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We present a framework for embedding scalar–tensor models of screened modified gravity such as
chameleons, symmetrons and environmental dilatons into global supersymmetry. This achieved by
secluding the dark sector from both the observable and supersymmetry breaking sectors. We examine
the resulting supersymmetric features in a model-independent manner and find that, when the theory
follows from an underlying supergravity, the mediation of supersymmetry breaking to the dark sector
induces a soft mass for the scalar of order the gravitino mass. This is enough to forbid the construction
of supersymmetric symmetrons and ensures that when other screening mechanisms operate, no object
in the Universe is unscreened thereby precluding any observable signatures. In view of a possible origin
of modified gravity within fundamental physics, we find that only no-scale models can circumvent these
features. We also present a novel mechanism where the coupling of the scalar to two other scalars
charged under U(1) can dynamically generate a small cosmological constant at late times in the form of
a Fayet–Iliopoulos term.

© Open access under CC BY license.2013 Elsevier B.V.
1. Introduction

Dark energy is one of the simplest and most plausible expla-
nations of the recent discovery of the acceleration of the expan-
sion of the Universe [1,2]. Unfortunately, this very simple theory
is fraught with difficulties. The cosmological constant problem is
by far the most famous, with no current understanding of the
tiny value of the dark-energy scale compared to other energy
scales inherent in particle physics, which has prompted the search
for alternative sources of vacuum energy in the form of slowly-
rolling quintessence fields [3]. Fine-tuning and coincidence prob-
lems aside, the mass of the field must be small (O(H0)) on cos-
mological scales and so any coupling to matter, which one would
naturally expect, results in long-ranged fifth forces, which are not
compatible with Solar System tests of gravity.

Any such coupling of a scalar field to matter is equivalent to
a low-energy modification of general relativity (GR) [4] and, in
particular, the fifth-force problem has led to the development of
screening mechanisms (see [5] for a review) where fifth-forces
are screened locally, on galactic or Solar System scales, but are
active over large, cosmological scales. All of our current experimen-
tal tests of gravity have been performed in our local neighbour-
hood and so there is nothing precluding this possibility. Scalar–
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tensor theories, where a new scalar degree of freedom couples
conformally to the metric, are one such class of models and can
screen fifth-forces in high density environments either through the
chameleon mechanism [6–8], where the local mass of the field is
large enough that the range of the fifth-force is sub-mm, or the
symmetron [9] and environmental screening [10] models, where
the strength of the fifth-force is rendered negligible. Whilst the
concept of a classical screening mechanism is robust there are two
drawbacks: a cosmological constant is still required to account for
the acceleration of the Universe [11] and it is unclear whether the
mechanism is stable to quantum corrections (see [12] for a dis-
cussion on the one-loop effects and [13] for a discussion of the
quantum properties of such theories).

Scalar vacuum expectation values (VEVs) are unstable to quan-
tum corrections, which makes finding a natural value for the cos-
mological constant difficult in quintessence-like scenarios. One so-
lution to this is to impose mildly broken supersymmetry, which
produces only small quantum corrections when the system is close
to a supersymmetric vacuum. Particle physics in such theories op-
erates at the TeV scale and a lot of attempts have been put forward
to solve the problem of corrections of this magnitude by decou-
pling the observable and dark sectors so that they interact only
weakly between themselves and with a hidden supersymmetry
breaking sector. One may then hope that both of the above issues
can be ameliorated by constructing a supersymmetric extension of
screened modified gravity theories with decoupled sectors.

Here we shall do exactly this. Scalar–tensor theories are low-
energy IR modifications of GR, which are (at best) valid at energy

http://dx.doi.org/10.1016/j.physletb.2013.01.044
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
mailto:Philippe.Brax@cea.fr
mailto:A.C.Davis@damtp.cam.ac.uk
mailto:J.A.Sakstein@damtp.cam.ac.uk
http://dx.doi.org/10.1016/j.physletb.2013.01.044
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


P. Brax et al. / Physics Letters B 719 (2013) 210–217 211
scales below big bang nucleosynthesis (BBN) and so rather than
focus on supergravity [14–16] or string theory [17,18], both of
which have had issues with no-go theorems or spatial decompact-
ifications we will build on the approach of [19] and construct a
general N = 1 globally supersymmetric framework for describing
these theories. A chiral scalar field couples to dark matter fermions
in a sector completely secluded from the observable one resulting
in an enhancement of the gravitational force that is screened on
small scales. Specific models may be realised within this frame-
work via different choices of the Kähler potential, superpotential
and coupling function, although, with the exception of illustrative
examples, model-dependent results will be presented in [20].

