View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Elsevier - Publisher Connector

JOURNAL OF ALGEBRA 35, 123-138 (1975)

A Grothendieck Ring of Higher Degree Forms
D. K. Harrison*

Department of Mathematics, University of Oregon, Eugene, Oregon 97403
Communicated by N. Jacobson

Received October 10, 1973

The purpose of this paper is to lay the ground work for a treatment of
higher degree forms which is analogous to the treatment initiated by Witt of
quadratic forms (see [3]).

In our first section we set up notation and state a cancellation theorem
which generalizes Witt’s cancellation theorem to arbitrary degree greater
than one for fields whose characteristic is zero or larger than the degree. In
the second section we prove this together with the uniqueness of the decom-
position of a form into a direct sum of indecomposable forms. In the third
section we put the forms together to get a sort of Grothendieck ring of forms.
In the fourth section we prove that over an algebraically closed field, the
tensor product of two indecomposable forms is indecomposable. This means
that the Grothendieck ring is just a semigroup ring—the semigroup being
the set of additively indecomposable forms with tensor product as operation.
In the case of a field which is not algebraically closed, we define the center of
a form, show that a nonsingular form is a sort of generalized separable
algebra, and show how to reduce considerations, at least for nonsingular
forms, to forms which stay indecomposable over any field extension.

We are mainly interested in forms over fields which have characteristic
zero or sufficiently large. For these there is no loss of generality in assuming
no variable can be removed (i.e., have its coefficients made zero) by a linear
change of variables; such forms are called nondegenerate. Sometimes it seems
appropriate to consider forms over Noetherian rings, in which case we restrict
attention to those forms which are nondegenerate when considered modulo
any maximal ideal. We call these nondegenerate, but use an equivalent and
easier to handle definition for them.
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I. NorarioNn aNp TERMINOLOGY

If Ais aset, A* demotes A A < - X A (n copies). Let F be a field.
For n and r nonnegative integers, we wish to consider forms of degree r in
indeterminants with coefficients in F; in other words, elements of the poly-
nomial ring F[X, , X, ,..., X, ] which are sums of monomials of degree ». T'wo
forms f and g are called equivalent and we write f ~ g if f can be gotten
from g by a reversible linear change of variables; i.e., if f and g have the
same number of indeterminants » and there exists an invertable n by =
matrix [o; ;] with entries in F with

Ty 1 X5, 2oy ;X5 ., 2o 1 X)) = g(Xy, Xy peey X))

We shall only consider forms of degree » where the characteristic of F is zero
or greater than r. In other words, we assume 7! 5 0 in F where 7! denotes
T4+ 1+-+41(1+-2 3 r copies). With this assumption, if f and g are
forms of degree r in # indeterminants, f(ay ..., @) == g(a ,..., a,) for all
a ..., a, €l'if and only if f == g. Also, for f a form of degree 7, there exists a
unique symmetric multilinear map 0; from » copies of F* to F (i.e., from

(F™ to F) with
Or((@y yover @), (@ ooy @p)yee, (@4 5eey @) == flay 5eny @)

for all a, ,..., @, € F (that this exists is a tedious induction). Here " is made
into a vector space in the usual way. Any vector space of dimension n over F
is isomorphic to %, so I’ may be replaced simply by a vector space of dimen-
sion n. By a symmetric space of degree r over F we mean a pair (V, 6), where I
is a finite dimensional vector space over I and 0 is a symmetric multilinear
map from V" to F. Two symmetric spaces (V,0) and (V", §') are called
isomorphic if there is a bijective linear map ¢ from V to V' with 6'(¢(z,),
H2o)s-, 1)) = 02y, 0y ..., v,) for all v, 9,,..., 0, € V. Such a ¢t is called
an gsomorphism from (V, 0) to (V', §'). Thus since r! %= 0 inF, the equivalence
classes of forms of degree 7, and the 1somorphism classes of symmetric spaces
of degree r are in bijective correspondence. A symmetric space (V, §) corre-
sponds to the set of all forms equivalent to f where f is defined by choosing
abasis v, , ¢y ,..., ¥, of V" and letting f be that form with

0(x191 & =0 F XpTy 2301 0 A KUy, KTy 0 X,,0,) = (%, Xopeens Xy,)

for all x4, &y ,..., %, €I. We write f<> (V, 0) by ¢, v, ,..., v, if the above
displayed formula holds for the particular basis 2, , v, ,..., 7, of V.

Let (V, 6) be a symmetric space of degree ». Let » = 1. Let ve V. We
define a symmetric multilinear map 0 from V=Y to I/ by

09y, s yeury Tpq) == (0, V1, Vg 5oy Upyq)
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for all vy, vy,...,0,; € V. We call (V, 8%) the derivative of (V,0) in the
direction of v, since it can be checked that if f«» (V, ) by v3, v5,..., 9, , and
vV = gy b XUy + - auu, With g, oy .y oy €F, then 2(1/r) o, Off6X, >
(V, 09 by v, vy ey U,

Letf s (V,8) by v, 25 ,..., v, . Let K be an extension field of F. It is usual
to think of F[ X} ,..., X,;] as a subring of K[X] ,..., X,] and so f can be thought
of as an element in K[X ,..., X, ]. One checks there exists a unique symmetric
K-multilinear map 8 from (K & V)" to K with

0l Quy, 1 Qg e, | Q) = 0(uy , 8y, u,)y forall wy,uy,...,u,€V.

