preserved by 0, SO x , and 0. We call (E, 8) decomposable 
if there exist nonzero symmetric spaces (AZ, @), (N, A) with (E, 0) g 
(A/l, @) @ (N, A). One checks that if this is so and (E, 0) is nondegenerate, 
then both (M, @) and (N, 0) are nondegenerate. We call (E, 0) indecomposable 
if it is nonzero and not decomposable. If  A is a submodule of E, we let A’ 

denote {e E E / B(a, e, e, ,..., er-.J = 0 for all a E A4 and all e, ,..., e,-, E E}. 

A with the restriction of 0 to A’ is a symmetric space, which we denote by 
(A, 0,). I f  (E, 0) g (Al, @) @ (N, A), then there are submodules A and R 
of E with A + B = E, ,4 n B = 0, A4 C BL, (A, 8,) g (M, @), and 
(B, 0,) z (IV, A). Conversely, if A and B are submodules of E with 
A -(- B = E, A n R = 0, A C BL, then (E, 19) z (-3, 0,) @ (B, 0J. We say 
E is the orthogonal sum of submodules A41 , _ q2 ,..., A,T if E is a direct sum of 
these submodules and =2( C A,‘- for i + j, i, j ~~- l,..., s. 

LEMMA 2.2. Suppose (E, 0) is non-degenerate and r ,> 3. Suppose A, 

B are submodules of E with 4 + B = E, A n B = 0, and A C B’-. Then 
=1 ~~ B.l and B = -4l. If C, D are submodules of I? with C f  D = E, 
CnD=0,andCCD-L,tJzenC=(Cn~4)+(CnB),(CnA)n(CnB)=0, 
and (C n A) _C (C n B) I-. 

Proof. Since E is nondegenerate one checks E” = 0. Let x E B’. \Ve can 

write x := n,, + b, with a, E A, 0, E B. Thus 

0 = 0(x, b, e, ,..., ere3) z 0(a, -t 6, , 6, e, ,..., e+2) 

= 19(6,, 6, e, ,..., e,.-,) = B(h, , a + 6, e, ,..., e,-,) 

for all aEA, bEB, e, ,..., e,.-,EE. Thus ~,EE’ so 6, -0 and XE--l. 
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Thus A = Bl. A C BL implies B C Al so similarly we get B = Al. Also 
C = DI-. Let c E C. We write c = a, + 6, with a, E A, 6, E B. We will show 
a 1 ED’=C.FordED e , 3 ,..., e,EE,wewrited=a,+b,,e,-a,+b, ,..., e,.= 

a,. $- b, with a2 ,..., a, E A, b, ,..., b, E B. Then 

e(a, , 4 e3 ,..., e,) = O(a, , a2 j b, ,..., a, + b,) = ‘4~1 , a2 ,..., a,.) + 0 

= @(a, , a2 ,..., a,) + W, , b, , O,..., 0) 

= B(a, f  b, , a, + b, , a3 ,..., a,) = 19(c, d, u3 ,..., a,) = 0. 

A similar argument gives 6, E D L = C. The rest can be checked quickly. 

PROPOSITION 2.3. Suppose (E, 19) is a nonzero nondegenerate symmetric 

space of degree r 2 3 over a Noetherian ring R. Then there exist finitel?, many 

nondegenerate indecomposable symmetric spaces ( Ul , $1),..., (U, , $J, which 
are unique up to isomorphism and order, with (E, 0) s (U, , &) @ ... @ ( U, , +J. 