We investigate the new features introduced by supersymme-
try. Supersymmetry is always broken at finite densities, however
the scale is density dependent and, owing to the seclusion of the
dark sector, far lower than that in the observable sector. When
the theory derives from an underlying supergravity that is broken
at some high-energy scale, there is correction to the scalar field’s
mass of order the gravitino mass m3/2. This constraint immedi-
ately precludes the possibility of embedding symmetron theories
into supersymmetry unless one is willing to tolerate excessive fine-
tuning. Chameleon and dilaton models survive, however the con-
straint is so strong that it ensures that no object in the Universe
is unscreened and it is therefore not possible to detect supersym-
metric screened modified gravity observationally using fifth-force
effects.1 Only no-scale Kähler potentials with a certain isometry
group for the scalar manifold can evade these constraints. These
models are therefore strong candidates for finding screened mod-
ified gravity in more UV complete theories such as string theory
and supergravity and any future work in searching for these theo-
ries should concentrate on this class of models. On the other hand,
it is well known that it is difficult to construct chameleon theo-
ries using this type of Kähler potential and so instead we illustrate
these new results by constructing a class of models which possess
the chameleon mechanism and a supersymmetric vacuum, post-
poning a full analysis of their dynamics to later [20].

By coupling the field to two U(1) charged scalars, our model
can generate a natural cosmological constant in the form of a
Fayet–Illiopoulos (FI) term. The charged scalar potential is U(1)

symmetric and at early times the symmetry is broken. The cou-
pling to the gravitational scalar gives a field-dependent contribu-
tion to the charged scalars masses and as the cosmological field
evolves along its density-dependent minimum this mass increases
until some critical density where it vanishes and the symmetry is
restored, leaving only the FI term, which acts as a cosmological
constant. FI terms are not renormalised when supersymmetry is
unbroken and otherwise runs only logarithmically. Therefore this
cosmological constant does not receive quantum corrections. Our
low-energy description is not powerful enough to fix the value of
the FI constant and we must tune it to 10−3 eV in order to ac-
count for the energy density in dark energy, however, if one could
find a natural reason for such a small value in a more UV com-
plete theory, for example a suitable ratio of different mass scales,
this value would not be corrected and would persist all the way
down to present-day energy densities. Throughout this work we
will assume that the cosmological constant problem in the observ-
able sector is resolved and focus only on the dark sector.

In the next section we review scalar–tensor modified gravity
and introduce the general framework for embedding it into global
supersymmetry. In Section 2.3 we describe the new features which
this framework adds to these models which we illustrate in Sec-

1 There is still the possibility of using a coupling to photons, however we will not
investigate this here.
tion 3 by constructing a class of supersymmetric chameleons. In
Section 4 we show how we can incorporate a cosmological con-
stant using a hybrid mechanism before concluding in Section 5.

2. Supersymmetric screened modified gravity

2.1. Scalar–tensor screened modified gravity

The action

S =
∫

d4x
√−g

[
M2

pl
R

2
− 1

2
k2(φ)∇μφ∇μφ − V (φ)

+Lm(Ψi; gμν) +Lc
(
χi; A2(φ)gμν

)]
(1)

describes a scalar coupled minimally to matter Ψi but non-
minimally to cold dark matter χi via the Weyl rescaled metric
g̃μν = A2(φ)gμν ; A(φ) is known as the coupling function. This
function satisfies A(φ) ≈ 1 so that the perturbations with re-
spect to each metric, g or A2 g , are small, which motivates the
heuristic form A(φ) = 1 + O(φ/M) + · · · . This coupling defines a
two-component fluid, the scalar and dark matter, which can ex-
change energy and so the energy density defined by ρ = −T , T
being the trace of the energy–momentum tensor found using gμν ,
is not conserved. Instead, it is the energy–momentum tensor de-
fined using g̃μν which is covariantly conserved, however it can be
shown that the rescaled energy density ρc where

ρ = A(φ)ρc;
ρ = −T = −gμν T μν

m ; T μν
m = − 2√−g

δSc

δgμν
, (2)

satisfies the continuity equation and so is conserved non-relati-
vistically. We shall henceforth refer to ρc as the conserved dark
matter density. Dark matter particles move along geodesics of g̃ ,
the so-called Jordan Frame metric and not g , the Einstein Frame
metric. Observers in the Einstein frame therefore infer an addi-
tional or fifth force

Fφ = βϕ(ϕ)

Mpl
∇ϕ; βϕ(ϕ) ≡ Mpl

d ln A(ϕ)

dϕ
, (3)

where ϕ is the canonically normalised field; dϕ = k(φ)dφ. The
equation of motion for the field is

�ϕ = dV F(ϕ)

dϕ
+ ρc

dA(ϕ)

dϕ
, (4)

which is the usual Klein–Gordon equation with an effective poten-
tial

V eff(ϕ) = V F(ϕ) + ρc
(

A(ϕ) − 1
)
. (5)

The final term arises due to the coupling to dark matter.
Models such as these are known to possess screening mecha-

nisms [6,7,9,10,21–23] (see [24] for a review) where the fifth-force
is rendered negligible in dense environments. This feature requires
two properties: the effective potential must possess a minimum
and either the mass at this minimum must be very large such that
the force is Yukawa suppressed (this is known as the chameleon
mechanism [7]) or the coupling βϕ(ϕ) must become small enough
that the force is negligible (this is the mechanism employed by
the symmetron [9] and the environmentally dependent Damour–
Polyakov effect [10]). In this Letter we shall work mainly with
chameleon theories, referring briefly to the symmetron whilst dis-
cussing supergravity corrections, however many of our results ap-
ply equally to all three models. We will indicate where this is the
case.
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2.2. Supersymmetric scalar–tensor theories