One checks fo (K R V,0) by 1 2y, 1 ® vy, | @2, . Let 2 be
the algebraic closure of F. A zero of f is a nonzero element (A, A, ,..., A,) € 2"

with f(A;, As,..., A,) = 0; in other words, a nonzero element v =
MBy +2A Qv+ o+ A, R, of Q2 Qp V with 0y(z, v,..., v) = 0. This
zero is singular or simple according as whether ¢f/dx; , of/ix, ..., Of/0x, when
evaluated at x; == A;,..., x, = A, , are all zero or not. This is the same as
asking whether §3©%, 9087 §3®") when evaluated at (v, v,..., v) are
all zero or not. Since 1 & 7, ,..., | & ©, are a basis of 2 @ V, this is the

same as asking whether 8,(u, v, ©,...,v) == 0 for all ue 2 Xy V. Thus the
symmetric space (v, f) is nonsingular (meaning it corresponds to an equivalence
class of nonsingular forms) if and only if the only v € £ &y V' with
Oo(u, v,...,v) = Oforall ue 2 R Vis v = 0. We call (v, 0) nondegenerate if
the only v € V" with (v, w, w,..., w) = 0 for all we V is ¢ = 0 (or equival-

ently 0(v, wy , wy ..., w,_y) = 0 for all w,, 2, ,..., w,_; € I implies v = 0).
For quadratic forms (i.e., # == 2), one can check that nonsingular and non-
degenerate are equivalent concepts. If f«» (V, 6) by v;, v, ,..., 7, , 0ne can

check that f is degenerate (meaning (1, 0) is degenerate) if and only if there
is a form g equivalent to f with g(X;, X, ..., X,) = g(X;, X, ,..., X,,_.;, 0)
(i.e., the indeterminant X, can be “removed”). If A(X,, X,,..., X,) and
k(X , X;,..., X,,) are forms of degree r, we write £ (B & for (X, X, ,..., X)) +
k(X1 Xpigsees Xppm). This operation preserves equivalence of forms.
One can check that if 7 52 0 and if f is any form of degree r then there exists
a nondegenerate form % and a zero form k (meaning k(X, , X, ,..., X,,) = 0)
with f = & @ k, and both /% and % are unique up to equivalence with this
property. The forms of degree 0 and I are trivial, se we may ignore them.
Hence there is no loss of generality in restricting attention to nondegenerate
forms.

Our aim now is to prove a generalization of Witt’s theorem for quadratic
forms; namely, if f, g, and % are forms of degree r with7 > [ and if f (D g =~
J @ A, then g o~ h (if r! 5= 0). Using the decomposition of the last paragraph,
there is no loss of generality in assuming f, g, and % are all nondegenerate. The

481/35/1-3-9
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case v == 2 is exactly Witt’s theorem ([3]), so we may assume » > 3. First
we give the general result:

Levma 1.1, Let (V, 0) be a symmetric space of degree r over a fleld F.
Assume v > 1. Then (V, 0) is nondegenerate if and only if there is a positive m
and elements a(f)e V, i = 1,..,m, j == 1,...,r with

20 (a (1), a(2),...,ar — 1), v) a;(r) = v

forallve V.
Proof. If this formula holds and O(wy,ws,..,2,_;,7) =0 for all
Wy ..., w1 € V, then v = 0. Conversely, suppose (¥, 6) is nondegenerate.

Let V"* be Homg(V, F). For S a subspace of V'*, let S* -={ae V| f(a) =
Vf e S} One checks S+ = {0} if and only if S = I"*. Choose a dual basis
Sivenfne Ve, eV of Vi(soY fi(v)v; = o for all e ). Define a
map I from V71 to V* by I'(by, by ..., b,_3)(¢) = 0(b;, by ..., b,_, , ) for
all b;,...,0, ;€ ¥V and ce V. Then if S is the image of I', S* = {0} since
(V, 0) is nondegenerate. But f, ,...,f, €S so for j = 1, 2,..., n there exist
bispoin Vik=1.,r—1,{=1,.,s with

Ze(bz‘,a',l » bi,a"z ooy bz\)’,r—-l ’ rU) :fj(‘v)

for all z € I and all j. We can replace each s; by a larger number by simply
letting &, ; ;, == 0if i > 5;.
Thus

220b; 515 big0 s biga V)0 =0

for all v e I, where v, ; is v; for all /. Reindexing the appropriate elements
proves the lemma.

2. CANCELLATION AND DEcoMPOSITION RESULTS

In this section we introduce quickly more concepts and prove the cancel-
lation theorem just stated. To avoid being mired in details we leave most of
the computations to the reader. Since any attempt to get information about
equivalence classes of forms over a field must involve the structure of the
field itself, and thus of its subrings and their factor rings, we work in a more
general but less motivated situation than a field in which »! =/ 0.