Proof. We call a subspace A of E a summand if A L A1 = E and 
A n Al = 0. If  A and C are summands, then A n C is a summand (with 
(A n C)l = C n A1 + Cl n A + Cl n ,4’) by Lemma 2.2. Also A C C 
if and only if AL 2 Cl. Since R is Eoetherian and E is finitely generated, 
E is Noetherian. Hence by an easy induction we can write E as an orthogonal 

sum of finitely many non-zero indecomposable summands A, , A, ,..., d;I,s. 
I f  C is any nonzero indecomposable summand, then by a repeated application 
of Lemma 2.2, C is an orthogonal sum of C n A, , C n -4, ,..., C n 24,q . 
Hence there is an i with C = C n Aj = Ai . Thus E is the orthogonal sum 
of its nonzero indecomposable summands. This proves the uniqueness as 
well as the existence. 

PROPOSITION 2.4. Suppose (E, 19), (U, #), and (L, A) are nondegenerate 
symmetric spaces of degree Y > 3 over a Noetherian ring R. Suppose 

Then (U, 4) g (L, A). 

Proof. Write (E, e), (U, I/J), and (L, A) as a sum of nonzero indecomposable 
spaces, Then by the uniqueness part of the last proposition, the result follows. 

Note 2.5. If  we call a symmetric space (E, 0) regular if ‘u E IV, 

qv, % ,..., v,) = 0 for all 0 2 a..‘, ZI, E I;, imply v  = 0, then Propositions 2.3 
and 2.4 hold (with the same proofs) with “regular” substituted for each 
appearance of “nondegenerate.” I f  R is a field (or even a Dedekind domain), 
every symmetric space is uniquely (up to isomorphism) a direct sum of a zero 
symmetric space and a regular one. Hence, for R a Dedekind domain (e.g., 
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a field), the conclusions of both Propositions 2.3 and 2.4 hold without any 
restrictions placed on the symmetric spaces involved (other than 7 ;Z 3) 
since cancellation holds for modules (finitely generated) over a Dedekind 
domain. 

N’e give an example of a class of symmetric spaces, omitting details. A 
commutative algebra A over A is strongly separable if A is separable 
and is finitely and projective as an R-module. This is equivalent 
to existence of fE Hom,(&q, R) and ur , a2 ,..., a,, , h, , 6, ,..., b,,, E A with 

zhi bi : 1 and Z’(c . ai) b, = c for all c E A. If  such exists, then the f  
is unique and is the trace. We define 6)~~) from ill’ to R by B&c1 , ca ,..., cr) =m- 
f(Cl . c2 ..’ cr) for all cr , c2 ,..., c,. E A. Then one checks (A, 0~~)) is a non- 
degenerate symmetric space. If  B is another commutative strongly separable 
algebra over R, and if Y 2 3 one can show (A, 0(,,,,) s (B, 0,s)) if and only 
if A g B. The commutative strongly separable algebras are closed under 

direct sum, tensor product, and scalar extension and the above map to 
symmetric spaces preserves these operations. Hence we can think of each 
commutative strongly separable algebra as a special type of nondegenerate 
symmetric space of degree r (for each r 3 3). Let A be such an algebra, with 
trace t. For (V, 0) a symmetric space over A, we can generalize W. Scharlau 
for Y = 2 and note that (V, f  0 0) is a symmetric space over R. With the two 

lemmas that follow one can check that if (V, 19) is nondegenerate over A, then 
(V, t 0 19) is nondegenerate over R. 

LEMMA 2.6. Let (E, 0) be a symmetric space over a Noetherian ring R. 
Then (E, 0) is nondegenerate ifand only if((RIM) OR E, tIcRIM)) is nondegenerate 

for each maximal ideal M of R, and E is jkitely generated projective as an 
R-module. 

Proof. Define a map A from E OR ... OR E (v-copies) to Hom,(E, E) by 
A(e, @ e, @ ... @ e,)(e) =-: B(e, , e$ ,..., e,-, , e) e, for all e, ,..., e, E E and 

linearity. One checks A is surjective if and only if E is nondegenerate. The 
result follows from Proposition 11, p. 1 I3 of [I]. 