The theory described above can be realised within a super-
symmetric framework by coupling a chiral superfield Φ = φ + · · · ,
whose lowest component plays the role of the scalar, to two other
fields Φ± = φ± +√

2θψ± +· · · , whose fermions act as dark matter.
The Kähler potential is

K
(
Φ,Φ†,Φ±,Φ

†
±
) = Φ+Φ

†
+ + Φ−Φ

†
− + K̂

(
Φ,Φ†), (6)

where K̂ (Φ,Φ†) is left unspecified for now; its specific form is
crucial for determining which screening mechanism is utilised or
indeed if one is even present. When K̂ (ΦΦ†) �= Φ†Φ the field is
not canonically normalised, indeed

Lkin ⊃ KΦΦ†∇μΦ∇μΦ† (7)

so that the mass of the field is

m2
Φ = 1

KΦΦ†

∂2 V (Φ)

∂Φ∂Φ†
. (8)

The superpotential is

W (Φ,Φ±) = Ŵ (Φ) + mA(Φ)Φ+Φ−. (9)

Again, we leave Ŵ unspecified since a specific choice of its form
leads to different models. With this arrangement, 〈φ+〉 = 〈φ−〉 = 0
and so the potential is

V (Φ) = V F(Φ) = K̂ ΦΦ†
∣∣∣∣dŴ

dΦ

∣∣∣∣2

(10)

whilst there is a Φ-dependent contribution to the dark matter
fermion mass

Lf = ∂2W

∂Φ+∂Φ−
ψ+ψ− = mA(Φ)ψ+ψ−. (11)

When these fermions condense to finite density such that
〈ψ+ψ−〉 = ρc/m this term provides an additional contribution to
the potential resulting in an effective potential

V eff(Φ) = V F(Φ) + ρc
(

A(Φ) − 1
)
. (12)

This model is therefore equivalent to the model presented in
Eq. (1). In practise, it will be necessary to decompose φ as φ =
|φ|eiθ and stabilise the angular field at the minimum, however
several general results can be derived before specialising to spe-
cific models and so we shall continue to work with Φ for the time
being. When this decomposition is used we shall set φ ≡ |φ| and
use ϕ to denote the field found by bringing the kinetic term for φ

into canonical form.

2.3. Supersymmetric features

In this section we will discuss some of the new features that
accompany the embedding of these theories into a supersymmetric
framework.

2.3.1. Supergravity corrections
When working in the low-energy framework of global super-

symmetry it is important to ensure that any corrections coming
from supergravity breaking in a hidden sector are negligible. The
most important correction for these models are those coming from
|DΦ W |2 of the form

�V SUGRA = K ΦΦ† |KΦ |2|W |2
M4

e
K

M2
pl = m2

3/2 K ΦΦ† |KΦ |2, (13)

pl
where m3/2 is the gravitino mass. This correction must be negligi-
ble compared to V F and ρc A(Φ) if they alone are to be responsible
for the screening mechanism.2 This correction introduces an im-
portant new feature into these models: the mass of the field is
always at least as large as the gravitino mass. To see this, one can
take derivatives of (13) and focus on certain terms only to find

∂2 V (Φ)

∂Φ∂Φ†
⊃ m2

3/2 KΦΦ† . (14)

Recalling that the field may not be canonically normalised and ap-
plying (8) one finds that there is a contribution to the field’s mass
of exactly m3/2. This can be anywhere from 1 eV as predicted by
gauge mediated supersymmetry breaking scenarios to O(TeV) cor-
responding to gravity mediated breaking [25]. Consequently, the
Compton wavelength of the field is λc ∼ m−1

3/2 and so the range of

the fifth-force in such models is always less than 10−6 m depend-
ing on the gravitino mass. It should be noted that this result is
completely independent of the form of the matter coupling or the
potential, it is not even sensitive to their origins or whether the
field is coupled to dark matter or the standard model. When one
has scalars coupled to matter and the theory has an underlying
N = 1 supergravity at some high-energy scale then the range of
the fifth-force will always be less than m−1

3/2. In supergravity break-
ing scenarios with a large gravitino mass this precludes the need
for screening mechanisms altogether.

2.3.2. A supersymmetric symmetron
Another immediate consequence of this is that canonical sym-

metrons [9] cannot be accommodated within a supersymmetric
framework. The supersymmetric symmetron is found by imposing
a Z2 symmetry upon the effective potential. This is achieved by in-
cluding only odd powers of Φ in Ŵ (Φ) and only even powers in
the coupling A(Φ). The Kähler potential is K̂ (ΦΦ†) = Φ†Φ so that
the fields are canonically normalised and, at lowest relevant order,
the superpotential is

W (Φ) = M2Φ + 1

3
gΦ3

+ m

(
1 − h

Φ2

2mΛ3
+ f

Φ4

4mΛ3
3

)
Φ+Φ−, (15)

where the explicit introduction of the ‘−’ sign in the coupling will
become clear momentarily and is completely consistent with su-
persymmetry. The F-term potential is then

V F(φ, θ) = M4 + g2φ4 + 2gM2φ2 cos(2θ), (16)

which is minimised when cos(2θ) = −1 (one can check that if one
includes a term of order Φ5 in (15) then this is still approximately
the case) so that the model is a symmetron:

V (φ) = M4 − 2gM2φ2 + g2φ4 = (
gφ2 − M2)2

,

A(φ) = 1 + h
φ2

2mΛ3
+ f

φ4

4mΛ3
3

. (17)

Note that this has a supersymmetric minimum (V = 0) at φ0 =
M/

√
g; at finite density the field moves to smaller value thereby

breaking this supersymmetry. Now the symmetron mechanism re-
quires that the bare mass be negative, however there is a contri-
bution from supergravity corrections of the order +m2

3/2 and so

2 If this is not the case then one is really working within the framework of su-
pergravity and can therefore not realise any screening mechanisms due to the no-go
result of [16].
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either we must demand that there is a fine-tuned cancellation
or we must take M > m3/2 (note that the canonical symmetron
model requires M � 10−29 eV [9,26] whereas m3/2 � 1 eV). If this
is not the case the symmetron mechanism is lost. Suppose then
that M > m3/2. We have

β(φ) = Mpl
d ln A(φ)

dφ
∼ Mplφ0

mΛ3
(18)

in the cosmological background and when the Z2 symmetry is bro-
ken (if this is not the case there is no fifth-force). So if the force
is to be of comparable strength to gravity in free space we need
MMpl ∼ mΛ3. Now the symmetry is broken (or restored) at a den-
sity

ρ� ∼ M2mΛ3 ∼ M3Mpl > m3
3/2Mpl > 1027 eV4 = 1039ρ0, (19)

where we have taken the best case scenario of an eV mass grav-
itino. This means that in the late-time Universe only objects whose
densities exceed 1027 eV4 (and in many models vastly exceed) can
restore the Z2 symmetry locally and screen the fifth-force. This
immediately precludes screening in all dark matter haloes (with
greatest density 106ρ0) and Earth based laboratories (with density
1029ρ0). This problem is not ameliorated if we instead allow the
force in free space to be stronger than gravity since this increases
the lower bound on ρ� . Either the symmetron mechanism does not
exist or it is unscreened in our Solar System.

One may then also wonder whether the same is true of gen-
eralised symmetrons [23]. These employ a similar mechanism to
canonical symmetrons, except the phase transition, which is still
second order, is associated with a term which is higher order than
quadratic. For example, the effective potential

V eff(φ) = −gφ4 + φ6

M2
+ · · · + ρ

φ4

μ4
, (20)

where all higher order terms in the potential have positive co-
efficients, has a broken Z2 symmetry which is restored in dense
enough environments. In this case, a correction to the mass of the
order m3/2 does not affect the choices for the parameters in the
theory, however it does add a term proportional to m2

3/2φ
2 to the

effective potential and hence changes the transition from second
to first order. In this case, the original mechanism is lost and β(φ)

does not approach zero smoothly in increasingly dense environ-
ments. The properties of first order transitions are notably different
from those which are second order and it is unclear whether any
screening mechanism can persist once this term is included. In the
reconstruction of the potential from the coupling function and ef-
fective mass investigated by [23] such quadratic terms were not
allowed.

2.3.3. No-scale-type models
Given that the mere presence of an underlying supergravity

imposes such stringent restrictions on the mass of the field one
might naturally wonder how general these restrictions really are
and whether they can be circumvented. There are indeed a class
of models where the supergravity correction, i.e. the mass (14) is
not present. Clearly if K ΦΦ† |KΦ |2 is constant then (14) is spuri-
ous since the second derivative of the corrections are zero and
there are no corrections to the field’s mass. These are the no-scale
type models, a particularly common example of which is the log-
arithmic Kähler potential that arises in type IIB superstring theory
K = −nM2

pl ln[(Φ + Φ†)/Mpl] (n = 1 for the dilaton and n = 3 for
T-moduli, which corresponds to the pure no-scale case). In more
complicated scenarios one typically has many chiral scalars, which
parametrise a no-scale type manifold given by K ΦiΦ
†
j KΦi K

Φ
†
j
= c

with c = 3 in the pure no-scale case.
At tree-level, these models evade the corrections, however one

may wonder if they are re-introduced by loop corrections. The
one-loop effective potential is

�V 1-loop = 1

64π2
STr

[
M4 ln

M2

μ2

]
, (21)

where M is the mass matrix and μ is the renormalisation group
scale. At tree level we have, for the scalar, M2 ∼ |ŴΦΦ |2 and so
if Ŵ ∼ O(M3) there we expect M � Mpl since Ŵ is associated
with low-energy behaviour well below the supergravity breaking
scale. In this case, the quantum corrections are set entirely by the
tree-level parameters, which a priori are independent of the grav-
itino mass.

Eq. (21) encompasses only supersymmetric corrections and so
we must also account for the supersymmetry breaking soft masses
induced by this process. These have been studied extensively by
[27–29] (and references therein) who find that whenever the man-

ifold is not pure no-scale, i.e. K ΦiΦ
†
j KΦi K

Φ
†
j
�= 3 the soft masses are

always of order m3/2 and so one can conclude that these models
do not evade the supergravity breaking constraints. Furthermore,
in the pure no-scale case the same analyses have shown that only
no-scale models where the isometry group of the scalar manifold
is

M = SU(1,n)

U(1) × SU(n − 1)
, (22)

do not acquire soft masses. Any no-scale model whose isometry
group differs from this must necessarily include gravitino-mass
scalars in its low-energy effective theory.