Let R be a Noetherian ring. Let 7 be an integer with # > 1. By a symmetric
space of degree r over R we mean a pair (E, §) where E is a finitely generated
R-module and ¢ is a symmetric multilinear map from Z” to R. Let (E, )
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and (U, ) be symmetric spaces of degree r over R. Let & be a ring homo-
morphism from R to a Noetherian ring S. Then S is an R-module by defining
a5 to be h(a) s for ae R, s€.S. We define a map 6§ @ ¢ from (ED U
to R by

0@ e, + ty, ey + Uy gy €, + 1) == 0(ey, €5 ,..., €,) + Oy, 4y .y 1))

for all e, ..., e, € E, t; ,..., u, € U. One checks there is a unique multilinear

map 8 &) ¢ from (E @ U)" to R with

0 Ple;, Dy, Xty ey &, Q) = 0(ey , 5 ,eeny )~ 3y, Up yenns Uy)

forall e, ,..., e, € E, u, ,..., u, € U. One checks there is a unique S-multilinear
map O from (S @g E) to S with

04(s; R 15 85 R s yeey $, R €,) == 8 " 537 5, - (e, €5 ,..., €,)

for all s ,..,5€S, €,.,e.€E One checks that (ED U, 0 D),
(E @z U, 0 @), and (S Qg E, 85) are symmetric spaces of degree » which
we denote by (E, 8) @ (U, ¥), (£, 0) ®x (U, ¥), and S ®p, (E, 0), respectively.
We let 0 denote (0, I"), where 0 is the zero R-module and I" is the map from
07 to R with I'(0, 0,..., 0) = 0. We let 1 denote (R, 4), where R is the free
R-module of rank 1 and 4: R" — Ris defined by A(ey , g ,.e0y o) = 0ty "ty "
for all oy ,..., o, € R. An isomorphism from (E, 8) to (U, ) is defined to
be a bijective R-linear map ¢ from E to U with $(t(ey), t(es),..., t(e,)) =
O(e, , ey ..., &,) for all e, , €, ,..., ¢, € E. If there exists an isomorphism from
(E, 8) to (U, ) we write (E, 6) ~ (U, ). Let (L, A) be a symmetric space
of degree r over R. Let k be a ring homomorphism from S to a Noetherian
ring T.

ProrosiTiON 2.1.

(B, 0) @ (U, $)) DL, A) 2= (E, 0) © (U, ) © (L, A)),
(E,0) DU, = U S(E), 0D Y=,
((E, 6) @ (U, §)) @& (L, A) == (E, 0) Q& (U, §) ®x (L, A)),
(E, 0) @r (U, ) 2= (U, $) @x (E,0), 1 @r (U, ) = (U, §),
(E, 0) @z (U, #) @ (L, N)) == ((E, 8) @& (U, ) © (£, ) R (L, 4)),
S @z (U, ) @ (L, A)) 2= (S @& (U, ) ® (S ®r (L, A)),
S ®@r (U, $) Qg (L, N)) 2= (S Rr (U, ¥)) ®s (S Rr (L, A)),
SRrl=l, TEs(SQr(E0)=T Qg(E06, RO(E D0 =I(ED”)

The proof is a very tedious checking that the natural isomorphisms
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between the modules involved are isomorphisms in our sense; we leave it
to the reader.

We call a symmetric space (E, ) of degree r over R nondegenerate if there
exists elements aj) e E,j == 1,...,r, i = 1,..., m (for some m) with

Z0(a;(1), a,(2),..., a;(r — 1), ) a,(#) == €

for all e E. If R is a field with 7! 5£ 0, by Lemma 1.1 this concept is equiv-
alent to the one defined earlier, while if r = 2, one checks it is equivalent
to the usual one for quadratic forms. If b,(s)e U, k= 1,...,r, s == 1,..., ¢
(for some g) with

Z0(b(1), B,(2),-, By(r — 1), 1) b(r) = u

for all ue U, one checks that the a{j) & b,(s), the 1 & a,j), and the
a{j) + 0 with the 0+ b,(s) gives a similar set for (E, 8) Qg (U, ),
S Qg (E, 0), and (E, 8) @ (U, ), respectively (using # > 1). Hence being
nondegenerate is preserved by &, S, and @. We call (£, 0) decomposable
if there exist nonzero symmetric spaces (M, @), (N, d) with (E,0) ~
(M, @) @ (N, 4). One checks that if this is so and (F, §) is nondegenerate,
then both (M, @) and (N, A4) are nondegenerate. We call (E, 0) indecomposable
if it is nonzero and not decomposable. If 4 is a submodule of E, we let 4+
denote {ec E | 6(a,e,e;,...,e,_5) =0 for all ac 4 and all ¢, ,...,e,_, € E}.
A with the restriction of 8 to A" is a symmetric space, which we denote by
(4,86). If (E,0) = (M, D) @ (N, 4), then there are submodules 4 and B
of £ with A4+-B=FE AnB=0 4ACBY, (4,0) = (M, &), and
(B, 05) == (N, A). Conversely, if 4 and B are submodules of E with
A--B=E AN B =0, 4C B* then (F, §) 2~ (4, 0,,) & (B, ;). We say
E is the orthogonal sum of submodules 4, , 4, ,..., 4, if £ is a direct sum of
these submodules and 4, C A for7 =27, 4,7 == 1,..., 5.

Levmmva 2.2, Suppose (E, 8) is non-degenerate and r > 3. Suppose A,
B are submodules of E with A+ B =E, ANB =0, and AC B~ Then
A - B and B = A4+ If C, D are submodules of F with C + D = E,
CNnD=0,and CCD* then C =(CN A)+(CB),(CNnA)YN(CNB)=0,
and (C N A) C(C N B)~

Proof. Since E is nondegenerate one checks £+ = 0. Let x € B We can
write & == a, + b, with a, e A4, by € B. Thus

0 = 0(x,b, e ,..., 0,_5) = O(ay + by, b, e, ..., ¢, 5)

= 0(by, b, €1, €,5) =0(by,a+ b, e .. e )

for all ac A, beB, e,...,e,_o€ E. Thus bye E+ so by =0 and xe 4.
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Thus 4 = B*. A C B* implies B C A* so similarly we get B = 4% Also
C = D* Let ce C. We write ¢ = a, + b, with a, € 4, b, € B. We will show
a,e D- = C.FordeD,e;,...,e,c E, wewrite d = a, + by, 63 = a3 + by,...,e, =
a, - b, with ay ,...,a,€ 4, b, ..., b, € B. Then

a,,d e5,...;e)) = 0ay,a, + by ,...,a, + b)) =06(a,,a5,..,a,) + 0
= Way, ay,...,a,) + 0(by, by, 0,..,0)
=0a, + b,,a, + by, a4,....a,) =0(c,d, ay,..,a)=0.

