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a b s t r a c t

A graph has linear clique-width at most k if it has a clique-width expression using at most
k labels such that every disjoint union operation has an operand which is a single vertex
graph. We give the first characterisation of graphs of linear clique-width at most 3, and we
give the first polynomial-time recognition algorithm for graphs of linear clique-width at
most 3. In addition, we present new characterisations of graphs of linear clique-width at
most 2. We also give a layout characterisation of graphs of bounded linear clique-width; a
similar characterisationwas independently shownbyGurski and by Lozin andRautenbach.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Many generally hard problems can be solved efficiently on restricted graph classes. One graph parameter to measure
the computational complexity of problems on restricted input graphs is clique-width. As an example, problems that can be
expressed in a certain monadic second-order logic can be solved in linear time on graphs whose clique-width is bounded
by a constant, assuming that an appropriate clique-width expression is given [5]. The clique-width of a graph is defined
as the smallest number of labels that are needed for constructing the graph using the graph operations ‘vertex creation’,
‘union’, ‘join’ and ‘relabel’. The graph parameter linear clique-width is closely related to clique-width and defined by a
restriction of the allowed clique-width operations to only ‘vertex creation’, ‘join’ and ‘relabel’. The corresponding clique-
width minimisation problem and linear clique-width minimisation problem are NP-hard even on complements of bipartite
graphs [8]. A graph class can have bounded clique-width but unbounded linear clique-width, for example cographs and
trees [11].

The relationship between clique-width and linear clique-width is similar to the relationship between treewidth and
pathwidth, and the two pairs of parameters are related [8,11,13]. Clique-width can be viewed as amore general concept than
treewidth since there are graphs of bounded clique-width but unbounded treewidth (for instance complete graphs),whereas
graphs of bounded treewidth have bounded clique-width [6]. While treewidth is widely studied and well understood the
knowledge about clique-width is still limited. The study of the more restricted parameter linear clique-width is a step
towards a better understanding of clique-width also. For example, NP-hardness of the clique-width minimisation problem
is obtained by showing that the linear clique-width minimisation problem is NP-hard [8].

With this paper, we contribute to the study of linear clique-width with several results. The main result that we report
is the first characterisation of graphs that have linear clique-width at most 3. We give a graph decomposition scheme
that exactly characterises the graphs of linear clique-width at most 3 as the graphs that can be decomposed completely.
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We show that a decomposition, if possible, can be computed in O(n2m) time, which gives the first polynomial-time
algorithm to decide whether a graph has linear clique-width at most 3. Furthermore, we show that graphs of linear clique-
width atmost 3 are both cocomparability graphs andweakly chordal graphs. Prior to thiswork, polynomial-time recognition
algorithms for graphs of linear clique-width atmost kwere knownonly for k ≤ 2 [9]. For bounded clique-width, polynomial-
time recognition algorithms for graphs of clique-width at most k are known only for k ≤ 3 [2,6]. Only little is known about
other characterisations of graphs of bounded clique-width. Graphs of clique-width at most 2 are characterised as the class
of cographs [6], but no characterisation other than the recognition algorithm is known for graphs of clique-width at most 3.

A graph decomposition scheme is a procedure that recursively decomposes a graph into smaller graphs by partitioning
the vertex set. Decompositions are often used in the design of efficient algorithms; well-known examples are linear-time
recognition algorithms for comparability graphs and cocomparability graphs [17]. As a preliminary step for obtaining our
decomposition scheme for graphs of linear clique-width at most 3, we consider the smaller class of graphs of linear clique-
width at most 2. We give new characterisations of this graph class, in particular, a characterisation by a decomposition
scheme. This decomposition scheme is a special case of our decomposition scheme for graphs of linear clique-width at
most 3.

Before focusing on graphs of small bounded linear clique-width, we give more general results for linear clique-width.
First we present and demonstrate the use of a new layout characterisation of graphs of bounded linear clique-width.
Treewidth and pathwidth have algorithmically useful characterisations through vertex layouts and embeddings into
particular graph classes. No such result is known for clique-width. Recently, Gurski as well as Lozin and Rautenbach gave
a layout characterisation of graphs of bounded linear clique-width [10,15]. Our result is similar but independent and has a
simpler statement and proof. Second,we give a characterisation of linear clique-width through a decomposition scheme that
preserves the linear clique-width of each decomposable subgraph. Note that even the trivial decomposition into connected
components does not have this property, as the linear clique-width of a disconnected graph can be larger than the linear
clique-width of each of its connected components. A simple example is the 2K2, which has linear clique-width 3 but its
two connected components have linear clique-width 2. For clique-width, several graph operations have been studied that
preserve the clique-width of a graph [6,13]. One of themost important results shows that the clique-width of a graph is equal
to the maximum clique-width of its prime induced subgraphs, making modular decomposition such a preserving operation
[6]. We give such a preserving operation also for linear clique-width and show that sets of false twins can be ignored.

This paper is organised as follows. In Section 2, we give the necessary background and notation, in particular, the
definitions of clique-width and linear clique-width. Section 3 presents our layout characterisation of linear clique-width, and
Section 4 presents the decomposition scheme that preserves linear clique-width. In Section 5, we consider characterisations
of graphs of linear clique-width atmost 2. Sections 6 and7 are devoted to graphs of linear clique-width atmost 3. In Section 6,
we give the decomposition scheme characterisation and prove structural properties of graphs of linear clique-width at most
3, and in Section 7, we give the polynomial-time recognition algorithm. Final remarks and open problems are discussed in
Section 8.

2. Graph preliminaries and linear clique-width

We consider simple finite undirected graphs. For a graph G = (V , E), we denote its vertex set as V (G) = V and its edge
set as E(G) = E. An empty graph has empty vertex and edge set, and an edgeless graph has empty edge set. Edges of G are
denoted as uv, and we say that u and v are adjacent. If uv ∉ E for u ≠ v, we say that u and v are non-adjacent. The subgraph
of G induced by S ⊆ V is denoted as G[S]. For a set S ⊆ V , we denote the graph G[V \ S] by G \ S, and for a vertex x of G,
we denote the graph G[V \ {x}] by G−x. Let u be a vertex of G. The neighbourhood of u is NG(u) = {v : uv ∈ E}. The closed
neighbourhood of u is NG[u] = NG(u) ∪ {u}. For a set S ⊆ V , NG(S) =


x∈S NG(x) \ S. Two vertices x, y are called true twins if

NG[x] = NG[y] and they are called false twins if NG(x) = NG(y). The degree of u is the number of its neighbours and denoted
as dG(u). We call u isolated in G if dG(u) = 0, we call u almost universal if dG(u) = |V (G)| − 2, and we call u universal if
dG(u) = |V (G)| − 1. A clique of G is a set of pairwise adjacent vertices, and an independent set of G is a set of vertices that are
pairwise non-adjacent.

In a graph G = (V , E), a path is a sequence (x0, . . . , xr) of distinct vertices such that xixi+1 ∈ E for 0 ≤ i < r . If r ≥ 2 and
additionally x0 and xr are adjacent then (x0, . . . , xr) is a cycle. A graph is connected if there is a path between every pair of
vertices; otherwise the graph is disconnected. Themaximal connected subgraphs of a graph are called connected components.
The complement of G, denoted as G, has vertex set V and two vertices are adjacent if and only if they are not adjacent in G.
If G is connected then we say that G is co-connected. The co-connected components of a graph are the connected components
of its complement.

Let G and H be two vertex-disjoint graphs. The disjoint union of G and H , denoted as G ⊕ H , is the graph with vertex set
V (G) ∪ V (H) and edge set E(G) ∪ E(H). The join of G and H , denoted as G ⊗ H , is the graph obtained from G ⊕ H by adding
all edges between the vertices of G and the vertices of H .

2.1. Special graphs and graph classes

For a set H of graphs, a graph is called H-free if it does not contain a graph from H as induced subgraph. A chord in a
path or cycle is an edge between non-consecutive vertices of the path or cycle. The chordless path on k vertices is denoted
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Fig. 1. A 2-expression, t1 , and a 3-expression, t2 , that define the left hand side graph.

as Pk and the chordless cycle on k vertices is denoted as Ck. The complement of C4 is denoted as 2K2, which is the graph on
four vertices and two edges that do not share an endpoint. The complement of the disjoint union of two (vertex-disjoint)
copies of P3 is denoted as co-(2P3).

Cographs are defined inductively as follows: a single vertex is a cograph, the disjoint union of two cographs is a cograph,
and the complement of a cograph is a cograph. It is well known that cographs are exactly the P4-free graphs [3]. A subclass
of cographs are threshold graphs. A graph is a threshold graph if and only if its vertices can be partitioned into a clique and an
independent set such that the independent-set vertices can be ordered by neighbourhood inclusion [16].

A cocomparability graph is the complement of a transitively orientable graph. A characterisation of cocomparability graphs
is by vertex orderings. A graph G is a cocomparability graph if and only if there is an ordering ⟨x1, . . . , xn⟩ of its vertices such
that for every triple i < j < k, xixk ∈ E implies that xixj ∈ E or xjxk ∈ E [14]. Such vertex orderings are called cocomparability
orderings.

A weakly chordal graph is a graph that does not contain a Ck for k ≥ 5 or its complement as induced subgraph. Cographs
are weakly chordal graphs. For further properties of the mentioned graph classes we refer to [1].

2.2. Clique-width and linear clique-width

Clique-width was introduced by Courcelle et al. [4]. For a natural number k ≥ 1, a k-labelled graph is a graph whose
vertices are assigned labels from {1, . . . , k}. The following operations are for k-labelled graphs:

(1) create a k-labelled graph on a single vertex xwith label i, for i ∈ {1, . . . , k};
denoted as i(x)

(2) relabel every vertex with label i by label j, for i, j ∈ {1, . . . , k};
denoted as ρi→j

(3) join all vertices with label i with all vertices with label j by adding edges, for i, j ∈ {1, . . . , k} and i ≠ j;
denoted as ηi,j

(4) compute the disjoint union of two k-labelled graphs;
denoted as ⊕.

The clique-width of a graph G, denoted as cwd(G), is the smallest number k such that G is equivalent to a k-labelled graph
that is constructed using the above operations. Clique-width expressions are built using the defined operations. Examples are
given in Fig. 1. Note that operands for the create, relabel and join operations are given in round brackets after the operation
whereas the two operands of the disjoint union operation are to the left and right hand sides of the ‘⊕’ symbol. If a clique-
width expression uses only k labels we call it a k-expression. We say that a k-expression t defines a graph G if G is equivalent
to the k-labelled graph obtained from t .