LEMMA 2.7. Let K be a$nite$eld extemion of ajieldF. Let f  E Hom,(K, F) 
be nonxero. Let (E, 0) be a nondegenerate symmetric space over K of degree Y > 1. 
Then (E, f  0 0) is a nondegenerate symmetric space over F. 

Proof. Suppose e E h’ is nonzero. Then there are e4 ,..., e, E E with 

e(e, e2 ,..., e,) # 0. f  + 0 so there is a b E K with f(b) # 0. K is a field so 
there is an a E K with a 0(e, e2 ,..., e,) -= 6. Thus 

(f 0 O)(e, a . e2 , e3 ,..., e,) # 0 

Hence (E, f  o 0) is nondegenerate. 
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3. THE RING OF HIGHER DEGREE FORMS 

In this section we develop a partially ordered ring whose positive elements 
are the equivalence classes of forms of degree Y. We work over a Noetherian 
ring R. 

Forms and equivalence of forms over R are defined as in Section 1 with F 
replaced by R. We call a form of degree Y 

(where the sum is over all nonnegative integers ir ,..., i,, which add to r) with 
coefficients in R balanced if for each & , iz ,..., i, in the above sum, there exists 

a P(il,i2....,i,) ER with 

(y!/il! . i,! ... in9 B(i,,i, ,..., i,~ = cw, ,.... i,) . 

We call the above form f nondegenerate, if for each i = 1, 2,..., n, we can write 
r!X, as a linear combination (with coefficients in R) of the 

aT-:fq 2x’i. 2 ... 2Xirml, i, , i, ,.... i,-, = 1, 2 . . . . . 72. 

If  r! is not a zero-divisor in R, then it is easy to check that as in the field case, 
the isomorphism classes of free symmetric spaces over R of degree Y corre- 
spond bijectively with the equivalence classes of balanced forms of degree r 
with coefficients in R. Moreover, a form is nondegenerate if and only if the 

corresponding symmetric space is nondegenerate. This motivates the 
following notation. We let P,(R) d enote the class of all isomorphism classes 
(or isomorphism types if one prefers) of free symmetric spaces of degree Y 
over R. For (E, 0) a symmetric space which is free (meaning E is free), we let 
[(E, 0)] be the isomorphism class of (E, 0). Then [(E, B)] = [(U, #)] if and 
only if (E, 0) s (U, Z/J). One can check that P,(R) is a set, and @ and @ 
induce operations on P,(R) which we denote by and +, respectively. I f  
T > 3, + satisfies the cancellation law by Proposition 2.4, so P,(R) with + 

can be embedded in a unique way in an abelian group L,(R) so that every 
element in L,(R) is a difference of elements in P,(R). The operation . on 
P,(R) can be extended in a unique way to L,(R) so that L,(R) with the 
resulting operation is a commutative ring with 1. For x, y  EL,(R) we write 
.r: > y  if x - y  E P,(R). Then L,(R) is a partially ordered ring, and every 
element in L,(R) can be written as the difference of two positive elements. 
P,.(R) can be recovered from L,(R) as the set of x > 0. Determining the 
structure of L,(R) is the same as finding all isomorphism classes of non- 
degenerate symmetric spaces of degree r over R. I f  1~ is a ring homomorphism 
from R to a Noetherian ring S, with Proposition 2.1 one checks that S OR ( ) 
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induces an order preserving ring homomorphism from L,(R) to L,.(S). One 

checks that L,( ) is a functor from the category of Xoetherian rings to the 
category of partially ordered commutative rings, if T > 3. If  Y = 2, cancella- 
tion of @ still often holds for R (see [2]) an we proceed as above, but if it d 
does not hold we replace isomorphism by stable isomorphism (see [2]) and 
get a functor L,( ) which is the same as that considered in [2]. By this same 
procedure, we can extend the functor L,.( )(Y 2; 2) to not-necessarily- 
Noetherian commutative rings. 

PROPOSITION 3.1. Let h: R - S be a surjective ring homomorphism 
between Noetherian rings R and S. Let r > 3. Then L,.(h): L,.(R) ---f L,(S) is 
surjective. 