A similar argument gives &, € D+ = C. The rest can be checked quickly.

ProrosiTION 2.3. Suppose (E, 6) is a nonzero nondegenerate symmetric
space of degree r == 3 over a Noetherian ring R. Then there exist finitely many
nondegenerate indecomposable symmetric spaces (Uy,y),..., (U, , 1), which
are unique up to isomorphism and order, with (E, 0) ~ (U, , ) D - @ (U, ;).

Proof. We call a subspace 4 of E a summand if 4 -~ A+ = E and
AN A4+ =0.1If 4 and C are summands, then 4 N C is a summand (with
AnCylr=CnA+t+C-n A4+ C-n A4+ by Lemma 2.2. Also A C C
if and only if 4+ 2 C*. Since R is Noetherian and E is finitely generated,
E is Noetherian. Hence by an easy induction we can write E as an orthogonal
sum of finitely many nonzero indecomposable summands A, , 4, ,..., .1, .
If C is any nonzero indecomposable summand, then by a repeated application
of Lemma 2.2, C is an orthogonal sum of CNA4,, CNA4,,..,CN A4,.
Hence there is an 7 with C = C N A; = A, . Thus E is the orthogonal sum
of its nonzero indecomposable summands. This proves the uniqueness as
well as the existence.

ProposrTioN 2.4, Suppose (E, 0), (U, ), and (L, N\) are nondegenerate
symmetric spaces of degree v 2> 3 over a Noetherian ring R. Suppose

(E, 0) @ (U, ) = (E, 0) DL, A).
Then (U, ) =~ (L, A).

Proof. Write(E, 0), (U, 4), and (L, A) as a sum of nonzero indecomposable
spaces, Then by the uniqueness part of the last proposition, the result follows.

Note 2.5. If we call a symmetric space (E,0) regular if vel
v, vy ..., v,) = 0 for all v,,..., v, €V, imply v = 0, then Propositions 2.3
and 2.4 hold (with the same proofs) with ‘‘regular” substituted for each
appearance of “nondegenerate.” If R is a field (or even a Dedekind domain),
every symmetric space is uniquely (up to isomorphism) a direct sum of a zero
symmetric space and a regular one. Hence, for R a Dedekind domain (e.g.,
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a field), the conclusions of both Propositions 2.3 and 2.4 hold without any
restrictions placed on the symmetric spaces involved (other than # = 3),
since cancellation holds for modules (finitely generated) over a Dedekind
domain.

We give an example of a class of symmetric spaces, omitting details. A
commutative algebra 4 over R is strongly separable if A is separable
and is finitely and projective as an R-module. This is equivalent
to existence of fe Homg(4, R) and «;, ay,..., ap, , by, by ..., b,, € 4 with
Za; - b; == 1 and Zf(c - a;) b, = ¢ for all ce A.If such exists, then the f
is unique and is the trace. We define () from A" to R by 8 y(cy , €5 ,--., ¢,) =
fley ey c,) forall ¢;,¢y,..., ¢, € 4. Then one checks (A4, 6.,) is a non-
degenerate symmetric space. If B is another commutative strongly separable
algebra over R, and if » >> 3 one can show (4, 0,)) =< (B, 8(y) if and only
if A~ B. The commutative strongly separable algebras are closed under
direct sum, tensor product, and scalar extension and the above map to
symmetric spaces preserves these operations. Hence we can think of each
commutative strongly separable algebra as a special type of nondegenerate
symmetric space of degree r (for each r == 3). Let 4 be such an algebra, with
trace t. For (V, 0) a symmetric space over 4, we can generalize W. Scharlau
for r == 2 and note that (V, t o 0) 1s a symmetric space over R. With the two
lemmas that follow one can check that if (I, ) is nondegenerate over A, then
(V, t o 0) is nondegenerate over R.

Lemma 2.6, Let (E,0) be a symmetric space over a Noetherian ring R.
Then (E, 0) is nondegenerate if and only if (R/M) Kg E, 0z ap) is nondegenerate
Jor each maximal ideal M of R, and E is finitely generated projective as an
R-module.

Proof. Define a map 4 from E Qg - Ky E (r-copies) to Homg(E, E) by
Aoy D ey @ Q e)e) = O(e,, ey,...,e, 1 ,e)e, for all ¢ ,..,e,e E and
linearity. One checks 4 is surjective if and only if I is nondegenerate. The
result follows from Proposition 11, p. 113 of [1].

Lemma 2.7. Let K be a finite field extension of a field F. Let f € Homg(K, F)
be nonzero. Let (E, 0) be a nondegenerate symmetric space over K of degreer > 1.
Then (E, f o 0) is a nondegenerate symmetric space over F.