The linear clique-width of a graphwas introduced by Gurski andWanke [11]. It is defined by restricting the disjoint union
operation of clique-width. For a graph G, the linear clique-width of G, denoted as lcwd(G), is the smallest number k such that
there is a k-expression that defines G and that is of the following form: every occurrence of a disjoint union operation has
at least one operand that is a graph on a single vertex. The definition of linear clique-width is equivalent to the following: a
graph has linear clique-width at most k if it is equivalent to a k-labelled graph that is constructed from an empty graph by
applying the following operations: add a new vertex, relabel, join. In other words, the disjoint union operation is joinedwith
the vertex creation operation to an operation that adds an isolated vertex with specified label to the already constructed
graph. All the three operations take only one operand, so that they define a linear expression. As an example, expression t2
in Fig. 1 can be made into such an expression by simply deleting the ‘⊕’ symbols. When we give explicit linear clique-width
expressions, we use a different notation. We avoid the usage of round brackets and we write the operations in reversed
order, ending with the operation that is applied last. As an example, the equivalent of expression t2 in Fig. 1 is the following
expression:

2(b) 1(a) η1,2 ρ2→1 2(c) η1,2 3(d) η2,3 ρ3→2 3(e) η2,3.

Every clique-width expression defines a binary parse tree. Tree nodes with two children correspond to disjoint union
operations in the expression. Parse trees for our simplified definition of linear clique-width do not contain nodes with
two children, thus are paths. In this sense, the relationship between clique-width and linear clique-width can be viewed
analogous to the relationship between treewidth and pathwidth. The linear clique-width of a graph is at least its clique-
width. The difference between clique-width and linear clique-width of a graph can be arbitrarily large. As an example,
cographs and trees have clique-width at most 3 [6] but they have unbounded linear clique-width [11]. It is easy to see that



P. Heggernes et al. / Theoretical Computer Science 412 (2011) 5466–5486 5469

Fig. 2. A specific layout for the graph in Fig. 1. The set of vertices to the left of d has two groups, and ad(d) = 1 for this layout.

edgeless graphs are exactly the graphs of clique-width 1 and linear clique-width 1, since the creation of an edge requires at
least two different labels.

3. A layout characterisation of linear clique-width

We show that linear clique-width is equivalent to a layout width parameter. This width parameter mainly measures
the number of different neighbourhoods in a set of vertices with respect to the outside. Such a characterisation was
already given by Gurski [10] and Lozin and Rautenbach [15]; however, the width parameter that we use has a significantly
simpler formulation. We use our layout characterisation to show results for linear clique-width. In particular, we apply
this characterisation in this section to show that connected components of a disconnected graph can be constructed
independently by a linear clique-width expression with smallest number of labels.

A layout for a graph G is a linear ordering of its vertices, usually defined as a bijective mapping between the number
set {1, . . . , |V (G)|} and V (G). Let G = (V , E) be a graph. For A ⊆ V , a group in A is a maximal set of vertices with the same
neighbourhood in V \ A. Note that two groups in A are either equal or disjoint, implying that the group relation defines a
partition of A. By νG(A), we denote the number of groups in A. Let β be a layout for G. Let x be a vertex of G and let p be the
position of x in β , i.e., p = β−1(x). The set of vertices to the left of x with respect to β is {β(1), . . . , β(p − 1)} and denoted as
Lβ(x), and the set of vertices to the right of x with respect to β is {β(p + 1), . . . , β(|V (G)|)} and denoted as Rβ(x). We write
Lβ [x] and Rβ [x] if x is included. The function adβ is a {0, 1}-valued function on the set of vertices of Gwith respect to β . It is
defined as follows: adβ(x) = 1 if one of the following conditions is satisfied:

– {x} is a group in Lβ [x]
– {x} is not a group in Lβ [x] and all (other) vertices in the group containing x are neighbours of x
– {x} is not a group in Lβ [x] and there are a non-neighbour y of x in the group of Lβ [x] containing x and a neighbour z of x

in Lβ(x) such that y and z are non-adjacent;

adβ(x) = 0 if none of the conditions is satisfied. Note that the first condition is a special case of the second condition. We
distinguish the two conditions for convenience reason and to keep the definition clear.

Definition 1. The groupwidth of a graph G with respect to a layout β for G is the smallest number k such that νG(Lβ(x)) +

adβ(x) ≤ k for all x ∈ V (G). The groupwidth of Gwith respect to β is denoted as gw(G, β).
The groupwidth of a graph G is the smallest number k such that there is a layout β for G satisfying gw(G, β) ≤ k. The

groupwidth of G is denoted as gw(G).

For an example, consider Fig. 2. Given is a layout β for the graph G depicted in Fig. 1. We pick vertex d and see that Lβ(d)
has two groups, {a, b} and {c}. Furthermore, Lβ [d] has also two groups, {a, b} and {c, d}, and d is adjacent to all other vertices
in its group. Hence, adβ(d) = 1, and thus gw(G, β) ≥ 3. It is not hard to see that gw(G, β) = 3.

Theorem 1. For every graph G, lcwd(G) = gw(G).

Proof. Let G = (V , E) be a graph on n vertices. First we show lcwd(G) ≥ gw(G). Let a = a1 · · · ar be a linear clique-
width expression for G that uses k labels. We show that gw(G) ≤ k. Let i1 < · · · < in such that ai1 , . . . , ain are the vertex
creation operations in a. Let G1, . . . ,Gn be the following labelled graphs: Gj is defined by expression a1 · · · aij−1. Note that
G1 is an empty graph. Observe that νG(V (Gj)) ≤ k, since vertices in different groups in V (Gj) (with respect to G) must have
different labels. We define a layout β for G as follows: the vertices of G appear in β as in ai1 · · · ain . Let x be the vertex
added to Gj by operation aij . Note that Lβ(x) = V (Gj). We show that νG(V (Gj)) + adβ(x) ≤ k. If νG(V (Gj)) < k then clearly
νG(V (Gj)) + adβ(x) ≤ k. So, let νG(V (Gj)) = k. This means that all k labels are assigned to vertices in Gj. Hence, aij creates x
and assigns a label that is assigned to a vertex in Gj. We show that in this case adβ(x) = 0. Let A denote the set of vertices
of Gj having the same label as x. By assumption, A is not empty. Then, x is not adjacent to any of the vertices from A in G,
and A ∪ {x} is part of the same group in Lβ [x] (thus the first two conditions of the definition of ad are not satisfied). Let A′

denote the group in Lβ [x] containing x; hence A ∪ {x} ⊆ A′. Suppose there is a non-neighbour y of x in A′
\ (A ∪ {x}). Then,

all vertices with the same label in Gj as y belong to the same group in V (Gj) as A. This, however, means that νG(V (Gj)) < k,
which is a contradiction to the assumption. Hence, all vertices in A′

\ (A ∪ {x}) are neighbours of x, and the third condition
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of the definition of ad cannot be satisfied, in particular, since every neighbour of x in G is a neighbour of every vertex in A.
Hence, adβ(x) = 0. By choosing a as using the smallest number of labels, we conclude this part of the proof.

Next we show lcwd(G) ≤ gw(G). Let β = ⟨x1, . . . , xn⟩ be a layout for G. We show that lcwd(G) ≤ gw(G, β). We define
linear clique-width expressions a1, . . . , an that define labelled graphsG1, . . . ,Gn such thatGj is equivalent to G[{x1, . . . , xj}]
and is labelled with exactly νG(Lβ [xj]) labels. Let k =def gw(G, β). Clearly, a1 =def 1(x1) defines G1 properly. Now, let
j ∈ {1, . . . , n− 1} and assume that aj has already been defined. Then, Gj is equivalent to G[{x1, . . . , xj}] and is labelled with
exactly νG(Lβ [xj]) = νG(Lβ(xj+1)) labels. Without loss of generality, we can assume that the labels in Gj are from {1, . . . , k}.
We distinguish two cases. First, let adβ(xj+1) = 1. Then, νG(Lβ(xj+1)) < k and there is a label in {1, . . . , k} that is not
used in Gj; let c be the smallest unassigned label. We define aj+1 by iteratively appending operations to aj. We begin with
aj+1 =def aj c(xj+1). If xj+1 is not adjacent to any of the vertices in Lβ(xj+1), we are done. Otherwise, let c ′ be the label of a
group in Lβ(xj+1) that contains neighbours of xj+1. Append operation ηc,c′ . By definition of a group, all vertices with label c ′

are adjacent to x. Repeat this step until xj+1 is adjacent to all its neighbours that are in Lβ(xj+1). Then, the labelled graph
defined by current aj+1 is equivalent to G[{x1, . . . , xj+1}]. Note that, we have used exactly νG(Lβ(xj+1)) + adβ(xj+1) labels
so far. It can be that vertices from the same group in Lβ [xj] have different labels. We add relabel operations to aj+1. This
can be done since every group in Lβ(xj+1) is entirely contained in a group in Lβ [xj+1]. This completes the definition of aj+1.
With the given arguments, it is clear that Gj+1, that is defined by aj+1, is equivalent to G[{x1, . . . , xj+1}] and contains exactly
νG(Lβ [xj+1]) labels. As the second case, let adβ(xj+1) = 0. We define aj+1 similar to the previous case with exception for the
choice of c . In this case, aj+1 creates xj+1 using a label that is already assigned to a vertex in Gj. Let A be the group in Lβ [xj+1]

that contains xj+1. According to the definition of ad, A contains at least two vertices. Furthermore, A can contain at most
two groups of Lβ(xj+1). If all vertices in A \ {xj+1} are adjacent to xj+1 then adβ(xj+1) = 1, which is a contradiction to the
assumption. Hence, A contains a group A′ of Lβ(xj+1) of vertices that are non-adjacent to xj+1. We choose their label as c. It
remains to show that this choice does not add wrong edges. But again, the definition of ad ensures that every neighbour of
xj+1 that is in Gj is a neighbour of every vertex in A′. Hence, an is a linear clique-width k-expression that defines Gn, and Gn
is equivalent to G. By choosing β of groupwidth gw(G), we conclude this part of the proof. �

The proof shows an even stronger result: there is a 1-to-1 correspondence between linear clique-width expressions
using the smallest number of labels and layouts of smallest groupwidth. The proof also shows that the groupwidth of a
layout is a (tight) lower bound on the number of labels that every linear clique-width expression with this vertex ordering
uses. Finally, the construction in the second part of the proof gives a simple algorithm for determining a linear clique-width
expression using the smallest number of labels with the fixed vertex ordering. The corresponding notion is also known as
relative (linear) clique-width and was introduced and studied by Lozin and Rautenbach [15]. Our proof provides a simple and
efficient algorithm for computing the relative linear clique-width.

For the second result of this section, we consider linear clique-width expressions for disconnected graphs. It is obvious
that a clique-width expression can construct the connected components of a disconnected graph separately and combine
them in the last step using the disjoint union operation. For linear clique-width, this is not possible. However, it is intuitive to
assume that also linear clique-width expressions construct the connected components of a disconnected graph separately.
We show in the following that this is indeed the case by constructing a layout of smallest groupwidth with this property,
thereby applying the characterisation of Theorem 1. Though the result is expected, the proof is surprisingly non-trivial.

Lemma 2. Let G be a graphwith connected components G1, . . . ,Gl. Letβ be a layout for G. Then, there is a layoutβ ′ for G inwhich
the vertices of each connected component appear consecutively and in the same order as inβ and such that gw(G, β) ≥ gw(G, β ′).