Proof. Let h, be L,(h). We show that if a E Pr(S) is of rank E, then 

a $- nl = h,(b) for some b E P,.(R). Th en if x’ = a, - a, is any element in 
L,(h) and a, + n, =: h,(b,), ap + n,l :- h,(b,), we have s := h,(b, - b, f  
(n, - nr)l). Thus the result follows from the next two lemmas. 

LEMMA 3.2. Let (C, $) be a symmetric space of degree Y over a ring S. FOI 

;;;,““.gi u,-1 E u let h q - -  1~ , , . . ,  2 , , - -1 )  
be the element in Hom,( L:, S) uhere 

u1 ,..., u,-~ , u) for all u E U. Let A be the map from C @ ... @ Ii 
(r - 1 copies) to Hom,( C, S), where A(u, @ ua @ ... @ U,-~) == hcU1,,,,,lll._l) 
for all u1 ,..., u,-~ E U. Then ( U, #I) is nondegenerate if and only if U is proj.ective 
and A is surj’ective. 

Proof. This is easily checked using the dual basis lemma. 

LEMMA 3.3. Let the notation be as in Proposition 3.1. Let (U, $) be a non- 
degenerate free symmetric space of degree r over S. Let n be the rank of U. Let 
(S, 1) be the symmetric space where I(s, ,..., s,) ~7 s1 s2 ... s, for all 
sr ,..., s, E S, and let (P, 1”) be (S, 1) @ ... @ (S, 1) (n-copies). Assume 
r > 3. Then there is a nondegenerate symmetric space (c’, 0) over R with 

s @JR (V, 0) s (U, 4) 0 (3, 1”). 

Proof. Let ur ,..., u, be a basis of U over S. Let A = {ur ,..., u,,j be this 
basis. For each c E A let fe E Hom,( U, S) be defined by linearity and fc(a) = 

a,,, (the Kronecker delta) for all a E A. By Lemma 3.2 there exist 
x (II ,.,,, o,Jc) E S for all a, ,..., a,-, E A with 

4q47, ..,2‘ x a7el al,..+,(~) 4, 0 ... C<-(: a,-,) = fc . 

Thus for each e E A 
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Since h is surjective there is a map t: S + R with t(l) = I, t(0) = 0 and 

l@(s)) = s for all s E S. Writing Pal....,al-l(c) for t(~a1,...,,7-,(4) and 
8(u, ,..., a,-, , e) for t($(ar ,..., a,-, , e)) we have 

for all c, e E A, where a,(c) is an element in the kernel of h. Let A” be a set 
whose elements are in bijective correspondence with A by a H a”, and which 
is disjoint from A. Let V be a free module over R with the elements of 
A u Ap as a basis. Define a map 8: V x ... x k’ - R by linearity, symmetry, 

and 

(Kronecker delta), 

for all a, ,..., a, , b E A and all x, ,..., x,-i E A u AT. One checks (V, 0) is 
a symmetric space over R with S OR (V, S) G (U, #) @ (S”, 1”). To show 
that (V, 0) is nondegenerate, we use Lemma 3.2. For x E A u An, define 

fz E Hom,(V, R) by linearity and fz(y) = a,,, (Kronecker delta) for all 
y  E A u An. These fz form a basis of Hom,( r, R) so it is enough to show 
each f, is in the image of the d of Lemma 3.2. If  x E AP, 0(x, x ,..., x, y) 1 
6 3^,v = fz(y) for all y  E A u An. Hence let x = c E A. Then 

can be calculated to be fe(y) for all y  E A u Bj’. By Lemma 3.2 (Y, 0) is 
nondegenerate. This Lemma 3.3 and Proposition 3.1 follow. 