Proof. Suppose ec E is nonzero. Then there are e,,...,e,€ L with
(e, e ..., €,) 7 0. f 5= 0 so there is a b€ K with f(b) # 0. K 1s a field so
there is an a € K with a - (e, ¢, ..., €,) == b. Thus

(fob)e,a e ,eq,..,e) 70

Hence (Z, f - ) is nondegenerate.
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3. THE Rinc oF HiGHER DEGREE Forms

In this section we develop a partially ordered ring whose positive elements
are the equivalence classes of forms of degree ». We work over a Noetherian
ring R.

Forms and equivalence of forms over R are defined as in Section 1 with F/
replaced by R. We call a form of degree »

f= Za(iz.iz....,z'n)XilXéz X:z”

{where the sum is over all nonnegative integers 7, ,..., 7, which add to r) with
coefficients in R balanced if for each 7, , 7, ,..., 7,, in the above sum, there exists
a f(; 4,.....;,) € R with

(il -yt - Y /g(il,ig....,in) = A4ahgs i) -

We call the above form f nondegenerate, if for each ¢ = 1, 2,..., n, we can write
r!.X; as a linear combination (with coefficients in R) of the

GIOX, 0X,, - 8Ky iy iy veipg = 1, 2y,

if r! is not a zero-divisor in R, then it is easy to check that as in the field case,
the isomorphism classes of free symmetric spaces over R of degree r corre-
spond bijectively with the equivalence classes of balanced forms of degree »
with coefficients in R. Moreover, a form is nondegenerate if and only if the
corresponding symmetric space is nondegenerate. This motivates the
following notation. We let P,(R) denote the class of all isomorphism classes
(or isomorphism types if one prefers) of free symmetric spaces of degree »
over R. For (E, ) a symmetric space which is free (meaning E is free), we let
[(E, 8)] be the isomorphism class of (E, §). Then [(E, 6)] = [(U, )] if and
only if (E, f) =~ (U, 4). One can check that P,(R) is a set, and & and &
induce operations on P,(R) which we denote by - and +, respectively. If
7 2 3, 4 satisfies the cancellation law by Proposition 2.4, so P(R) with -
can be embedded in a unique way in an abelian group L(R) so that every
element in L,(R) is a difference of elements in P,(R). The operation - on
P,(R) can be extended in a unique way to L(R) so that L (R) with the
resulting operation is a commutative ring with 1. For x, y € L (R) we write
x zyif x —ye P(R). Then L(R) is a partially ordered ring, and every
element in L(R) can be written as the difference of two positive elements.
P.(R) can be recovered from L,(R) as the set of x > 0. Determining the
structure of L,(R) is the same as finding all isomorphism classes of non-
degenerate symmetric spaces of degree r over R. If 4 is a ring homomorphism
from R to a Noetherian ring .S, with Proposition 2.1 one checks that S @ ()
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induces an order preserving ring homomorphism from L,(R) to L,(S). One
checks that L,( ) is a functor from the category of Noetherian rings to the
category of partially ordered commutative rings, if » == 3. If » = 2, cancella-
tion of (P still often holds for R (see [2]) and we proceed as above, but if it
does not hold we replace isomorphism by stable isomorphism (see [2]) and
get a functor Ly( ) which is the same as that considered in [2]. By this same
procedure, we can extend the functor L. )(r = 2) to not-necessarily-
Noetherian commutative rings.

ProrosiTiON 3.1. Let h:R— S be a surjective ring homomorphism
between Noetherian rings R and S. Let v = 3. Then L,(h): L(R) — L(S) s

surjective.

Proof. Let hy be L(h). We show that if ae P,(S) is of rankn, then
a + nl = h(b) for some be P(R). Then if ¥ = a, — a, is any element in
L(h) and @, + n; == h (b)), @y + n,] == h(b,), we have x = h, (b — b,

(ny, — ny)1). Thus the result follows from the next two lemmas.

Levma 3.2, Let (U, ) be a symmetric space of degree r over a ring S. For
Uy, ty oyt €U let b= hg, y be the element in Homgy(U, S) where
h(u) = $(uy ..., ;4 , 1) for all u e U Let 4 be the map from U & - @ U
(r — 1 copies) to Homg(U, S), where A(uy & uy @+ @ sty 1) == hiyy,.. u, )
Sforalluy ..., u,_; € U. Then (U, ) is nondegenerate if and only if U is projective

and A is surjective.

Proof. This is easily checked using the dual basis lemma.

Lemma 3.3, Let the notation be as in Proposition 3.1. Let (U, i) be a non-
degenerate free symmetric space of degree v over S. Let n be the rank of U. Let
(S,1) be the symmetric space where 1(sy,...,s,) = 5y "5y "5, for all
$1 4y S, €8, and let (S*,17) be (S, 1) @ - @ (S, 1) (n-copies). Assume
v > 3. Then there is a nondegenerate symmetric space (V,0) over R with
S @r (V,0) = (U, ) @ (S, 17).