Proof. Let k =def gw(G, β). We prove the statement by induction over the number of connected components. If G has only
one connected component then G is connected and the statement is true using β as β ′. Let G have at least two connected
components. If G is edgeless, every connected component contains exactly one vertex and we conclude the statement again
by using β as β ′. So, let G not be edgeless. Then, gw(G, β) ≥ 2. Let β1, . . . , βl be layouts obtained from β by restricting to
the vertices of G1, . . . ,Gl, respectively. Suppose there is i ∈ {1, . . . , l} such that gw(Gi, βi) ≤ k− 1. Let layout δ be obtained
from β by deleting the vertices of Gi. Then, δ is a layout for G \ V (Gi), and gw(G \ V (Gi), δ) ≤ k. We apply the induction
hypothesis to G\V (Gi) and δ and obtain layout δ′. Let β ′ be obtained from δ′ and βi by appending βi at the end of δ′. Note that
the vertices of each connected component of G appear consecutively in β ′ and the vertices of Gi are at the end. According
to the assumption and by construction, gw(G, β ′) ≤ k. As the last case, let gw(G1, β1) = · · · = gw(Gl, βl) = k. For every
i ∈ {1, . . . , l}, determine the leftmost vertex ui of Gi with respect to βi such that νGi(Lβi(ui)) + adβi(ui) = k. Let Gj be the
connected componentwith uj rightmost inβ among u1, . . . , ul. Similar to the previous case, we obtain layout δ′ forG\V (Gj).
Let β ′ be obtained from δ′ and βj by appending βj at the end of δ′. We show that gw(G, β ′) ≤ k. Suppose there is a vertex x
such that νG(Lβ ′(x)) + adβ ′(x) > k. By definition of uj and the construction of β ′, x is not to the left of uj in β ′. Choose x
leftmost possible in β ′. Then, νG(Lβ ′(x)) = k and adβ ′(x) = 1. Otherwise, if νG(Lβ ′(x)) > k, there is a vertex to the left of x
that starts a new group and thus xwas not chosen as leftmost. We consider the groups in Lβ ′(x):

– exactly one group contains the vertices of G \ V (Gj)
– k − 1 groups contain only vertices of Gj.

Note that the one groupwith vertices of G\V (Gj) can also contain vertices of Gj, namely the vertices that do not have further
neighbours. The vertices in the k − 1 groups all have a neighbour in Rβj [x]. Then, the k − 1 groups of Lβ ′(x) are also groups
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Algorithm Maximal independent-set modules

begin
let M := {V (G)};
for every vertex x of G do

obtain N from M by partitioning every set in M into a set of neighbours and
a set of non-neighbours of x;
set M := N \ {∅}

end for
end.

Fig. 3. An algorithm for computing the maximal independent-set modules of a graph.

of Lβ(x) according to the construction of β ′. Hence, all vertices in Lβ(x) of connected components different from Gj are in
the same group, say A. By the choice of uj, every connected component has a vertex in Lβ(uj), and by assumption k ≥ 2,
every connected component of G has at least two vertices, thus every vertex has a neighbour in G. Suppose a vertex in A has
a neighbour in Rβ(x). Then, no vertex of Gj that is in Lβ(x) can be in A, which means that only k − 1 groups in Lβ(x) contain
vertices of Gj. This, however, contradicts the choice of uj. Thus, no vertex in A has a neighbour in Rβ [x]. Hence, Lβ(x) = Lβ ′(x).
But then adβ(x) = adβ ′(x), which contradicts gw(G, β) = k. We conclude that gw(G, β ′) ≤ k. �

4. A graph reduction that preserves linear clique-width

It is known that modular decomposition is a reduction operation that preserves clique-width in the following sense:
the clique-width of a graph is equal to the maximum clique-width among its prime induced subgraphs [6]. Thus, clique-
width is robust with respect to modules. In this section, we consider the analogue problem for linear clique-width. A simple
observation shows that linear clique-width is not robustwith respect to arbitrarymodules: cographs have unbounded linear
clique-width. We restrict the notion of a module and show that linear clique-width is robust with respect to such restricted
modules. The results of this section are useful both for computing the linear clique-width of a graph and for proving structural
results. Examples of such applications are given in Sections 5 and 7.

For a graph G, a module M is a set of vertices of G that all have the same neighbours outside ofM in G.

Definition 2. Let G = (V , E) be a graph and letM be a set of vertices of G. We callM a maximal independent-set module of
G ifM is both an independent set and a module of G and no proper superset ofM has this property.

As examples, an edgeless graph has exactly one maximal independent-set module, and a complete graph on n vertices
has nmaximal independent-setmodules. LetG be a graph. Two vertices u and v ofG have the relation∼ft, denoted as u ∼ft v,
if and only if they are false twins, i.e., they have the same open neighbourhood. The symmetric relation for true twins was
considered by Roberts in connection with his study of indifference graphs [18]. Note that ∼ft is an equivalence relation,
and the corresponding equivalence classes are exactly the maximal independent-set modules of G. In particular, different
maximal independent-set modules have empty intersections. The quotient graph of Gwith respect to ∼ft, denoted as G/∼ft,
is obtained as follows: there is a vertex for every maximal independent-set module of G, and two vertices are adjacent if
and only if the corresponding maximal independent-set modules contain vertices that are adjacent. It is clear that G/∼ft is
isomorphic to an induced subgraph of G. A maximal independent-set module is called trivial if it contains only one vertex.

Lemma 3. For every graph G, the maximal independent-set modules of G/∼ft are trivial.

Proof. Suppose G/∼ft has a non-trivial maximal independent-set module M . Let a and b be vertices in M , and let Ma and
Mb be the maximal independent-set modules of G corresponding to a and b, respectively. Let u and v be vertices in Ma and
Mb, respectively. We show that NG(u) = NG(v). Since a and b are non-adjacent in G/∼ft, u and v are non-adjacent in G. Let
w be a vertex of G and different from u and v. If w is adjacent to u then w is not contained inMa and therefore contained in
a maximal independent-set module Mc . We denote the vertex of G/∼ft corresponding to Mc by c. According to definition,
c is adjacent to a in G/∼ft and by assumption c is adjacent to b. Thus, w is adjacent to v in G. With a symmetry argument,
it also follows that every neighbour of v is a neighbour of u in G. Hence, u ∼ft v, and u and v belong to the same maximal
independent-set module. This contradicts the assumption, and the lemma follows. �

As a direct corollary of Lemma 3, we obtain that graphs G/∼ft and (G/∼ft)/∼ft are isomorphic. An algorithm for
computing the maximal independent-set modules of a graph is given in Fig. 3. The algorithm uses a partition refinement
approach and has a linear-time implementation (see, for instance, [12]).

The main result of this section is given in the next lemma.

Lemma 4. For every graph G, lcwd(G) = lcwd(G/∼ft).

Proof. Since G/∼ft is isomorphic to an induced subgraph of G, the inequality lcwd(G/∼ft) ≤ lcwd(G) clearly holds. For
showing the converse, let Mx for x ∈ V (G/∼ft) denote the maximal independent-set module of G corresponding to x. Let a
be a linear clique-width expression forG/∼ft and let ℓx be the label of xwhen adding x in the expression a. We define a linear
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clique-width expression a′ for G in the following way. The creation operation for x in a is replaced by a sequence of creation
operations for all vertices inMx; all vertices inMx are createdwith label ℓx. In otherwords,we replace the appearance of ℓx(x)
in a with ℓx(v1) · · · ℓx(v|Mx|) for v1, . . . , v|Mx| the vertices in Mx. Note that a′ does not use more labels than a. For showing
that the graph defined by a′ is indeed equivalent to G, it suffices to consider a singlemoduleMx. All vertices inMx receive the
same label, so are pairwise non-adjacent and have the same neighbours. The result followswith an easy induction. Choosing
a as using the smallest number of labels, we conclude lcwd(G) ≤ lcwd(G/∼ft), which completes the proof. �

5. Graphs of linear clique-width at most 2

The smallest non-trivial class of graphs of bounded linear clique-width is the class of graphs of linear clique-width at
most 2. Gurski showed that graphs of linear clique-width at most 2 are exactly the {2K2, P4, co-(2P3)}-free graphs [9]. In
this section, we add several new characterisations, among others a decomposition scheme and a vertex reduction scheme.
Using this we give a linear-time recognition algorithm for graphs of linear clique-width at most 2.
Definition 3. The class of simple cographs is inductively defined as follows:

(1) an empty graph is a simple cograph
(2) if A is a simple cograph and B is an edgeless graph, then A ⊗ B and A ⊕ B are simple cographs.

Theorem 5. For a graph G, the following statements are equivalent:

(1) G is a simple cograph
(2) G/∼ft is a threshold graph
(3) G can be reduced to an empty graph by repeatedly deleting an isolated vertex, a universal vertex or a false twin vertex.

Proof. We show three implications. Let G = (V , E) be a graph.
(1) ⇒ (2) Let G be a simple cograph. If G is edgeless then G/∼ft is a graph on a single vertex and therefore a threshold

graph. If G contains an edge, there are edgeless graphs A1, . . . , Ar and operations ⊙i ∈ {⊕, ⊗} for 2 ≤ i ≤ r such that
G = (· · · (A1 ⊙2 A2) · · ·) ⊙r Ar . We assume that r is smallest possible. This means that ⊙2 = ⊗ and that there is no
3 ≤ i ≤ r such that⊙i−1 = ⊙i = ⊕. Then, themaximal independent-setmodules ofG are exactly the sets V (A1), . . . , V (Ar).
Let a1, . . . , ar be vertices from A1, . . . , Ar , respectively. It holds that G[{a1, . . . , ar}] is isomorphic to G/∼ft. Note that
G[{a1, . . . , ar}] = (· · · (G[{a1}] ⊙2 G[{a2}]) · · ·) ⊙r G[{ar}]. This shows that G/∼ft is a threshold graph: {ai : ⊙i = ⊕}

is an independent set in G[{a1, . . . , ar}], the other vertices form a clique and the independent-set vertices can be ordered
by neighbourhood inclusion.

(2)⇒ (3) LetG/∼ft be a threshold graph. Let (C,D)be a partition of the vertex set ofG/∼ft such that C is an independent
set and D is a clique of G/∼ft and such that the vertices in C can be ordered by neighbourhood inclusion. Denote by Mx the
maximal independent-set module of G corresponding to vertex x of G/∼ft. Note that the vertices in Mi are pairwise false
twins. Mark a vertex from every module Mx. A reduction of the desired form is obtained by repeatedly deleting first all
unmarked vertices (which are always false twin vertices) and then isolated and universal vertices. Note that the second part
is successful since a graph is a threshold graph if and only if it can be reduced by repeatedly deleting isolated or universal
vertices.