One should note however that it is very difficult to find screen-
ing mechanisms with this class of Kähler potentials. For example,
in the simplest case where K = −3M2

pl ln(T + T †)/Mpl, the canon-

ically normalised field is Φ = exp(
√

2/3φ/Mpl) and so we expect
these to give rise to the chameleon mechanism. Now any term in
the superpotential is of the form W (Φ) ∝ Φn and so at best one
has an exponentially decreasing scalar potential and it is very diffi-
cult to obtain a thin shell solution for an Earth-like density profile
in such a model [10]. One must then rely on non-perturbative ef-
fects to generate a viable potential. It has been shown in [17] that
a non-perturbative superpotential W ∝ exp(aT ) arising from gaug-
ino condensation coupled to the KKLT mechanism [30] can give
rise to a chameleon. The potentials found using the standard string
theory prediction tend to have the opposite effect and decompact-
ify the extra dimensions [18].

We can then discern the conditions under which globally su-
persymmetric theories are not bound by constraints from super-
gravity breaking; they must be no-scale models with the isometry
group (22). At the level of string theory, models such as these re-
ceive corrections to their Kähler potentials in string perturbation
theory, which are then used in the tree-level supergravity formula
to find the scalar potential. Hence, only string theory models which
preserve this no-scale property to all orders in perturbation theory
and under non-perturbative corrections can evade the supergrav-
ity correction to the mass. At the level of pure-field theory, any
no-scale model with this isometry group will always lead to a low-
energy model which is not bound by these constraints.

2.3.4. Efficient screening
When the models do not evade the supergravity corrections

the presence of a contribution of order m3/2 to the field’s mass is
enough to ensure that the screening in these models is so efficient
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that no object in the Universe is unscreened and it is impossi-
ble to measure the effects of any fifth-forces. This can be deduced
as follows. Working with the canonically normalised field ϕ and
assuming that θ is stabilised at its minimum, the new effective
potential is

V eff(ϕ) = V F(ϕ) + ρ
(

A(φ) − 1
) + 1

2
m2

3/2ϕ
2. (23)

At the minimum, we have

−β(ϕ0)ρ0

Mplϕ0
= m2

3/2 + 1

ϕ0

dV F(ϕ)

dϕ
(24)

where we have used the fact that A(ϕ0) ≈ 1. If this equation has
no solutions then there is no minimum and the theory is not one
of screened modified gravity. We are interested in situations where
this is not the case and so we will assume that a minimum exists.
Now the left-hand side of this equation, barring any fine-tuned
cancellation, must be as large as m2

3/2, in which case

ϕ0

βϕ(ϕ0)
� ρ0

m2
3/2Mpl

. (25)

It is well known that an object is self-screened when the parame-
ter (a subscript 0 denotes present day cosmological values)

χ0 ≡ ϕ0

2Mplβϕ(ϕ0)
(26)

is less than the Newtonian potential ΦN = GM/R at the surface of
the object.3 When coupling to dark matter only we require that
the dark matter halo of the Milky Way is self-screening4 so that
χ0 < 10−6. Whereas this is the case with our simple model of Sec-
tion 2.2, the results of the previous analysis do not change if one
were to couple to standard model (or beyond) particles, in which
case compatibility with astrophysical tests such as [32–34] require
χ0 < 5 × 10−7.

Taking Eq. (25) and inserting it into (26) we find

χ0 �
(

H0

m3/2

)2

, (27)

where ρ0 ∼ 3Ω0
c H2

0 M2
pl. In the best case scenario we have m3/2 ∼

O(eV) and so we have χ0 � 10−66. The most unscreened ob-
jects in the Universe are dwarf galaxies with ΦN ∼ 10−8 [31,35]
and so this condition ensures that no object in the Universe is
unscreened; hence, there are no observational signatures of fifth-
forces.

This behaviour can alternatively be seen by considering the
usual derivation of the unscreened field profile [23,32] in the un-
screened region of a spherical overdensity. Consider a spherical
object of constant dark matter density ρb embedded in a much
larger medium of density ρc so that

ρ(r) =
{

ρb, r < R,

ρc, r > R.
(28)

3 For a nice discussion of χ0, its relation to the Newtonian potential and the self
screening of objects see [31]. A full derivation of this condition can be found in [23,
31,32].