Proof. Let u, ..., u, be a basis of U over S. Let A = {u, ,..., u,; be this
basis. For each c € 4 let f, e Homg(U, S) be defined by linearity and f(a) =

(the Kronecker delta) for all ae 4. By Lemma 3.2 there exist
/\ _(ogeSforallag,..,a. € A with

2020y Ly Py, () Ay & - W ay) =

Thus for eachec 4

2(112112 Za,.___l)\al ..... a,_l(’:) ‘)[’(al seeny By s e) = 80,8 .
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Since % is surjective there is a map #:.5 — R with #(I) = 1, ¢#(0) = 0 and
h(t(s)) = s for all seS. Writing B, . (c) for (A, . () and
Hay ..., a,_y , &) for t(f(ay ,..., a,_ , €)) we have

2{11202 Za,,ﬁlﬁnl....,nrq(c) 0(ay s @y, €) = 80,9 — ()

for all ¢, e € 4, where «,(c) is an element in the kernel of /. Let 4? be a set
whose elements are in bijective correspondence with 4 by a — a?, and which
is disjoint from A. Let ¥ be a free module over R with the elements of
A U A?asabasis. Defineamap 8: 7 X -+ X " — R by linearity, symmetry,
and

0a,?, ay?,...,a,?) = §

(Kronecker delta),

y,lgs s, ay
0(a®, as?, %3 ooy 8,1, 0) =0,

0(“1 s g5y Ay g bp) = O‘al(b) 8(11 ..... [

Hay, ay ..., ap 1, a,) = t(f(ay, ay,..., a,_1, a,)),

for all @y ,...,a,, be 4 and all x;,...,x,, € AU A?. One checks (V, 6) is
a symmetric space over R with S &z (V, 0) =~ (U, ) @ (S, 1). To show
that (V, 6) is nondegenerate, we use Lemma 3.2. For x € 4 U A? define
f. € Hom,(V, R) by linearity and f(y) = 8., (Kronecker delta) for all
ye AU A4?. These f, form a basis of Homg(V, R) so it is enough to show
each f, is in the image of the 4 of Lemma 3.2. If x € 47, 0(x, x,..., x, y) =
8,4 = fuy) forallye AU A% Hence let x = c€ 4. Then

)—701 Z"a,,llgnl ..... a,_l(c) H(al yeeey Groq s y) + Eag(av“" a, c?, y)
+ 2o(Za — Ba.a.....alc) %a(@)) 0(a?,..., a, y)

can be calculated to be f(y) for all ye AU A% By Lemma 3.2 (V, 6) is
nondegenerate. This Lemma 3.3 and Proposition 3.1 follow.

4. ABSOLUTELY INDECOMPOSABLE Forms, THEIR TENSOR PrRODUCTS,
AND NONSINGULAR ForMS

Let (£, 6) be a symmetric space of degree r over a Noetherian ring R.
Assume r 2> 3. We consider the set of all f € Homg(E, E) such that

e(f(el)’ € 5y er) = 9((31 ’f(e2)’ €3 5000y er)

for all ¢, e,,..., e, € E. We call this the center of (E, §) and denote it by
Z(E, 0), or simply Z(E).
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Proposition 4.1.  Suppose (E,0) is nondegenerate (actually regular is
enough). Then Z(E), with composition, is a commutative algebra. This algebra
has no idempotents but O and 1 if and only if (E, 0) is indecomposable.

Proof. Let f, g € Z(E). One checks

O(f (vy), Vg yeey ) 7= B0y, Uy ooy F(T)yers T))
for all v, ,...,v,€E and all 7 =1,2,...,7. Hence &g(f(v)), v3,..., v,) ==
0 (1), 8(v2), Vg 5oy 0;) = 0(21, 8(22), [ (W3)so-0r 07) = O(g(21), 02, f(5)yenes T)

0(f(g(1))s B2 s Uy sy 00), SO B(g(f (1)) — f(8(2y)), a5 v) = O for all
Vg ,..., v, € E. Hence g(f (v,)} == f(g(v,)) for all v, € E. Now

0(f(g(21), vz err, ©,) == O(g(w1), f (V). O1)
- 9(7}1 ’g(f(vz)w-a 1),») = 0(7)1 rf(g('v2)))"'5 7),.)

so foge Z(E). That Z(F) is an algebra is now easily checked. If fis an idem-
potent in this algebra, and 1 is the image of f, and K is the kernel of £, then one
checks (E,0) =~ ({,0 ;) @ (K, 0 i) where 8|;, 8 |; denote the restriction
of fto I" and K", respectively. Conversely, if (£, 0) is decomposable, the E'is
internally a direct sum of summands which are perpendicular to each other
in the sense of Section 2. If we let / be the projection onto the first summand,
we can check that % is an idempotent in Z(E).

Prorosition 4.2. Suppose R is a field (actually a principal ideal domain is
enough). Suppose (V, 8) and (U, ) are nondegenerate symmetric spaces over R
of degree v with r = 3. Then Z(V @ U) == Z(V) @ Z(U) by a natural
algebra tsomorphism.

Proof. Tor generality, assume R is a principal ideal domain. By Lemma
3.2, both J" and U are projective, and thus free. Also they are both regular.
One checks that Z(17) is a pure submodule of Homg(V’, ). Hence any basis
of Z(V) may be extended to a basis of Homg(V, V). Let f, ,..., f; be a basis of
Z(1"), and extend this to a basis fi ..., fo, fe 110 fu of Homp(V, V). Let
&1 -, £, be a basis of Z(U), and extend this to a basis gy ,..., g4, 8o 505 £
of Homg(U, U) Then {fi g li=1,..,n7j=1,.m} is a basis of
Hom(V @ U,V &xU) (whlch is 1somorphlc to Homyg( V 1) & Homg(U,U)).
One chec]\s that {fZ g 1=, 57 = 1., t}are all in Z(V & U). Let

ko= 22X, 8

be any element in 7(V ®g U), where the o; ;are in Rand ¢ = 1,...,n,j - =
1,...,m. Forallv, ,...,v, € V,uy,...,u, e U,
0 O f(k(vy 3 1), vy OOty ooy T X 1)