(3) ⇒ (1) Let σ = ⟨x1, . . . , xn⟩ be a vertex ordering for G such that xi is isolated, universal or false twin in Gi =def
G[{xi, . . . , xn}]. Let σ be chosen such that false twin vertices appear leftmost possible, which means that, if possible, a false
twin vertex is picked instead of a universal or isolated vertex. Suppose there is 1 ≤ i < n such that xi+1 is a false twin vertex
and xi is not. Independent of whether xi is universal or isolated in Gi, xi+1 is a false twin vertex also in Gi and xi is universal or
isolated inGi−xi+1. Hence, xi+1 canbedeletedbefore xi.We conclude that there is 1 ≤ j ≤ n such that x1, . . . , xj−1 are deleted
as false twin vertex and none of xj, . . . , xn is deleted as false twin vertex. Let c1, . . . , cs′ be the vertices among xj, . . . , xn (and
in the corresponding order) that are deleted as isolated vertices, and let d1, . . . , ds′′ be the vertices among xj, . . . , xn that are
deleted as universal vertices. Then, every vertex di is adjacent to all vertices in a set {ci, . . . , cs′} for an appropriate choice of
i. Hence, there is an ordering ⟨a1, . . . , ar⟩ of the vertices in C ∪ D such that G[{xj, . . . , xn}] = (· · · (A1 ⊙2 A2) . . .) ⊙r Ar for
Ai the subgraph of G induced by {ai} and appropriate choices of ⊙i ∈ {⊕, ⊗}. Denote byMi the maximal set of vertices that
are false twin with ai in G. Note that every such setMi contains exactly one vertices from {xj, . . . , xn}, and every vertex from
{x1, . . . , xj−1} is contained in such a set. Then, G = (· · · (G[M1] ⊙2 G[M2]) · · ·) ⊙r G[Mr ], and G is a simple cograph. �

Note that the third part of the proof also gives a normalisation result, about reduction sequences, that false twin vertices
can be deleted first and then only isolated or universal vertices are deleted.
Corollary 6. Simple cographs can be recognised in linear time.
Proof. This follows from Theorem 5 and the facts that G/∼ft can be computed in linear time and threshold graphs can be
recognised in linear time [16]. �

Theorem 7. A graph has linear clique-width at most 2 if and only if it is a simple cograph.
Proof. Our proof distinguishes two cases; we apply the groupwidth characterisation of linear clique-width (Theorem 1). Let
G = (V , E) be not a simple cograph. Let β = ⟨x1, . . . , xn⟩ be a layout for G. We show that gw(G, β) ≥ 3. If there is 1 ≤ j ≤ n
such that νG(Lβ(xj)) + adβ(xj) ≥ 3, we are done. So assume the contrary. Since G is not a simple cograph, there is 1 < i < n
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such that G[{x1, . . . , xi}] is a simple cograph and G[{x1, . . . , xi+1}] is not. This particularly means that xi+1 has a neighbour
and a non-neighbour in {x1, . . . , xi}. Therefore, νG(Lβ(xi+1)) = 2 and adβ(xi+1) = 0. Let A and A′ be the two groups in
Lβ(xi+1). One of the two groups, say A, contains only neighbours and the other group contains only non-neighbours of xi+1.
From adβ(xi+1) = 0, it follows that the group in Lβ [xi+1] that contains xi+1 contains the vertices in A′, and this implies that
every vertex in A is adjacent to every vertex in A′. Thus, G


Lβ [xi+1]


= G[A] ⊗ (G[A′

] ⊕ G[{xi+1}]). Let j be smallest such that
{x1, . . . , xj} contains a vertex from both A and A′. Since {x1, . . . , xj−1} and {xj} belong to different groups, νG(Lβ(xj)) = 1
and adβ(xj) = 1. Since νG(Lβ(xi′)) = 2 for every j + 1 ≤ i′ ≤ i, it holds that adβ(xi′) = 0 for every j + 1 ≤ i′ ≤ i. It
follows that A or A′ is an independent set, depending on which group vertex xj belongs to. If A is an independent set then
(G[A′

] ⊕ G[{xi+1}]) ⊗ G[A] is a simple cograph, if A′ is an independent set, then G[A] ⊗ G[A′
∪ {xi+1}] is a simple cograph.

This, however, contradicts the assumption about G[{x1, . . . , xi+1}] not being a simple cograph. Hence, gw(G, β) ≥ 3.
For the converse, let G be a simple cograph. According to the definition, there are edgeless graphs A1, . . . , Ar and

operations ⊙i ∈ {⊗, ⊕} such that G = (· · · (A1 ⊙2 A2) . . .) ⊙r Ar . Let xi1, . . . , x
i
si be the vertices of Ai. We show that

β = ⟨x11, . . . , x
1
s1 , x

2
1, . . . , x

r
sr ⟩ is a layout for G of groupwidth atmost 2: Lβ(xi1) has exactly one group, and since Ai is edgeless,

Lβ(xij) for 2 ≤ j ≤ si has atmost two groups. So, adβ(xij) = 0 for all 1 ≤ i ≤ r and 2 ≤ j ≤ ri, andwe conclude gw(G) ≤ 2. �

Theorem 7 together with Gurski’s result shows that {2K2, P4, co-(2P3)}-free graphs are exactly the simple cographs.
We have thus shown that this graph class can be recognised in linear time. Such a result was not known before. In fact,
Theorem 5 (3) results in a linear-time certifying algorithm for recognising graphs of linear clique-width atmost 2, outputting
either a decomposition of G according to Definition 3, if yes, or an induced subgraph of G that is a 2K2, a P4 or a co-(2P3),
if no.

6. Graphs of linear clique-width at most 3

Graphs of linear clique-width atmost 2were shown tohave a simple structure. The situation changes already for graphs of
linear clique-width atmost 3. In this section, we characterise the graphs of linear clique-width atmost 3 by a decomposition
scheme. This characterisation will lead to an efficient recognition algorithm (Section 7). The decomposition scheme can be
considered as a generalisation of the decomposition scheme for simple cographs (Definition 3). At the end of this section,
we apply our characterisation and show that graphs of linear clique-width at most 3 are cocomparability graphs andweakly
chordal graphs.

We can say that the decomposition scheme in Definition 3 defines simple cographs in a ‘‘1-dimensional manner’’. For
graphs of linear clique-width at most 3, we have to add another dimension. We define a class of formal expressions, that
are interpreted as graph descriptions. These expressions can be considered as 2-dimensional expressions. An lc3-expression
is inductively defined as follows, where d ∈ {l, r} and all sets A, A1, A2, A3, A4 may also be empty:

(d1) (A) is an lc3-expression, where A is a set of vertices.

(d2) Let T be an lc3-expression and let A be a set of vertices not containing a vertex appearing in T ; then (d[T ], A) is an
lc3-expression.

(d3) Let T be an lc3-expression and let A1, A2, A3, A4 be pairwise disjoint sets of vertices not containing a vertex appearing
in T ; then (A1|A2, d[T ], A3|A4) is an lc3-expression.

(d4) Let T be an lc3-expression and let A1, A2, A3, A4 be pairwise disjoint sets of vertices not containing a vertex appearing
in T , and let p be one of the following number sequences: 123, 132, 312, 321, 12, 32 (not allowed are 213, 231, 21, 23,
13, 31); then T ⊙ (A1|A2, •), T ⊙ (•, A1|A2) and T ◦ (A1, A2|A3, A4, d[p]) are lc3-expressions where ⊙ ∈ {⊕, ⊗}.

This completes the definition of lc3-expressions. The graph defined by an lc3-expression is obtained according to the following
inductive definition. An lc3-expression also associates a vertex partition with the defined graph. Let T be an lc3-expression.
Then, G(T ) is the following graph, where T ′ always means an lc3-expression and A, A1, A2, A3, A4 are sets of vertices and
d ∈ {l, r}:

(i1) Let T = (A); then G(T ) is the edgeless graph on vertex set A; the vertex partition associated with G(T ) is (A, ∅).
(i2) Let T = T ′

⊙ (A1|A2, •) for ⊙ ∈ {⊕, ⊗}, and let G(T ′) with vertex partition (B, C) be given; then G(T ) is obtained from
G(T ′) by adding the vertices of A1 and A2 and executing two operations: (1) a union (if ⊙ = ⊕) or a join (if ⊙ = ⊗)
between B and A1 ∪ A2 and (2) a join between A2 and C; that is, B⊙ (A1 ∪ A2) and A2 ⊗ C; the vertex partition associated
with G(T ) is ((B ∪ A1 ∪ A2), C).

(i3) The case T = T ′
⊙ (•, A1|A2) is similar to the previous case, where the operations are C ⊙ (A1 ∪ A2) and A2 ⊗ B and the

vertex partition is (B, (C ∪ A1 ∪ A2)).
(i4) Let T = T ′

◦ (A1, A2|A3, A4, d[p]), and let G(T ′)with vertex partition (B, C) be given; then G(T ) is obtained from G(T ′) by
adding the vertices in A1 ∪ A2 ∪ A3 ∪ A4 and edges; the added edges are the result of a sequence of join operations, and
the sequence is specified by p. We have three start sets, A2, B, C , and three extension sets, A3, A1, A4, that correspond to
respectively A2, B, C; the extension sets will be added to their corresponding start sets after performing join operations,
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so that we obtain the final three sets A2 ∪ A3, B ∪ A1 and C ∪ A4; join operations are performed between the three sets,
where each of which may be the start set or the already extended set.

We perform two or three join operations, depending on the sequence p and with the following meanings: 1 means a
join operation between A2- and B-vertices, 2means a join operation between B- and C-vertices, 3means a join operation
between A2- and C-vertices. It is important to note that, for example, A2-vertices are the vertices from A2 or A2 ∪ A3,
depending on whether A2 has been extended or not when the join operation is performed.

The operation application scheme is as follows: perform a join operation between the two start sets specified through
the first number in p, and then add the extension sets to the two start sets involved in the first join operation; perform
the join operation that is specified through the second number in p (note that one of the two sets is already extended
and the other set is a start set), and then add the remaining extension set to its corresponding start set; if p contains
three numbers, perform the join operation that is specified through the third number in p.

G(T ) is associated with one of the two vertex partitions:
if d = l then ((B ∪ A1 ∪ A2 ∪ A3), (C ∪ A4)), and
if d = r then ((B ∪ A1), (C ∪ A4 ∪ A2 ∪ A3)).

(i5) Let T = (d[T ′
], A), and let G(T ′) with vertex partition (B, C) be given; then G(T ) is the graph defined by T ′

⊗ (•, A|∅) or
T ′

⊗ (A|∅, •) for d = l or d = r , respectively; the vertex partition associated with G(T ) is (B ∪ C, A).
(i6) Let T = (A1|A2, d[T ′

], A3|A4), and let G(T ′) with vertex partition (B, C) be given; then G(T ) is the graph defined by
T ′

◦ (A1, A3|A4, A2, d[p′
]) where p′

=def 132 or p′
=def 312 for d = l or d = r , respectively; the vertex partition

associated with G(T ) is ((A1 ∪ A2 ∪ B ∪ C), (A3 ∪ A4)).

This completes the definition of the graph defined by an lc3-expression. As a remark, we understand definitions (i5) and (i6)
as ‘‘2-dimensional’’, since the given vertex partition is not increased in a monotone way but changed completely. Later in
this section, we will see that definition (i4) is captured by what we will call an lc3-composition.