4. ABSOLUTELY INDECOMPOSABLE FORMS, THEIR TENSOR PRODUCTS, 

AND NONSINGULAR FORMS 

Let (E, Q) be a symmetric space of degree Y over a Noetherian ring R. 
Assume Y 3 3. We consider the set of allf E Hom,(E, E) such that 

W(4, e2 ,..., e,) = e(e, ,f(e,), e3 ,..., e,) 

for all e, , e2 ,..., e, E E. We call this the center of (E, 0) and denote it by 
Z(E, 0), or simply Z(E). 



134 D. K. HARRISON 

PROPOSITION 4.1. Suppose (E, l3) is nondegenerate (actually regular is 
enough). Then Z(E), with composition, is a commutative algebra. This algebra 
has no idewzpotents but 0 and 1 if and only zf (E, 0) is indecomposable. 

Proof. Let f, g E Z(E). One checks 

0(f(q), a2 )..., zq) -= qa, , v2 )..., f(nJ ,...) v,) 

for all zlr ,..., V, E E and all i == 1, 2 ,..., r. Hence 0(&f(q)), o2 ,..., ol.) =- 

fqf(4,g(4, u3 )“.> 4 = q’u1 ,g(%),f(%),.-, 4 = qg(%)Y ?“2 ,f (z’&., 4 ; 
~(fM4), % 7 *cl3 >...I 4, so fTg(f(4) - f(g(ud), a2 ,..., v,) = 0 for all 

v, ,..., u, E E. Hence &f(q)) -1 f  (g(q)) for all vr E E. Now 

4f(g(G, % I..., a,.) = @(g(q), f  (zfz),..., %) 

= Q(“1 , ‘df(%),..., 4 = 0(% ,f(R(%)),..., %) 

sof o g E Z(E). That Z(E) is an algebra is now easily checked. If  f  is an idem- 
potent in this algebra, and I is the image off, and K is the kernel off, then one 

checks (E, 0) z (I, 0 ~0 @ (K, 0 IX) where 0 II , 0 IK denote the restriction 
of 0 to 1’ and K’, respectively. Conversely, if (E, 8) is decomposable, the E is 
internally a direct sum of summands which are perpendicular to each other 
in the sense of Section 2. If  we let h be the projection onto the first summand, 
we can check that h is an idempotent in Z(E). 

PROPOSITION 4.2. Suppose R is a field (actually a principal ideal domain is 

enough). Suppose (V, 8) and (U, 4) are nondegenerate symmetric spaces oner R 

of degree r with Y > 3. Then Z( V OR U) g Z(V) @)R Z(U) by a natural 
algebra isomorphism. 

Proof. For generality, assume Ii is a principal ideal domain. By Lemma 
3.2, both F and U are projective, and thus free. Also they are both regular. 
One checks that Z( II’) is a pure submodule of Hom,( I’, l/J. Hence any basis 
of Z(V) may be extended to a basis of Hom,( I;;, V). Let.f, ,,.., fs be a basis of 

Z( 1,)) and extend this to a basis fr ,..., f,? ,f$, 1 ,..., fil of Hom,( I’, I’). Let 
g, ,..., gt be a basis of Z( CT), and extend this to a basis gr ,..., g, , g, r ,..., g,,, 
of Hom,( C, CT). Then {fi (5 gj 1 i =z l,..., n,j -= I,..., nz] is a basis of 
Hom,( C’ GR I,‘, I’ @R C’) (which is isomorphic to Hom,( I/, I’) @ Hom,( U, U)). 
One checks that {fi @ gj i =~: I ,..., s,j = I,..., t) are all in Z( I/’ x3 U). Let 

k == &Zjcqifi @ gj 

be any element in Z(V OR CT), where the qj arc in R and i :: I,..., n, j = 

I,..., m. For all q ,..., Vr E V, u1 ,..., u, E L’, 

0 0 $(k(a, 0 ul), 7& f& u. ,..., Z’, @ 24,) 