==0 ‘\/f\) lf}(z'l \’/\ Uy, (T‘.’ X Uy ) r \> ur)’
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SO

Eizjai,je(fi(vl)’ Vg seeey vr) ’ ‘/'(gi(vl)) Ty seem ‘vr)
= Eizjai,ja(vl sf(vz)""’ 7)7) ’ ‘l’(vl 7g(v2))"-: 7)r)

SO

P Z 05 O f(O1)ser D) €5(00), U yeenr 1))
== ‘l’(ul ) EiZj‘xi,je('vl s Jilwa)sess ‘vr) g:i(”Z)""7 ur)'

Letting by = 2 D50 (fvy)-o, 00)gi > e = 2oy (v, fi(0a)seens 01855

we have

(hy(), Uy yenes ) = Pty , Po(uts),..., u,).

For alluy ..., u, € U. Thus (hy(uy), ty , ttg yone, ) = Pty , hy(tty), g ..., ) ==
l/}(hl(u3)’ Uy s Uy seeey ur) = ‘p(hl(u:s)) Ug s Uy seery ur) = ¢‘(u3 ’ hZ(uQ)’ Uy yony Uy) =
(uy  holuy), 1y ..., u,) 80 hye Z(U). Hence the equation above gives
Wy (uy) wg 5eees ) == P(Ro(tty), Uy ..., %), and since ¢ is regular we get
h, = h,. This means that &, € Z(U), so Z; 0(f(21),.., v,;) == 0 for j > ¢
(this is the coefficient of g; in /#,). Thus forj > ¢, 0( Xy s fi(v1), 02 yery 2,) = 0
for all v, ,..., v, . Since (V, 0) is regular, Zyo; ;f; == 0 50 o ; = 0 for all 7 and
j > t. Similarly, «; ; = 0 for all j and ¢ > 5. Hence ke Z(V) @ Z(U).

ProposITION 4.3. Suppose R is a field (actually a principal ideal domain
is enough). Suppose (V, 0) is a non-degenerate symmetric space over R of degree
r with r = 3. Suppose S is a flat R-algebra. Then Z(S Qp V) = S K Z(V)
by a natural algebra isomorphism.

Proof. Extend a basis fi,...,f; of Z(V) to a basis f ..., fi,..., fm Of
Homg(V, V). Since V is free as an R-module (or since S is flat),

S @z Homg(V, V) = Homg(S @z V, S @ V).

Hence 1| ® f; .., | & fi, is a basis of Hom(S Qg V, S @r V). One checks
that 1 Q) f;,.-» 1 @ f; are each in Z(S Qz V). Let & = Zi5; ® f;, where
j = 1,...,m, be any element in Z(S Qg V). 51,..., 5,, generate an R-module
which is free; let a, ,..., a, be a basis of this submodule of S. Then & =
220 5a; Q f; , where the o; ; are in R, For all o, , v, ,..., v, € V,

Os(k(v1), Vg 5.y ) = O5(vy, R(Vg)ye.., ©,)

SO

L0 0 0(fi(01), Vg 5, p) = ;X500 ;0,00 , fi{(Va)yeres Up)e
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Equating coefficients of @, , we get for each ¢ that
(50,5 fi(1), Vo sy 0,) = O(oy Lo i f{(@s)sees @),

so 2y ;f; € Z(V). Hence k = Za, @ (T ;f5) € S ®g Z(V). Thus
S Qg Z(V) = Z(S @z V') and the proposition is proved.

ProposITION 4.4. Let F be a field. Let v = 3. Then the tensor product of
nondegenerate indecomposable symmetric spaces of degree r over F is always
indecomposable if and only if F is separably closed.

Proof. Suppose F is separably closed. Let (V, 6), (U, ) be nondegenerate
indecomposable symmetric spaces of degree » over F. By Proposition 4.1,
both Z(1} and Z(U) have no idempotents but 0 and 1. Since idempotents can
be lifted, we let rad Z(1"), rad Z(U) be the corresponding radicals and have
that both Z(1")/rad Z(1") and Z(U)/rad Z(U) have no idempotents but 0 and 1,
and thus are fields. They must be purely inseparable field extensions of F
so their tensor product is a local algebra and thus has no idempotents but 0
and 1. Z(V)® rad Z(U) + rad Z(V) ® Z(U) is a nilpotent ideal in
Z(VYQZ(U)with factor ring isomorphic to(Z(V)/rad Z(V))R(Z(U)/rad Z(U)),
so since idempotents can be lifted, Z(}') ® Z(U) has no idempotents but 0
and 1. Now by Propositions 4.2 and 4.1 we get (V @, U, 8 ® ) is indecom-
posable.

Conversely, suppose F' is not separably closed. Then F has a proper normal
separable field extension K. As in the end of Section 2, K may be identified
with a nondegenerate symmetric space of degree 7 over F. One checks
Z(K) = K, so K is indecomposable. But K X K~ KODK P - P K
([K : F]-copies) which is certainly not indecomposable. The proposition is
proved.