Definition 4. A graph G is an lc3-graph if there is an lc3-expression T such that G = G(T ).

We show that lc3-graphs are exactly the graphs of linear clique-width at most 3. We partition the proof into several
smaller results. Remember that every lc3-expression defines a vertex partition, that is associated with the lc3-expression
and the defined graph.

Lemma 8. Let G = (V , E) be an lc3-graphwith lc3-expression T and vertex partition (B, C). Let S ⊆ V . Then, G[S] is an lc3-graph,
and there is an lc3-expression TS for G[S] with vertex partition (B ∩ S, C ∩ S).

Proof. By definition of lc3-expressions, every vertex of G appears in exactly one lc3-expression operation of T and, thus in
exactly one set of the vertex partition. It is clear that deleting a vertex x of G from the set of its appearance in T yields T ′, that
is an lc3-expression which exactly defines G−xwith vertex partition (B \ {x}, C \ {x}). Iterated application of this operation
proves the statement. �

For an lc3-expression T , denote by GC (T ) the subgraph of G(T ) that is induced by the second component of the vertex
partition for T . In other words, if G(T ) is associated with vertex partition (B, C) then GC (T ) = G(T )[C].

Lemma 9. Let T be an lc3-expression.

(1) GC (T ) is a simple cograph.
(2) Let (B, C) be the vertex partition for G(T ). There are no four vertices u, v, x, z in G(T ) such that u, v ∈ B and x, z ∈ C and

ux, vz ∈ E(G(T )) and uz, vx ∉ E(G(T )).

Proof. We prove the two statements separately.
(1) Weprove the statement by induction over the definition of lc3-expressions. If T = (A) thenGC (T ) is an empty graph.

Empty graphs are simple cographs. Let T ′ be an lc3-expression, for which the claim holds, and let A, A1, A2, A3, A4 be sets of
vertices. If T = (d[T ′

], A) or T = (A1|A2, d[T ′
], A3|A4) for d ∈ {l, r} then GC (T ) is an edgeless graph on vertex set A or A3 ∪A4,

respectively; then GC (T ) is a simple cograph. If T = T ′
⊙ (A1|A2, •) then GC (T ) = GC (T ′). If T = T ′

◦ (A1, A2|A3, A4, l[p]) for
arbitrary value of p thenGC (T ) = GC (T ′)⊕G(T )[A4]. According to induction hypothesis,GC (T ′) is a simple cograph, and since
G(T )[A4] is an edgeless graph,GC (T ) is a simple cograph. Similarly, if T = T ′

⊙(•, A1|A2) thenGC (T ) = GC (T ′)⊙G(T )[A1∪A2]

is a simple cograph, since G(T )[A1 ∪ A2] is edgeless. Finally, let T = T ′
◦ (A1, A2|A3, A4, r[p]). Depending on p, GC (T ) is one

of the following graphs:

– (GC (T ′) ⊗ G(T )[A2 ∪ A3]) ⊕ G(T )[A4]

– (GC (T ′) ⊗ G(T )[A2]) ⊕ G(T )[A3 ∪ A4]

– (GC (T ′) ⊕ G(T )[A4]) ⊗ G(T )[A2 ∪ A3].

All these graphs are simple cographs, and we conclude the first proof.
(2) Assume thatG contains vertices u, v, x, z such that u, v ∈ B, x, z ∈ C and ux, vz ∈ E(G(T )) and uz, vx ∉ E(G(T )). Let

T ′ be theminimal subexpression of T that contains x and z. Hence, at least one of x and z is contained in the last operation of T ′.
Suppose G(T ′) does not contain u or v; without loss of generality, let u not be contained in G(T ′). By checking all possibilities,
this can only mean that u is adjacent to x and z in G(T ) or u is non-adjacent to x and z in G(T ), which contradicts the
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Fig. 4. The result of an lc3-composition of the graphs G1,G2,G3,H1,H2,H3 . The thick lines from graphs G1 and H1 represent joins. The bow tie between
G2 ⊕ H2 and G3 ⊕ H3 means either a join or no edge at all.

assumption. So, G(T ′) already contains u, v, x, z. It is clear that the last operation of T ′ cannot be of the forms (A) or (d[·], A)
or⊙(A1|A2, •). If the last operation of T ′ is of the form⊙(•, A1|A2) then x or z is contained in A2 andmust be adjacent to both
u and v. If the last operation of T ′ is of the form (A1|A2, d[·], A3|A4) then x, z ∈ A3∪A4 and the neighbourhood of one vertex is
contained in the neighbourhood of the other. Finally, let the last operation of T ′ be of the form ◦(A1, A2|A3, A4, d[p]). If d = l
then x, z ∈ C ∪A4 and the neighbourhood of every vertex in A4 is contained in the neighbourhood of every vertex in C . Thus
d = r must hold. But then u, v ∈ B ∪ A1, and we conclude a similar inclusion property for u and v. Hence, vertices u, v, x, z
cannot have the described property, and we conclude the proof. �

Property (2) of Lemma 9 can be considered a weak form of 2K2-freeness of lc3-graphs. A third property of lc3-graphs is a
closure property for a special composition operation. Let G1,G2,G3 be an edgeless graph, a simple cograph and an lc3-graph
(in arbitrary assignment) and let H1,H2,H3 be edgeless graphs. Graphs may also be empty. The result of the disjoint union
of these six graphs and additional edges is called lc3-composition. The additional edges are given in Fig. 4. The bow tie means
either join between G2 ⊕H2 and G3 ⊕H3 or no edges at all. The result of the join case is called complete lc3-composition and
the result without edges for the bow tie is called incomplete lc3-composition.

Lemma 10. Let G1,G2,G3 be an edgeless graph, a simple cograph and an lc3-graph and let H1,H2,H3 be edgeless graphs.
Then, both the complete and the incomplete lc3-composition of these graphs yields an lc3-graph. Furthermore, there is an lc3-
expression T for every i ∈ {1, 2, 3} and every lc3-composition such that one of the two partition sets for G(T ) is equal to
V (Gi) ∪ V (Hi).

Proof. We consider complete and incomplete lc3-composition separately and distinguish different assignments. Let G′ and
G′′ be an lc3-graph and a simple cograph, respectively. Then, there are lc3-expressions T ′ and T ′′ for G′

⊕ G′′ and G′
⊗ G′′,

respectively, such that (V (G′), V (G′′)) is the vertex partition for G(T ′) and G(T ′′). Such lc3-expressions can be obtained from
an lc3-expression T for G′, starting from (l[T ], ∅) and adding operations of the forms ⊕(•, A|∅) and ⊗(•, A|∅) for G′

⊕ G′′

and ⊕(•, ∅|A) and ⊗(•, ∅|A) for G′
⊗G′′. The proof of Lemma 9 describes such a construction in reverse. We distinguish the

cases with respect to the edgeless graph among G1,G2,G3. We first consider incomplete lc3-compositions and consider H2
and H3 to be empty. Let G1 be edgeless, and let T be an lc3-expression for G2 ⊕G3 where the vertex partition for G(T ) groups
into V (G2) and V (G3). Then, the following lc3-expressions

(d[T ], V (H1)) ⊕ (•, ∅|V (G1)), T ⊗ (∅|V (G1), •) ⊕ (∅|V (H1), •), T ⊗ (•, V (H1)|V (G1))

and the complementary versions, where the • symbols change sides, are lc3-expressions for the incomplete lc3-composition
ofG1, . . . ,H3 whereH2 andH3 are empty. If these graphs are non-empty, they are edgeless graphs and the contained vertices
are isolated in the composition graphs. Appropriate lc3-expression operations can be added,which concludes this part. Now,
let G2 be edgeless. Let T be an lc3-expression for G1 ⊗ G3 that groups the vertices into V (G1) and V (G3). For the following
lc3-expressions, we assume that V (G1) is the right partition set. The other case is similar. Let T ′

=def T ⊕ (•, V (H1)|∅). Then,
the following expressions show the claim where the remaining cases are obtained analogously as described above:

T ′
⊕ (∅|V (G2), •), (l[T ′

], V (G2)), T ′
⊗ (•, V (G2)|∅).

Finally, let G3 be edgeless. Let T be an lc3-expression for G1 ⊗ G2 grouping the vertices into V (G1) and V (G2). We assume
that V (G1) is the left partition set. Then, we conclude with the following lc3-expressions:

T ◦ (V (H1), V (G3)|∅, ∅, d[12]), (r[T ⊗ (•, V (H1)|∅)], V (G3)).

For the case of complete lc3-expressions, we similarly list lc3-expressions. We begin with the case of G1 being edgeless.
Let T be an lc3-expression for G2 ⊗ G3 that groups into V (G2) and V (G3) with V (G3) the left partition set. Then,

(V (H3)|V (H2), l[T ], V (G1)|V (H1)), (V (H3), V (G1)|V (H1), V (H2), d[132])

for d ∈ {l, r} are lc3-expressions for the complete lc3-composition of G1, . . . ,H3. Now, let G2 be edgeless, and let T
be an lc3-expression for G1 ⊗ G3 that groups into V (G1) and V (G3) where V (G3) is the left partition set. Let T ′

=def
T ⊕ (V (H3)|∅, •) ⊕ (•, V (H1)|∅). Then,

T ′
⊗ (V (H2)|V (G2), •), (r[T ′

], V (H2)) ⊕ (•, ∅|V (G2)), T ′
⊗ (•, ∅|V (G2)) ⊕ (•, ∅|V (H2))



5476 P. Heggernes et al. / Theoretical Computer Science 412 (2011) 5466–5486

are lc3-expressions for the complete lc3-composition ofG1, . . . ,H3. Finally, letG3 be edgeless, and let T be an lc3-expression
for G1 ⊗ G2 that groups into V (G1) and V (G2) where V (G1) is the left partition set. Then,

T ◦ (V (H1), V (G3)|V (H3), V (H2), d[123]), (V (H1)|∅, l[T ], V (G3)|V (H3)) ⊕ (∅|V (H2), •)

for d ∈ {l, r} are lc3-expressions for the complete lc3-composition of G1, . . . ,H3. The remaining cases are symmetric. This
then completes the proof of the lemma. �

A linear clique-width expression that uses at most three labels is called linear 3-expression. For label c and
vertices x1, . . . , xr , a clique-width expression c(x1) · · · c(xr) is shortly written as c({x1, . . . , xr}). Note that the ordering
of the vertices is not important. We show that every lc3-graph has linear clique-width at most 3.

Lemma 11. For every lc3-graph there exists a linear 3-expression.

Proof. Let G be an lc3-graph with lc3-expression T . We inductively define a linear 3-expression for G. After every
construction step, the linear 3-expressionwill have atmost two assigned labels and the two label classes exactly correspond
to the two vertex partition classes of the lc3-expression. For the construction,we distinguish different cases. In the following,
let T ′ be an lc3-expression with vertex partition (B, C), let a′ be a linear 3-expression that defines G(T ′) such that the
constructed graph has at most two assigned labels and the two label classes exactly correspond to (B, C). Let c1 and c2
be the labels that correspond to the vertices in B and C , respectively. If C is empty, c2 is one of the two non-assigned labels.
Let c3 be the third label. Finally, let A, A1, A2, A3, A4 be sets of vertices, d ∈ {l, r} and p an appropriate sequence of numbers.
We first consider the lc3-expression operations defined in (d1) and (d4).