== 0 l\g 4”(T1 8 u1 , k(ii’? 0 lb) )..., 7:,. & u,), 
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so 

For all ur ,..., u, E U. Thus @&), ua , us ,..., u,) = #(~a , h&r), u2 ,..., u,) :T; 

$(hl(%), Ul , u2 ,.**, UT> = w+3), %, Ul ,..., UT) = e3 , h,(%)> % 3.S.) 4 = 

#(Ul , h,W, *3 Y’..? u,) so 12, E Z(U). Hence the equation above gives 

Yw%) u2 ,*..> u,) = #(h,(%), u2 ,...> UT), and since # is regular we get 

h, = ha . This means that h, E Z(U), so &c~tI(f~(vr),..., v,) = 0 for j > t 
(this is the coefficient ofg, in A,). Thus forj > t, ~(&cx,,~~~(z+), v, ,..., v , )  q = 0 
for all v2 ,..., a, . Since (V, 0) is regular, .&cQ& = 0 so oli,j = 0 for all i and 

j > t. Similarly, oli,? = 0 for all j and i > s. Hence k E Z(V) @JR Z(U). 

PROPOSITION 4.3. Suppose R is a field (actually a principal ideal domain 

is enough). Suppose (V, 8) is a non-degenerate symmetric space over R of degree 
Y with Y > 3. Suppose S is aj?at R-algebra. Then Z(S OR V) z S OR Z( k’) 
by a natural algebra isomorphism. 

Proof. Extend a basis fi ,..., f t  of Z( Z’) to a basis fi ,..., f t  ,..., fn, of 
Hom,( V, V). Since V is free as an R-module (or since S is flat), 

S OR Hom,( V, V) = Hom,(S @R V, S OR V). 

Hence 1 @ fi ,..., 1 @ fWL is a basis of Hom(S OR V, S OR V). One checks 

that 1 @ fi ,..., 1 @ ft are each in Z(S OR V). Let li = zjsj @ fj , where 

j = l,..., m, be any element in Z(S OR V). sr ,..., s, generate an R-module 
which is free; let a, ,..., a, be a basis of this submodule of S. Then k = 
L’Xa. .a. @ fj , where the oli,? are in R. For all vr , o2 ,..., vu, E V, 2 3 2,3 z 

fM4%), 5% >..'> %) = &(% > 4~2),“., %) 

so 

2YJj~,,ja,C9(jJvl), v2 ,... , pI,) = 2Y$Yjol,,jaiO(v, , fi(vz) ,..., v,). 
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Equating coefficients of a, , we get for each i that 

so .Zpjni,?fj E Z(V). Hence k :: Z’JZ, @ (J?,cY;,~~;) E S @a Z( l/). Thus 

S OR Z(V) == Z(S OR V) and the proposition is proved. 

PROPOSITION 4.4. Let F be a jield. Let r 3 3. Then the tensor product of 
nondegenerate indecomposable symmetric spaces of degree Y over F is always 

indecomposable if and only ifF is separably closed. 

Proof. Suppose F is separably closed. Let (V, fI), (U, #) be nondegenerate 
indecomposable symmetric spaces of degree r over F. By Proposition 4.1, 
both Z(V) and Z(U) have no idempotents but 0 and 1. Since idempotents can 
be lifted, we let rad Z(V), rad Z(U) be the corresponding radicals and have 
that both Z( v)/rad Z( V) and Z( U)/rad Z(U) have no idempotents but 0 and 1, 

and thus are fields. They must be purely inseparable field extensions of F, 
so their tensor product is a local algebra and thus has no idempotents but 0 
and I. Z( C’) @ rad Z(U) + rad Z(V) @ Z(U) is a nilpotent ideal in 
Z( V)@Z( C’)withfactor ring isomorphic to(Z( V)/radZ( V))@(Z( U)jradZ( U)), 
so since idempotents can be lifted, Z(V) @ Z( C’) has no idempotents but 0 

and 1. Now by Propositions 4.2 and 4.1 we get (V OR U, 0 @ #J) is indecom- 
posable. 