Classically the most important field is C, the complex numbers. The above
proposition says that L,{C) is isomorphic as a partially ordered ring to the
semigroup ring Z(I(C)), where I(C) is the semigroup of isomorphism
classes of indecomposable equivalence classes of forms of degree » over C with
tensor product. We know nothing about the structure of I,(C); for example,
we ask whether this semigroup is free. In order to make this construction
functorial, we call an indecomposable symmetric space over an arbitrary
field F' absolutely indecomposable if it remains indecomposable under every
field extension of F. By Proposition 4.3, a nondegenerate symimetric space
(V, 0) over F is absolutely indecomposable if and only if Z(})/rad Z(}') is a
purely inseparable field extension of F. The tensor product of two absolutely
indecomposable nondegenerate symmetric spaces is absolutely indecom-
posable, so the isomorphism classes of these spaces, with tensor product,
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forms a monoid which we denote be I(F). Using Proposition 4.3, one checks
that I,( ) is a functor from fields to commutative monoids.

In Section 1 we saw that a symmetric space (V, 8) of degree r over a field F
in which #! £ 0, is nonsingular if and only if © eF®:V, 0p(v, v,..., v, 1) =0
for all ue F ®p V, imply v == 0, where F is the algebraic closure of F. We
use this terminology even if 7! = 0. We note that if (V, 6) is nonsingular,
then it is nondegenerate and Z( V') is a separable algebra (for if 0 54 f e Z(F ®rV)
with f2 = 0, then thereisav e F ®; V with f(v) # 0, butforallue F @ V
Op(f (), f(V)s-.., f(v), u) = Op(z, f3(2),..., f(v), ) = 0). If in addition (V, 6)
is indecomposable (note a symmetric space is nonsingular if and only if each
indecomposable part is nonsingular), then Z(V') is a finite field extension of F.
Suppose this is the case, and write K for Z(V'). Let t = #4z be the trace of K
over F. In the end of Section 2 we saw K with ¢ gives a nondegenerate sym-
metric space of each degree greater than one. Taking degree two, one checks
that this means K ~ Homg(K, F) by a > f,, where f,(b) = #(a - b) for all
be K. For v;,9,...,v, €V, b t(0(bv,, v5,...,v,)) is a homomorphism
from K to F, so there exists a unique element I'(v; , ¢, ,..., ,) € K with

t(b - T'(vy , 0g yoory 0,)) = {0(b2y , Vg ..., )

for all b € K. One checks that (V, I') is a symmetric space of degree r over K,
and (V, t o I') (as in Section 2) is (V, ). One can also checks that Z(V, I') = K;;
we call such a symmetric space central (since its center is as small as possible;
note a nonsingular form is central if and only if it is absolutely indecomposable).
By first principals, (¥, I') is unique up to semilinear isomorphism (meaning up
to isomorphism and the effect of an automorphism of K over F).

ProrosiTION 4.5. Let F be a field and v be an integer with v = 3. Let K
be a finite separable field extension of F. Let tx - be the trace map from K to F.
Let (U, ) be a nonsingular central symmetric space of degree r over K. Then
(U, tgsp o ) is a nonsingular indecomposable symmetric space of degree r over F.
Conversely, every nonsingular indecomposable symmetric space of degree v over F
can be realized in this fashion with a unique (up to isomorphism) K and a unique
(up to semilinear isomorphism over F) (U, ).

Proof. Some details remain. If (U, ) is central over K, we must check
that (U, tg/p o) has center exactly K. If f is in this center, then for all
V1,9, cU0and b, ce K,

tKr’F(C . l/’(f(b‘vl)) ’02 3eey ‘er)) = tK/F((/’(f(b‘vl)) 7J2 Iy CT),«))
= tK/F(l/’(bvl )f(v2))"" Ci),‘)) - tK/’F(¢(v1 7f('2}2)v"" bCZ‘T))
= tK/F(l/j(f(‘vl)) Uy 5eeey bcvl') = g 'F(C ’ l/‘(bf(vl)’ T2 yeeny 7"2))
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so P(f(bvy), vy ..., v) = P(bf (vy), 3 ..., 0,) sO f is K-linear. Similarly we
check £ is in the center of (U, ) and thus is multiplication by an element in K.
The Proposition now follows from the next two lemmas.

Lemma 4.6, Let K be a finite separable field extension of a field F. Let F
be the algebraic closure of K, and let o, ,..., o, be the distinct F-algebra isomor-
phisms from K into F. For i = 1,..., n, let F; be the field extension o, (which is an
algebraic closure of K). Let (U, ) be a symmetric space of degree r over K. Let t
be the trace map from K to F. Then

F@p (U tod) = Fy Qg (Uyh) @ - D F, @k (U, $).

Proof. By Galois theory we know F Ry K =~ 2/F, by x @ a — Zx,0(a)
for xeF, ae K, and this is a K-algebra isomorphism. Applying () @ U
to both sides we get

F@p U (F @y K) @k U ZF; @ U

byx Wur>r(x @D Qu-—>2x QuforxeF,ue U Forx,,..,xckF,
Uy e, €U, (Lo d)p(%y & 1y o, X, O w,) == &y - X, 2wy ..., u,)) and

(2¢'1)(2¥1 ® Uy, 2"2 @ Uy sy Zxr ® ur) = ‘Ex]x‘z xroi(‘l'(ul IR ua))

= ayy X (Bl ey 1))

Levmma 4.7. Let the notation be as in Lemma 4.6. Then (U, ) ts non-
singular if and only if (U, t < ) is nonsingular.

Proof. By Lemma 4.6, F @ (U, { o ) is nonsingular if and only if each
F; ®Qx (U, ) is nonsingular. Each of these is K @ (U, #), which is non-
singular if and only if (U, ) 1s nonsingular.
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