– T = (A): G(T ) is an edgeless graph on vertex set A. Then, a =def 1(A) is a linear 3-expression that definesG and respects
the vertex partition defined by T .

– T = T ′
⊙ (A1|A2, •): If ⊙ = ⊗, let a =def a′ c3(A2) ηc2,c3 c3(A1) ηc1,c3 ρc3→c1 .

If ⊙ = ⊕, we define a similar expression, that does not contain operation ηc1,c3 . It is clear in both cases that a defines
G(T ), that label c3 is not assigned to any vertex in the graph defined by a and that c1 and c2 determine exactly the vertex
partition ((B ∪ A1 ∪ A2), C).

– The case T = T ′
⊙ (•, A1|A2) is purely symmetric to the previous case.

– T = T ′
◦ (A1, A2|A3, A4, d[p]): we give a sample expression for d = l and p = 123:

a =def a′ c3(A2) ηc1,c3 c1(A1) c3(A3) ηc1,c2 c2(A4) ηc2,c3 ρc3→c1 .

The other cases are obtained analogously. In the case of d = r , the relabel operation would be ρc3→c2 .

For the remaining operations, we can reduce to the cases above. Only the relabel operation is replaced by ρc2→c1 . Thus, we
have shown that there is a linear 3-expression for G. �

Similar to linear 3-expressions, a linear k-expression for k ≥ 1 is a linear clique-width expression that uses at most k
labels. Before showing the counterpart of Lemma 11, which gives the main result of this section, we prove a normalisation
result for linear clique-width expressions. This gives an intuitive notion of ‘‘useless operation’’ in linear k-expressions. For a
linear clique-width expression t = t1 · · · tr , we denote the graph that is constructed from t1 · · · ti as G[t1 · · · ti]. We say that
vertices ‘‘belong to the same label class in G[t1 · · · ti]’’ if they have the same label in G[t1 · · · ti].

Lemma 12. Let k ≥ 1 and let G be a graph that has a linear k-expression. Then, G has a linear k-expression a = a1 · · · ar such
that the following holds for all join and relabel (η and ρ) operations ai in a:

(1) G[a1 · · · ai] does not contain an isolated vertex
(2) G[a1 · · · ai−1] contains vertices of the two label classes involved in ai.

Proof. We show the two properties separately. Let b = b1 · · · bs be a linear k-expression for G. Let bi be a join or relabel
operation and suppose that G[b1 · · · bi] contains an isolated vertex, say x. Let c be the label of x in G[b1 · · · bi]. If bi is a join
operation then c is not one of the two join labels. We obtain b′

= b′

1 · · · b′
s from b by deleting the vertex creation operation

for x in b and adding the operation c(x) right after operation bi. Then, G[b′

1 · · · b′

i] = G[b1 · · · bi]. Iterated application of this
operation shows the existence of a linear clique-width k-expression having the first property.

For the second property, let d = d1 · · · dt be a linear k-expression that has the first property. Let di = ηc,c′ be a
join operation. If G[d1 · · · di] contains no vertex with label c or c ′ then di adds no edge to G[d1 · · · di−1], which means
G[d1 · · · di−1] = G[d1 · · · di]. We obtain d′ from d by deleting operation di. Now, let di = ρc→c′ be a relabel operation,
and suppose that one of the two label classes is empty in G[d1 · · · di−1]. If the label class of c is empty then we obtain d′

from d by just deleting operation di. If the class of c is non-empty but the class of c ′ is empty then we obtain d′ from d by
first exchanging c and c ′ in all operations di+1, . . . , dt and then deleting di. It is not difficult to show that G[d1 · · · dj] and
G[d′

1 · · · d′

j−1] correspond to each other for every i + 1 ≤ j ≤ t with the exception that the label classes of c and c ′ are
exchanged. Repeated application of the modification completes the proof. Note that the expressions after the execution of
the second modification still have the first property. �

Theorem 13. A graph has linear clique-width at most 3 if and only if it is an lc3-graph.
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Proof. One implication follows from Lemma 11. For the converse, let G be a non-empty graph of linear clique-width at most
3. We show that G is an lc3-graph by giving an lc3-expression for G. Let a = a1 · · · ar be a linear 3-expression for G that
has the properties of Lemma 12. In particular, a1 is a vertex creation operation. We prove the claim by induction over the
number of relabel operations. The following observations are crucial for the proof. Given a labelled graph G′, execute only
vertex creation and join operations on G′. Then, only the last join operation between two labels has to be considered, and
no vertex that is added to G′ is adjacent to another vertex assigned the same label. Let Gi =def G[a1 · · · ai] for 1 ≤ i ≤ r .
If G is an edgeless graph, which means that a contains no join operation, let the lc3-expression T be defined as (V ). Since
G = G(T ), we conclude the statement. So, let a have a join operation. Without loss of generality, we can assume that a
contains a relabel operation right after the last join operation that involves one of the labels of the relabel operation.

Let ai be the first relabel operation in a. Consider Gi−1. Since ai is the first relabel operation in a, every label class induces
an edgeless graph in Gi−1. Let A1, A2, A3 be the sets of vertices corresponding to the three different label classes. For defining
the lc3-expression, we consider different cases. If A3 is empty then all vertices in A1 are adjacent to all vertices in A2 and Gi
has only one label class; we let T1 =def (A1) ⊗ (A2|∅, •). So, let A3 be non-empty. Let D1 be the set of vertices in A1 having at
least one neighbour in both A2 and A3. Similarly, letD2 be the set of vertices in A2 having at least one neighbour in both A1 and
A3, and let D3 be the set of vertices in A3 having at least one neighbour in both A1 and A2. Note that one of the sets D1,D2,D3
must be non-empty. If exactly one of these sets is non-empty, Gi is the incomplete lc3-composition of at most four edgeless
graphs (involving the graphs G1,G2,G3,H1 of Fig. 4). If at least two of the sets D1,D2,D3 are non-empty then all three sets
are non-empty. Then, Gi is the complete lc3-composition of six edgeless graphs. Let A3 be the set of vertices that corresponds
to the label that is not involved in the relabel operation ai. According to Lemma 10, there is an lc3-expression for Gi that
groups the vertices of Gi into A1 ∪ A2 and A3. This completes the proof of the base case.

Now, let aj′ be the tth relabel operation in a for t ≥ 2 and let aj be the relabel operation in a preceding aj′ . By induction
hypothesis, there is an lc3-expression Tt−1 that defines Gj in such a way that vertex partition (B, C) for G(Tt−1) corresponds
to the two label classes in Gj. This particularly means that if two labels are not assigned in Gj then C can be assumed empty.
We show that an lc3-expression for Gj′ exists, with vertex partition that corresponds to the label classes in Gj′ . The proof is
done by distinguishing several cases. Let A1, A2, A3 be the sets of vertices of Gj′−1 corresponding to the three labels, and let
B ⊆ A1 and C ⊆ A2. Let A′

i =def Ai \ (B ∪ C) for i ∈ {1, 2, 3}. The vertices in A′

1 ∪ A′

2 ∪ A′

3 are added after operation aj in a,
and A3 = A′

3. Note that A′

1, A
′

2, A
′

3 are independent sets in Gj′−1. We consider two basic cases distinguishing whether there is
a join operation involving the labels of A1 and A2 between aj and aj′ or not. First, let there be such a join operation. If this is
the only type of join operation between aj and aj′ then A3 is empty (otherwise, the vertices in A3 would be isolated) and Gj′

is a join of the subgraphs induced by A1 and A2 (since there are no isolated vertices). According to Lemma 8, Gj′ [B] is an lc3-
graph, and according to Lemma 9, Gj′ [C] is a simple cograph, and by construction, A′

1 and A′

2 induce edgeless graphs. Hence,
Gj′ is the complete lc3-composition of the subgraphs of Gj′ induced by B, C, A′

1, A
′

2, which is an lc3-graph due to Lemma 10.
Furthermore, there exists an lc3-expression for Gj′ that groups the vertices into the sets A1 and A2. This completes the proof
of this case. Now, let there be another type of join operations between aj and aj′ involving vertices of A3. If there is exactly
one type of join operations involving vertices of A3 then Gj′ is an incomplete lc3-composition. If there are two types of join
operations then Gj′ is a complete lc3-composition. Similar to the first case, we conclude that Gj′ is an lc3-graph by applying
Lemmata 8–10.

Now, we consider the second basic case, where there is no join operation involving the vertices in A1 and A2 between aj
and aj′ . Let aj′ involve the label assigned to the vertices of A3. Without loss of generality assume that aj′ changes the label of
A1 to the label of A3 (or aj′ changes the label of A3 to the label of A1); the other case follows similarly. All vertices of A′

1 and
A′

2 have a neighbour in A3, and there is a join between the vertices of A3 and the vertices of A1 or A2 (otherwise a vertex in
A3 would be isolated). Let D3 be the set of vertices of A3 with at least one neighbour in both A1 and A2. Then, one of the two
lc3-expressions defines Gj′ , with vertex partition (A1 ∪ A3, A2):

– Tt =def Tt−1 ⊕ (A′

1|∅, •) ⊕ (•, A′

2|∅) ⊗ ((A3 \ D3)|D3, •)
Tt =def Tt−1 ⊕ (A′

1|∅, •) ⊕ (•, A′

2|∅) ⊗ (∅|D3, •) ⊕ (∅|(A3 \ D3), •).

Now, let aj′ involve only the labels of A1 and A2. Then, depending on the case, the following lc3-expression defines Gj′ in the
desired way:

– Tt =def (d[Tt−1], (A3 \ D3)) ⊕ (•, ∅|D3)

where d ∈ {l, r}. For completing the proof we have to consider vertices that are added after the last relabel operation. Only
vertex creation operations can appear. We then obtain an lc3-expression for G by adding these last vertices, that are isolated
in G, attaching an ⊕(A|∅, •) operation. This completes the proof. �

As the two final results in this section, we show that graphs of linear clique-width at most 3 belong to well-known graph
classes.

Proposition 14. Lc3-graphs are cocomparability graphs.

Proof. We show the statement by induction over the definition of lc3-expressions. Let G = (V , E) be an lc3-graph with
lc3-expression T . We show that there is a cocomparability ordering for G that respects the vertex partition for G(T ). If
T = (A), thenG(T ) is an edgeless graph, and every vertex ordering forG is a cocomparability ordering and respects the vertex
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partition (A, ∅). Now, let T bemore complex. For the rest of the proof, let T ′ be an lc3-expressionwith vertex partition (B, C),
let σ ′ be a cocomparability ordering for G(T ′) that respects partition (B, C), which means that the vertices in B appear
consecutively and the vertices in C appear consecutively in σ ′. Without loss of generality, we can assume that the vertices in
B appear to the left of the vertices in C in σ ′. Let A, A1, A2, A3, A4 be sets of vertices, d ∈ {l, r} and p an appropriate sequence
of numbers. We distinguish different cases.