Conversely, suppose F is not separably closed. Then F has a proper normal 
separable field extension K. As in the end of Section 2, K may be identified 
with a nondegenerate symmetric space of degree Y over F. One checks 
Z(K) =- K, so K is indecomposable. But K &JF KG K @ K @ ... @ K 
([K : F]-copies) which is certainly not indecomposable. The proposition is 
proved. 

Classically the most important field is C, the complex numbers. The above 
proposition says that L,.(C) is isomorphic as a partially ordered ring to the 

semigroup ring Z(I,.(C)), where I,(C) is the semigroup of isomorphism 
classes of indecomposable equivalence classes of forms of degree r over C with 
tensor product. We know nothing about the structure of I,(C); for example, 
we ask whether this semigroup is free. In order to make this construction 
functorial, we call an indecomposable symmetric space over an arbitrary 
field F absolutely indecomposable if it remains indecomposable under every 
field extension of F. By Proposition 4.3, a nondegenerate symmetric space 
(V, 8) over F is absolutely indecomposable if and only if Z( I/)/r-ad Z( b7) is a 
purely inseparable field extension of F. The tensor product of two absolutely 
indecomposable nondegenerate symmetric spaces is absolutely indecom- 
posable, so the isomorphism classes of these spaces, with tensor product, 



HIGHER DEGREE FORMS 137 

forms a monoid which we denote be I,(F). Using Proposition 4.3, one checks 
that I,( ) is a functor from fields to commutative monoids. 

In Section 1 we saw that a symmetric space (V, 19) of degree Y over a field F 
in which r! # 0, is nonsingular if and only if v  EF OF I’, ep(v, n,..., v, r~) == 0 
for all u EF OF I/, imply v  = 0, where F 1s the algebraic closure of F. U:e 

use this terminology even if r! = 0. We note that if (I’, ~9) is nonsingular, 
then it is nondegenerate and Z(V) is a separable algebra (for if 0 #f~ Z(F@&V) 
withf2 = 0, then there is a v  EP OF V withf(v) f  0, but for all u EF OF I/ 
0,(f(v), f(v) ,..., f(v), u) = e,(z,f”(v) ,..., f(v), u) = 0). I f  in addition (I’, 0) 
is indecomposable (note a symmetric space is nonsingular if and only if each 
indecomposable part is nonsingular), then Z(V) is a finite field extension of F. 

Suppose this is the case, and write K for Z(V). Let t = tKiF be the trace of K 
over F. In the end of Section 2 we saw K with t gives a nondegenerate sym- 
metric space of each degree greater than one. Taking degree two, one checks 
that this means K z Hom,(K, F) by a wfn , where fa(b) = t(a . b) for all 
b E K. For vr , vz ,..., v, E I’, b w t(O(bv, , va ,..., v,)) is a homomorphism 
from K to F, so there exists a unique element r(vr , ~a ,..., v,) E K with 

t(b * T(711 , v2 ,..., v,)) = t(B(bv, ) v* ,..., v,.)) 

for all b E K. One checks that (V, r) is a symmetric space of degree Y over K, 
and (V, t o r) (as in Section 2) is (I’, 0). 0 ne can also checks that Z( I’, r) = K; 
we call such a symmetric space central (since its center is as small as possible; 
note a nonsingular form is central if and only if it is absolutely indecomposable). 
By first principals, (V, r) is unique up to semilinear isomorphism (meaning up 
to isomorphism and the effect of an automorphism of K over F). 

PROPOSITION 4.5. Let F be a field and r be an integer with Y > 3. Let K 
be a Jinite separable field extension of F. Let tKIr be the trace map from K to F. 
Let (U, z,b) be a nonsingular central symmetric space of degree r over K. Then 

c”a tKl, 0 #) is a nonsingular indecomposable symmetric space of degree r over F. 
Conversely, every nonsingular indecomposable symmetric space of degree r over F 
can be realized in this fashion zvith a unique (up to isomorphism) K and a unique 

(up to semilinear isomorphism over F) (U, 4). 