4 This condition may be relaxed if one instead demands that the Milky Way is
screened by its local group partners. This raises the bound to χ0 < 10−4, however,
a recent, independent constraint using water maser distances precludes values �
10−6 thereby negating this argument. This case does not need to be considered
here since we shall see that the self screening of the Milky Way is inherent in our
model and does not require additional constraints.
When the object is static, Eq. (4) becomes ∇2ϕ = V eff(ϕ)ϕ and
when the object is unscreened the field only differs from the ex-
terior value by a small perturbation δϕ and so we can expand this
to first order to find

∇2δϕ ≈ m2
c δϕ + βϕ(ϕ0)δρ

Mpl
, (29)

where δρ = ρb − ρc and m2
c is the mass of the field in the outer

medium. Models with screening mechanisms typically have the
property that the Compton wavelength of the field m−1

c is much
greater than the size of the object and so one can neglect the
mass term for the perturbation. In these models however, we have
mc � m3/2 � 1 eV ∼ 1028 Mpc−1 and therefore the Compton wave-
length is incredibly small compared with typical galactic scales
(∼O(Mpc)). Therefore, the unscreened solution does not exist and
all objects in the Universe are screened.

2.3.5. Supersymmetry breaking
Before looking at some specific examples of supersymmetric

models we pause to discuss the effect of the dark-matter coupling
on the supersymmetric properties of the model. Minimising (12)
with respect to Φ , one has(

KΦΦ†Φ†

K 2
ΦΦ†

− 1

KΦΦ†

d2Ŵ

dΦ2

)
dŴ

dΦ
= ρc

dA(Φ)

dΦ
. (30)

The VEV of the dark matter scalars is 〈φ±〉 = 0 and so FΦ =
−dW /dΦ = −dŴ /dΦ . Any coupling to dark matter necessarily
breaks supersymmetry at finite density. This is one of the new fea-
tures of supersymmetric screened modified gravity; by secluding
the dark sector from the observable one (up to supergravity break-
ing effects described above) the scale of supersymmetry breaking
is not set by particle physics effects but rather by the ambient
density and so our model is not plagued with issues such as the
cosmological constant being associated with TeV scale breaking ef-
fects or detailed fine-tunings. That being said, this is far from a
solution to the cosmological constant problem since we do not at-
tempt to explain why the vacuum energy in the observable sector
associated with QCD and electroweak symmetry breaking does not
contribute to the cosmological dynamics. We also offer no expla-
nation to the cancelling of the cosmological constant in the hidden
sector.

3. A supersymmetric chameleon

Having found that symmetrons cannot operate within a super-
symmetric framework we shall here construct a class of super-
symmetric chameleon models with interesting, locally run-away
potentials. Such run-away potentials are generally required to re-
alise the screening mechanism (although this is not necessarily
the case [21,36]) and so it is instructive to pause to examine how
one can construct these in supersymmetry. Of course there is no
need of a chameleon screening mechanism here as the supergrav-
ity correction guarantees that the effects of the scalar field are
essentially screened for all objects in the Universe. Here we will
simply exemplify the construction of a chameleon model with a
supersymmetric minimum. In this case, the cosmological evolution
is directly influenced by the matter dependence of the minimum
and the convergence of the field to the supersymmetric minimum
when the matter density vanishes. We will see in the following
section that these features allow one to introduce a novel and
supersymmetric way of generating a small cosmological constant
whose presence can only be felt when the matter density falls be-
low a certain threshold. As a result, this model encompasses all
the characteristics of cosmological chameleons without the need
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to add a cosmological constant by hand in the scalar potential,
something which would break supersymmetry explicitly. On the
contrary, the cosmological constant and the resulting acceleration
of the Universe at late time results entirely from a spontaneous
breaking of global supersymmetry.

First note that the scalar potential is given by (10) where Ŵ
typically varies as Φα with α > 0. If one then wishes to have a
run-away potential one needs to choose a Kähler potential of the
form (Φ†Φ)β where β > α. This immediately precludes the use of
the canonical Kähler potential K = Φ†Φ , which in turn ensures
that the field is not canonically normalised. As a simple exam-
ple, we will consider a particular form of the Kähler potential and
superpotential which gives rise to a locally run-away potential at
small field values and a supersymmetric minimum at larger ones.
Hence we will find chameleon models where the true vacuum of
the model, when the dark matter density vanishes, has a vanishing
cosmological constant. To accommodate the late time acceleration
of the Universe, we will introduce a new hybrid mechanism in the
following section. Before doing this, constructing the model can be
achieved by the choice

Ŵ = β√
2α

(
Φα

Λα−3
0

)
+ 1√

2

(
Φβ

Λ
β−3
2

)
, (31)

K̂
(
ΦΦ†) = Λ2

1

2

(
ΦΦ†

Λ2
1

)β

, and A(Φ) = 1 + Φδ

Λδ−1
3

. (32)

Minimising with respect to the angular field and defining the new
mass scales

Λ4 ≡
(

Λ1

Λ2

)2β−2

Λ4
2, Mn+4 =

(
Λ1

Λ0

)2β−2

Λn+4
0 (33)

with n = 2(α − β), the F-term potential can be written

V F(φ) =
(

Λ2 − M2+ n
2

φ
n
2

)2

= Λ4
[

1 −
(

φmin

φ

) n
2
]2

, (34)

where

φmin =
(

M

Λ

) 4
n

M. (35)

This F-term potential has a supersymmetric minimum at φ = φmin
where V (φmin) = 0 and dW /dΦ = 0, however when φ � φmin it
reduces to the Ratra–Peebles potential

V F(φ) ≈ Λ4
(

φmin

φ

)n

(36)

corresponding to a well-known dark-energy model [37]. When θ is
set to its minimum, the coupling function is