– T = T ′
⊙ (A1|A2, •) for ⊙ ∈ {⊕, ⊗}. We obtain σ from σ ′ by adding the vertices in A1 to the left of the vertices in B

and the vertices in A2 between the vertices in B and in C . Then, σ is a cocomparability ordering for G and the vertices in
B ∪ A1 ∪ A2 appear consecutively.

– The case T = T ′
⊙ (•, A1|A2) is similar to the previous case where A1 is added to the right of the vertices in C .

– T = (l[T ′
], A). The vertices in A are adjacent to only the vertices in C . We obtain σ from σ ′ by adding the vertices in A to

the right of the vertices in C . Then, σ is a cocomparability ordering for G that respects the partition (B ∪ C, A).
– The case T = (r[T ′

], A) is similar to the previous case; we put A to the left of B.
– T = T ′

◦ (A1, A2|A3, A4, l[12]). The vertices in B and A2 are adjacent and the vertices in B ∪ A1 and C are adjacent. We
obtain σ by placing the vertices in the following order: A3, A2, B, A1, C, A4, and the vertices in B and C appear in order
determined byσ ′. Then,σ is a cocomparability ordering forG and respects the vertex partition ((B∪A1∪A2∪A3), (C∪A4)).

– T = T ′
◦ (A1, A2|A3, A4, r[12]). We place the vertices in order A4, A3, A2, C, B, A1.

– The cases T = T ′
◦ (A1, A2|A3, A4, d[32]) are symmetric to the previous ones, where the roles of B and C are exchanged.

The remaining cases are T = T ′
◦ (A1, A2|A3, A4, d[p]) where p ∈ {123, 132, 312, 321} and (A1|A2, d[T ′

], A3|A4). Then, G(T )
is a complete lc3-composition. Let G1,G2,G3,H1,H2,H3 be graphs with their meaning as in Fig. 4. Suppose cocomparability
orderings are given. We define two vertex orderings. The vertices of the partition graphs appear consecutively and in order
defined by the given cocomparability orderings. The order of the partition graphs is as follows:

H3,G3,H2,G2,G1,H1 and H2,G2,H3,G3,G1,H1.

It is easy to check that all three vertex orderings actually define cocomparability orderings for the complete lc3-composition.
Furthermore, for every i ∈ {1, 2, 3}, there is a cocomparability ordering such that the vertices ofGi⊕Hi appear consecutively
at an end of the ordering. Depending on p, the pairs (B, A1), (C, A4), (A2, A3) are matched to (G1,H1), (G2,H2), (G3,H3), and
depending on d and the particular case, one of the vertex orderings is chosen to achieve the correct vertex partition. This
completes the proof. �

A chordless cycle of length at least 5 is called hole and the complement of a hole is called anti-hole. We show that graphs
of linear clique-width at most 3 do not contain holes or anti-holes as induced subgraph.

Proposition 15. Lc3-graphs are weakly chordal graphs.

Proof. With the fact that cocomparability graphs are hole-free and Proposition 14, we already know that lc3-graphs are
hole-free. It remains to show that lc3-graphs contain no anti-holes as induced subgraphs. We show that anti-holes have
groupwidth at least 4. Let k ≥ 5 and consider Ck. Since C5 and C5 are isomorphic, we can assume k ≥ 6. Let β = ⟨y1, . . . , yk⟩
be a layout for Ck. We distinguish two basic cases. First, let yk−1 and yk be non-adjacent in Ck, i.e., yk−1 and yk are adjacent
in Ck. Then, Lβ(yk−1) induces a path in Ck and has three groups: vertices that are adjacent to both yk−1 and yk, a vertex that
is non-adjacent to yk−1 and adjacent to yk, a vertex that is non-adjacent to yk and adjacent to yk−1. Thus, νCk(Lβ(yk−1)) = 3.
For the value of adβ(yk−1), observe that yk−1 is in a group of two vertices in Lβ [yk−1] and that the other vertex is a neighbour
of yk−1. Hence, adβ(yk−1) = 1, and gw(Ck, β) ≥ 4.

Now, let yk−1 and yk be adjacent in Ck. Then, both yk−1 and yk have exactly two non-neighbours in Lβ(yk−1), and at
most one vertex can be a common non-neighbour. We distinguish different cases. Let yk−1 and yk have a common non-
neighbour. Then, Lβ(yk−1) has the following groups (note that this requires k ≥ 6): vertices adjacent to yk−1 and yk, vertices
non-adjacent to yk−1 and yk, vertices adjacent to yk−1 but not to yk, and vertices adjacent to yk but not to yk−1. Hence,
νCk(Lβ(yk−1)) = 4. Let yk−1 and yk does not have a common non-neighbour in Lβ(yk−1). Let k ≥ 7. Then, Lβ(yk−1) has three
groups. Furthermore, yk−1 is not a single vertex in its group in Lβ [yk−1] and (at least) one of the two non-neighbours of
yk−1 is non-adjacent to a neighbour of yk−1 in Lβ(yk−1). Thus, adβ(yk−1) = 1, and gw(Ck, β) ≥ 4. Finally, let k = 6. Then,
Lβ(yk−1) induces a C4 in Ck (since yk−1 and yk have no common non-neighbour). Similar to the previous cases, Lβ(yk−2) has
three groups and adβ(yk−2) = 1 so that gw(Ck, β) ≥ 4. Hence, gw(Ck) ≥ 4 for k ≥ 6. Applying Theorems 1 and 13 and
the fact that the linear clique-width of a graph is not smaller than the linear clique-width of any of its induced subgraphs, it
follows that lc3-graphs have no anti-holes as induced subgraphs, so they are weakly chordal. �

Note that holes and anti-holes have linear 4-expressions. Together with the result of Proposition 15, it follows that the
linear clique-width of holes and anti-holes is exactly 4. It is an interesting observation that no cycle has linear clique-width 3.
C3 and C4 have linear clique-width 2, but their complements have linear clique-width 1 and 3, respectively.
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Fig. 5. Different situations in a special case in the proof of Lemma 16. The first level corresponds to set B, the second and third levels correspond to sets C1
and C2 , respectively.

7. Recognition of graphs of linear clique-width at most 3

This section is partitioned into two parts. We first give the recognition algorithm for lc3-graphs and then give a linear-
time implementation of the algorithm. For a brief outline, the algorithm recursively constructs an lc3-expression for the
input graph, if possible. Here, we distinguish the cases when additionally a vertex partition is associated with the graph or
no further requirement is added. The main algorithm is given in Fig. 8, that calls a slight modification of the algorithm given
in Fig. 6 as subroutine. This subroutine simplifies input graphs by identifying ‘‘difficult’’ induced subgraphs. Properties of
this algorithm are stated in Lemma 18. Before that, however, we consider an algorithm for deciding a special question for
lc3-compositions.

Lemma 16. There is a linear-time algorithm that, on input a graph G and a vertex partition (B, C) for G, where B and C are non-
empty, checks whether G is the complete or incomplete lc3-composition of graphs G1,G2,G3,H1,H2,H3 where at least two of the
graphs are non-empty, H1,H2,H3 are edgeless graphs and G1,G2,G3 are an edgeless graph, a simple cograph and an arbitrary
graph and there is i ∈ {1, 2, 3} such that B = V (Gi) ∪ V (Hi) or C = V (Gi) ∪ V (Hi). In the positive case, the algorithm outputs
an appropriate decomposition of G.

Proof. The main task is to find a partition of G into at most six induced subgraphs that can be mapped to the graphs in
Fig. 4. The algorithm is not difficult but has to check a number of cases. First, determine the groups in B and in C . If G is an
lc3-composition of the requested kind, B or C can have at most two groups (one being V (Gi) and the other being V (Hi)).
So, if B and C have at least three groups, the algorithm rejects, which is correct. Checking the three cases in Fig. 4, we
conclude: if B has exactly two groups then the neighbourhood of the one group (with respect to C) is properly contained in
the neighbourhood of the other group; analogously for C . If this is not possible, the algorithm rejects, which is correct. Note
that, if B and C have exactly two groups, the inclusion property holds either for none or for both sets.

Now, assume that the algorithm has not yet rejected. As a first case, let one set have exactly one group and the other
two groups. Without loss of generality, let C have two groups, C1 and C2, and let the neighbours of B be in C1. If G is an
lc3-composition where C corresponds to some V (Gi) ∪ V (Hi) then C1 and C2 correspond to respectively V (Gi) and V (Hi),
and C2 is an independent set in G and G[C] = G[C1]⊕G[C2]. Checking all situations, this means that G[B] or G[C1] is a simple
cograph. So, accept if G[B] or G[C1] is a simple cograph, and output G[B],G[C1],G[C2] as the decomposition. Now, we assume
that B corresponds to some V (Gi) ∪ V (Hi). If both Gi and Hi are non-empty, they have the same neighbourhood in C , so that
we can restrict to the case that Gi is non-empty and Hi is empty. Remember that if Gi is a simple cograph then Gi ⊕ Hi is a
simple cograph, too. To decide whether G is an lc3-composition, we have to check several cases, that are obtained from the
complete and incomplete lc3-composition in Fig. 4 by deleting an H-vertex. The obtained situations are depicted in Fig. 5.
The full (black) circles represent an edgeless graph, a simple cograph and an arbitrary graph, and the empty (white) circles
represent edgeless graphs. The upper circle represents Gi (which is supposed to be G[B]), the second level represents G[C1]

and the third level represents G[C2]. Note that a sixth case is missing; this case (deleting H2 for a complete lc3-composition)
cannot happen since it allows only one group in C . Given the sets C1 and C2, each case can be checked in linear time. Note
that the third level of the first case is a complete bipartite graph, for which the two colour classes are uniquely defined.
The algorithm accepts if one of the five situations is suitable for G, and outputs the corresponding decomposition. If G[B] is
edgeless then G[B] can also correspond to V (Hi). We obtain the different situations by deleting full-circle vertices in Fig. 4:
two cases are not possible, since C1 then must be empty, three cases turn out to be subcases of situations in Fig. 5 and have
already been checked (namely situations 4 and 5), and the last situation, that is not covered by the previous cases, requires
G = (G[B] ⊗ G[C1]) ⊕ G[C2] where G[C1] and G[C2] are a simple cograph and an arbitrary graph. This case is the only case
that has to be considered and can be checked in linear time.

As a second case, let B and C have exactly one group. Then, G = G[B] ⊗ G[C] or G = G[B] ⊕ G[C]. If G[B] or G[C] is a
simple cograph, the algorithm accepts; then, G is a complete or incomplete lc3-composition with four empty graphs where
the two non-empty graphs go into G2 and G3 of Fig. 4. Now, let both G[B] and G[C] not be simple cographs. Similar to the
argumentation in the previous case, we can restrict to the case that one of the two graphs corresponds to V (Gi) with V (Hi)
empty. The situation becomes similar to the previous casewhere C1 or C2 is empty. Listing all possible situations (for instance
by deleting the second or third level in Fig. 5), we see that G cannot be an lc3-composition of an edgeless graph, a simple
cograph, an arbitrary graph and three edgeless graphs in this case. This follows from the closure of simple cographs under
join and union with edgeless graphs. Hence, if G[B] and G[C] are not simple cographs, the algorithm rejects.