Proof. Some details remain. If  (U, #J) is central over K, we must check 
that (U, t,,, 0 #) has center exactly K. If  f  is in this center, then for all 
vi ,..., v, E U and b, c E K, 

tK!F(C . 4/,(f(&I, V2 I...> Vr)) = tK,F(#(f(bV& 82 >...> W)) 

= tKw($‘(bVl ,f(v&.> Car)) 1 tK:F(#(V, ,f(v&.., bcv,)) 

= tK,F($(f(vl)> z’2 )‘..> bcv,.) -2 t,,,(c $(bf(v& v2 ,..., vJ) 
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so #(f(bv,), u2 ,...) zl:,) === #(bf(q), v2 ,..., u,.) so f  is K-linear. Similarly we 
checkfis in the center of (U, I/J) and thus is multiplication by an element in K. 
The Proposition now follows from the next two lemmas. 

LEMMA 4.6. Let K- be a finite separable $eld extension of a field F. Let F 
be the algebraic closure of A’, and let o1 ,..., on be the distinct F-algebra isomor- 
phisms from K intoF. For i = l,..., n, let Fi be the field extension CS~ (which is an 
algebraic closure of A’). Let ( L’, C/J) b e a s 3 mmetric space of degree r over K. Let t 
be the trace map from K to F. Then 

F@F(C:,to$)EFI OK (LT, $h) @ .” 5; F, & (U, t/J). 

Proof. By Galois theory we know 8’ OF K s X,E’, by x @ a - Zx&a) 
for x EE’, a E K, and this is a K-algebra isomorphism. Applying ( ) OK I: 
to both sides we get 

P OF c; :z (F &. K) &. C.’ z Z,F? (& u 

by x @ u ---f (X & 1) @ u ---f Z.Y @ u for x E F, u E Cr. For x1 ,..., x,. EF, 
u1 ,..., u,. E U, (t 0 #)F(.xI &j uI ,..., x,. (3 u,.) :: x1 ... xrt(#(uI ,..., u,)) and 

(Lyi)(Lkl @ u1 ) L?& @ up )...) zxr @ u,.) = &,s, “’ X,Ui(~(UI ,..., u,.)) 

= XlfZ ... xrt($!J(ul ,..., UJ). 

LE~LIM~ 4.7. Let the notation be as in Lemma 4.6. Then (U, I/J) is non- 
singular if and only if (5, t c 4) is nonsingular. 

Proof. By Lemma 4.6, F (S& (L’, t 0 $I) IS nonsingular if and only if each 
Fi OK (II, Q!J) is nonsingular. Each of these is K OK (U, $), which is non- 
singular if and only if (U, 4) is nonsingular. 

ACKNOWLEDGMENTS 

\Ve give thanks to Michael Gilpin, Gary Fowler, Joel Cunningham, and Donald 

Coleman for numerous helpful conversations. 

REFERENCES 

1. N. BOUR~AKI, “Elements de lLlathematique 27,” Algtbre Commutative, Chapt. 1 

and 2, Hermann, Paris, 1961. 

2. hl. KNEBCSCH, Grothendieck und Wittringe van nichtausgearteten symmetrischem 

Bilinearformen, Sitzungsbcr. Heidelb. Akad. Wiss. Math.-naturw. Kl. 1969r’70, 

3. Abh. 

3. E. WITT, Theorie der quadratischen Formen in bebliebigen Korpern, 1. R&e 
Angezu. Math. 176 (1937), 31-44. 

4. II. K. HARRISON, Commutative Non-associative Algebras and Cubic Forms, J. 

Algebra 32 (1974), 51 S-528. 