A(φ) = 1 + g

mΛδ−1
3

φδ = 1 +
(

φ

μ

)δ

; μδ ≡ mΛδ−1
3

g
, (37)

which can be cast into a more convenient form

A(ϕ) = 1 + x

(
ϕ

ϕmin

) δ
β

; x ≡ gφδ
min

mΛδ−1
3

. (38)

The field φ is not canonically normalised, however the simple
choice for the Kähler potential allows the normalised field to be
found. It is given by

ϕ = Λ1

(
φ

)β

(39)

Λ1
Fig. 1. The effective potential.

in which case the effective potential is

V eff(ϕ) = Λ4
[

1 −
(

ϕmin

ϕ

) n
2β

]2

+ m2
3/2

2
ϕ2 + xρc

(
ϕ

ϕmin

) δ
β

. (40)

This is shown schematically in Fig. 1 where we have assumed that
the supergravity correction can be neglected, i.e. m2

3/2φ
2
min � xρ∞ .

Minimising the resulting potential one finds

(
ϕmin

ϕ

) n+δ
β

−
(

ϕmin

ϕ

) n+2δ
2β

= ρc

ρ∞
, (41)

where

ρ∞ ≡ ρ0
c (1 + z∞)3 ≡ nΛ4

δx
. (42)

Clearly when ρc � ρ∞ we have ϕ � ϕmin whilst when ρ � ρ∞
the field lies very close to its supersymmetric minimum. ρ∞ there-
fore sets the density above which supersymmetry is broken.

This model gives rise to some interesting cosmological dynam-
ics. The case δ = 1 has been studied previously in the context of
the supersymmetron [19,38]5 and it was found that a cosmologi-
cal constant is needed to account for both the energy density in
dark energy and have w , the equation of state parameter, close
to −1. This is in fact a very special case since the scale Λ3 is ab-
sent. When δ �= 1 the dynamics are far more interesting and we
examine them in detail in [20]. Here we shall only note that it is
possible to account for both the energy density in dark energy and
have w ≈ −1, however this scenario predicts large deviations from
the GR prediction for the matter power spectrum and so a cosmo-
logical constant is again required.

4. Supersymmetric hybrid dark energy

The model presented in the previous section requires a cosmo-
logical constant to match its predictions to current observations.
Furthermore, it has been argued recently [11] that screened mod-
ified gravity cannot account for the acceleration of the Universe
without a cosmological constant. One would therefore expect su-
persymmetric theories to have the same requirement. Unlike more

5 Following this discussion the reader should be aware that the supersymmetron
is a chameleon and not a symmetron.
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phenomenological theories however, the inclusion of such a cos-
mological constant at the level of the action is not so trivial. Global
supersymmetry is necessarily broken if the vacuum energy is pos-
itive and so any cosmological constant must arise through the
dynamics and will necessarily break supersymmetry. One could
rely on supergravity breaking to generate such a term, however its
magnitude is of order m2

3/2M2
pl, which is much greater than the ob-

served value of 10−12 eV4 and such contributions generally need
to be fine-tuned away. In this section we will present a method
by which a more natural low-energy scale cosmological constant
can be generated via the cosmological dynamics of the field by
coupling it to two chiral scalar fields charged under a U(1) gauge
group using a hybrid-type mechanism.

We begin by adding a new coupling of the chameleon Φ to two
U(1) charged chiral superfields Π± = π± + · · · and a U(1) gauge
vector multiplet X with Fayet–Illiopoulos term ξ2. This is done by
adding the term

Wπ = g′ΦΠ+Π− (43)

to the superpotential (9). The introduction of this coupling greatly
complicates the scalar potential, however when 〈π−〉 = 0 our orig-
inal effective potential (40) is recovered and a new potential for
π+ ≡ |π+| coming from the D-term, the Fayet–Illiopoulos term and
this coupling:

V (π+) = 1

2

(
qπ2+ − ξ2)2 + g′2φ2π2+. (44)

It can be shown [20] that 〈π−〉 = 0 is indeed a stable minimum
for the chameleon model of Section 3. The effective mass of the
charged field is m2

π+ = g′2φ2 − q2ξ2. In theories of screened mod-
ified gravity, including the model presented above [20], the mini-
mum of the effective potential is an attractor and the field tracks
its position throughout its cosmological evolution [8,23]. The mass
of π+ is then negative at early times when the field value is small
but increases as the field evolves towards its supersymmetric min-
imum. We would therefore expect the shape of the potential (44)
to change with the cosmological evolution of φ. Indeed, if one min-
imises (44) one finds π+ = 0 when mπ+ � 0, corresponding to the
restoration of the U(1) symmetry. When this is the case, one has
V (π+ = 0) = ξ4/2 and so at late times the Fayet–Illiopoulos term
plays the role of a cosmological constant. At earlier times, min-
imising the potential with respect to π+ results in corrections to
the effective potential for φ. Exactly how (or indeed if at all) these
corrections effect the model dynamics is highly model-dependent
and requires a detailed numerical analysis. We will postpone any
discussion of this to a follow-up paper [20]. Here we will only re-
mark that in general it is possible to find a sensible (in the sense
that no numbers are fine-tuned to ridiculous values) region of pa-
rameter space where the dynamics of the field are not disrupted
by these corrections and the model predictions can be matched
with current observations.

On this note, in order to match the presently observed density
in dark energy we must set ξ ∼ 10−3 eV. This may appear just
as fine-tuned as any other quintessence model, however Fayet–
Illiopoulos terms are far more stable under quantum corrections.
When supersymmetry is unbroken there is no renormalisation and
when it is broken there is only a logarithmic running [39] and
so the cosmological constant is essentially uncorrected. Whereas
there is no natural mechanism to set the specific value of ξ within
our framework, if one can find a more UV complete theory where
such a scale naturally emerges then its value is preserved at low
energies. One must also remember that this small value of the
cosmological constant makes sense only if any other contribution
coming from the matter and supersymmetry breaking sectors van-
ish. We do not attempt to address this issue here.

5. Conclusions

We have presented a framework for embedding scalar–tensor
theories into global N = 1 supersymmetry. These theories are IR
modifications of gravity and so such a bottom-up approach is sen-
sible. We have examined the new features this embedding has in-
troduced and in particular, with the exception of a very small class
of Kähler potentials, have found that any theory with underlying
supergravity breaking, regardless of the origin of the effective po-
tential, is so efficiently screened that there are no unscreened ob-
jects in the Universe. Therefore we conclude that any scalar–tensor
screening theory with origins in supergravity has no observational
signatures due to fifth-forces. Only no-scale Kähler potentials with
the isometry group (22) can evade this result and it is these model
which one must investigate if one wishes to search for a non-trivial
UV completion. Additionally, we have found that a contribution to
the scalar mass of order m3/2 is enough to obliterate the canonical
and generalised symmetron mechanisms.

By secluding the dark sector from the observable sector we
have circumvented TeV scale supersymmetry breaking effects on
dark matter and dark energy. Indeed, we have shown that any
supersymmetric model of screened modified gravity necessarily
breaks supersymmetry at finite densities. The scale of this breaking
is set by the parameters in the dark sector alone and can therefore
be eV scale or below.

We have discussed the construction of supersymmetric chame-
leons and have argued that run-away type potentials can only be
realised if one takes the Kähler potential to be of a higher degree
in Φ†Φ than the superpotential is in Φ . We have illustrated this by
constructing a specific class of models which are locally run-away
but have a supersymmetric minimum at some large field value. At
zero density supersymmetry is restored and at high densities it is
broken by the matter coupling, however this class of models has
the interesting feature that at small densities (exactly how small is
parameter-dependent) supersymmetry is approximately unbroken.
In a follow-up work [20] we will investigate the dynamics of these
models in detail.

Chameleon models generically require a cosmological constant,
which cannot be present in supersymmetry at the level of the ac-
tion. In order to address this issue we have introduced a novel
mechanism where a coupling of the field to two U(1) charged
scalars drives their mass from initially negative to positive val-
ues as the cosmological field tracks its (increasing in field space)
density-dependent minimum. At some threshold density the mass
is zero and the U(1) symmetry is restored, driving the VEV of the
charged scalars to zero and leaving only a Fayet–Illiopoulos term,
which acts as a cosmological constant.

The exact value of the cosmological constant is not set by our
low-energy description owing to the arbitrariness of the FI term
and we must fix it to 10−3 eV in order to match the present-day
dark-energy density. FI terms do not receive large quantum correc-
tions and run logarithmically at most. Our model is therefore more
attractive than quintessence where the scalar VEV receives correc-
tions from decoupling particle species. Furthermore, if one could
find some natural mechanism for determining the value of the FI
term from a more UV complete theory, for example, if it emerges
as the ratio of one large mass scale to another, even larger mass
scale, then this value would be preserved through energy scales
down to the dark-energy one.

It seems that a supersymmetric extension of screened modified
gravity theories brings with it new features and challenges to over-
come. In general, any model which can screen does so to such an
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extent that there are no unscreened objects in the Universe. This
high degree of screening means that one would not expect any ef-
fects on non-linear structure formation such as spherical collapse
or cluster abundances. Additionally, the extremely short range of
the force also precludes any local observations resulting from fifth-
forces originating from the coupling to matter.6 The need for a
cosmological constant makes the construction of a cosmologically
viable model difficult within the framework of supersymmetry and
one must find some mechanism by which it appears dynamically.
Despite all this, we have successfully embedded these screening
mechanisms into a supersymmetric framework and have intro-
duced a novel, hybrid-type mechanism by which a stable (in that it
is not overly sensitive to quantum corrections) cosmological con-
stant can be generated dynamically in a manner consistent with
the underlying supersymmetry.

Finally, one may wonder how the strong constraints on the su-
persymmetric embeddings of screened models could be relaxed
and a model with more observation signatures could be con-
structed. This would certainly require the existence of no-scale
models with the isometry group (22) and the presence of SUSY-flat
directions so as to address the quantum corrections more formally.
The construction of such a scenario is a challenging prospect and
the framework we have presented here is a powerful tool with
which to probe potential UV completions. This is only the first
stage of a long process towards unifying these models with more
fundamental theories.
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