As the third case, let B and C have exactly two groups. Let B1 and B2 be the groups in B and let the neighbours of B2 in
C be neighbours also of B1. Assume that B corresponds to some V (Gi) ∪ V (Hi); as discussed before this means B1 = V (Gi)
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Algorithm Simplify
Input a graph G and a vertex partition (B, C) for G
Result an answer accept or reject or a graph G′

begin
while no return do

1 if G is edgeless then output ‘‘(B, C)’’; return accept

2 else-if B = ∅ or C = ∅ then output ‘‘turn+(l[·], ∅)’’ or ‘‘(l[·], ∅)’’; return G

3 else-if G has a vertex u such that
NG(u) = ∅ or NG(u) = B or NG(u) = C or
NG[u] = V (G) or NG[u] = B or NG[u] = C then

output ‘‘⊕(∅|{u}, •)’’ or ‘‘⊕(•, ∅|{u})’’ or ‘‘⊕({u}|∅, •)’’ or ‘‘⊕(•, {u}|∅)’’
‘‘⊗(∅|{u}, •)’’ or ‘‘⊗(•, ∅|{u})’’ or ‘‘⊗({u}|∅, •)’’ or ‘‘⊗(•, {u}|∅)’’;

set G := G−u and (B, C) := (B \ {u}, C \ {u})

4 else-if there is a pair u, v of non-adjacent vertices where v is almost universal such that
u, v ∈ B and NG(u) = B \ {u, v} or
u, v ∈ C and NG(u) = C \ {u, v} then

output ‘‘⊗({u}|{v}, •)’’ or ‘‘⊗(•, {u}|{v})’’;
set G := G \ {u, v} and (B, C) := (B \ {u, v}, C \ {u, v})

5 else-if B = {u} or C = {u} and
|V (G) \ NG[u]| ≠ 2 or V (G) \ NG[u] = {x, z} and the sets
NG(x) \ {z} and NG(z) \ {x} can be ordered by inclusion then

output ‘‘(l[·], {u})’’ or ‘‘turn+(l[·], {u})’’;
set G := G−u and (B, C) := (V (G) \ NG[u],NG(u))

6 else-if G is the result of an lc3-composition of at least two non-empty graphs
that respects the given vertex partition then

output an lc3-composition scheme and, if necessary, ‘‘turn’’;
if all partition graphs are simple cographs then return accept
else return the partition graph that is not a simple cograph end if

7 else return reject end if
end while

end.

Fig. 6. The simplification procedure.

and B2 = V (Hi), in particular B2 is an independent set and there is no edge between vertices in B1 and in B2. Similar to the
first case, the algorithm checks whether C admits a partition. If this is successful the algorithm accepts, otherwise it retries
with the roles of B and C exchanged. If the tests for both sets are not successful the algorithm rejects. This completes the
proof. �

Given a graph G and a vertex partition (B, C) for G, we want to decide whether there is an lc3-expression for G with
vertex partition (B, C) or (C, B). Consider Algorithm Simplify in Fig. 6. This algorithm does not decide the question in all
cases; however, in the cases when it cannot find a proper answer it returns an induced subgraph G′ of G that is an lc3-graph
if and only if G is an lc3-graph. In particular, the question about the existence of an lc3-expression for G′ is not restricted
by a particular vertex partition. The question of conditional number 6 of Simplify is exactly the question that is answered
by Lemma 16. Besides computing an answer, Simplify also outputs lc3-expression operations. For simplicity, we do not
explicitly state which operation is output in which case but combine similar cases. A new command is the ‘‘turn’’ command.
We use it to indicate that the vertices in a partition have to change side; this becomes more clear in the proof of Lemma 18.
For a graph G and a set A of vertices of G, we say that A is false-twin-free if A contains no pair of vertices that are false twins
in G.

Lemma 17. Let G = (V , E) be a graph and let (B, C) be a vertex partition for G. Let B and C be false-twin-free. Then, at the
beginning of every execution of the while loop of Simplify, the two current partition sets are false-twin-free. Furthermore, a
return graph has no false twin vertices.

Proof. The statement is clearly true for the first execution. We consider the definitions in conditionals number (3–5). In
conditional number 3, the chosen vertex u is adjacent to all (other) vertices in a partition set or to none. So, the new partition
sets for G−u are false-twin-free. Similarly for conditionals number 4 and 5. Now, if a graph is the return result (conditionals
number 2 and 6), it is induced by vertices from only one partition set and it is amodule in the bigger graph. Hence, the return
graph has no false twin vertices. The lemma follows by induction. �
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Note that it is not true in general that a graph during the execution of Simplify has no false twins. Particularly conditional
number 5 can create a pair of false twins, but they are in different partition sets.

Lemma 18. Let G = (V , E) be a graph and let (B, C) be a vertex partition for G. Let B and C be false-twin-free.

(1) If Simplify applied to G and (B, C) returns accept then G is an lc3-graph and there is an lc3-expression for G with vertex
partition (B, C) or (C, B).

(2) If Simplify applied to G and (B, C) returns reject then G is not an lc3-graph or there is no lc3-expression for G with vertex
partition (B, C) or (C, B).

(3) If Simplify applied to G and (B, C) returns a graph G′ then there is an lc3-expression for G with vertex partition (B, C) or
(C, B) if and only if G′ is an lc3-graph. Furthermore, G′ is a module of G and a subgraph of G that is induced by a subset of B
or C.

Proof. We prove the lemma by induction over the number of while loop executions. We show the three statements
simultaneously by considering the two situations: (1) the algorithm returns accept or a graph and (2) the input graph is
an lc3-graph with lc3-expression T with vertex partition (B, C) or (C, B). Since we start with false-twin-free partition sets,
we can assume Lemma 17 throughout the proof.

Let Simplify return accept or a graph. We show the existence of an lc3-expression (if possible). We also show that the
‘‘turn’’ command can be used to know whether the constructed lc3-expression corresponds to the given vertex partition
or to its reverse. The ‘‘turn’’ command can be ‘active’ or ‘inactive’. If G is edgeless then (B) ⊕ (•, C |∅) is an lc3-expression
with vertex partition (B, C). The ‘‘turn’’ command is set ‘inactive’. If B or C is empty and G is an lc3-graph then (l[T ], ∅) for
T an (arbitrary) lc3-expression for G is an lc3-expression for G with vertex partition (V (G), ∅). If G is not an lc3-graph then
there is no lc3-expression for G. Thus, if B or C is empty, G is an lc3-graph with vertex partition (B, C) or (C, B) if and only
if G is an lc3-graph. Similar for conditional number 6: if a graph is returned, G is an lc3-graph with vertex partition (B, C)
or (C, B) if and only if the returned graph is an lc3-graph due to Lemmata 8 and 10. For the cases of conditionals number 3
and 4, remember that every induced subgraph of G is an lc3-graph and can be associated with a restriction of (B, C) or
(C, B) due to Lemma 8. Applying the induction hypothesis, we conclude these two cases. For an lc3-expression, one of the
output operations can be appended. The ‘‘turn’’ command remains unchanged in its state. For conditional number 5, let
Simplify accept G−u with vertex partition (V (G) \ NG[u],NG(u)) or return an lc3-graph G′. By induction hypothesis, there
is an lc3-expression T ′ for G−u with vertex partition (V (G) \ NG[u],NG(u)) or its reverse. Then, (l[T ], {u}) or (r[T ], {u}) is
an lc3-expression for G with vertex partition (B, C) or (C, B). The choice of l or r depends on whether the ‘‘turn’’ command
is ‘active’ or ‘inactive’. If the vertex partition is (B, C) then the ‘‘turn’’ command becomes ‘inactive’, otherwise ‘active’. If G′

is not an lc3-graph, then G is not an lc3-graph either. This completes the first part of the proof.
For the converse, let G be an lc3-graph and let T be an lc3-expression for G with vertex partition (B, C) or (C, B). We

show that the algorithm returns accept or a graph G′. Since G′ is an induced subgraph of G, G′ is an lc3-graph if G is an
lc3-graph due to Lemma 8. If G is edgeless then Simplify returns accept (conditional number 1). If B or C is empty then
Simplify returns a graph (conditional number 2). So, assume that B and C are non-empty. If the condition of conditional
number 3 or 4 is positive, then Lemma 8 shows that the obtained lc3-graph can be associated with the obtained vertex
partition or its reverse, and Simplify then returns accept or a graph due to induction hypothesis. Conditionals number 5 and
6 needmore arguments.We assume that the execution reaches conditional number 5. Consider the last operation of T . Since
the procedure execution passed the first four conditionals, the last operation cannot be of the forms (A) or ⊙(A1|A2, •) or
⊙(•, A1|A2), where⊙ ∈ {⊕, ⊗}. It is important to note that an operation⊕(A1|A2, •) can be partitioned into two operations,
⊕(A1|∅, •) ⊕ (∅|A2, •). Let the last operation be of the form (d[T ′

], A) for T ′ an lc3-expression and d ∈ {l, r}. Since the
partition sets are false-twin-free, A contains at most one vertex, that is, according to assumption about B and C , A contains
exactly one vertex, say u. Let (B′, C ′) be the vertex partition forG(T ′). Then,NG(u) = B′ orNG(u) = C ′, whichmeans thatG−u
is an lc3-graph and has an lc3-expression with vertex partition (NG(u), V (G)\NG[u]) or its reverse. By induction hypothesis,
Simplify returns accept or a graph when applied to G−u and partition (NG(u), V (G) \ NG[u]). Suppose that G fails to satisfy
the condition about the vertices in V (G) \ NG[u]. Then, V (G) \ NG[u] and NG(u) contain four vertices satisfying the property
of the second statement of Lemma 9. This is a contradiction, and we complete this case.

As a second case, let the last operation of T be of the form ◦(A1, A2|A3, A4, d[p]) or (A1|A2, d[T ′
], A3|A4), whichmeans that

G is the result of an lc3-composition. If B and C contain at least two vertices then the execution continues with conditional
number 6 and returns accept or a graph due to Lemma 10. So, assume that either B or C contains exactly one vertex;
let this vertex be u. The algorithm execution would try conditional number 5. We know that G−u is the result of an lc3-
composition, but we have to show that the new vertex partition works. This means that we have to show that there is an
lc3-expression with partition (NG(u), V (G) \ NG[u]) or its reverse for G−u. Let G1,G2,G3,H1,H2,H3 be the composition
graphs in the sense of Fig. 4, whose lc3-composition yields G. Without loss of generality, we can assume that there is
i ∈ {1, 2, 3} such that {u} = V (Gi) ∪ V (Hi), which means that there is i ∈ {1, 2, 3} such that {u} = V (Gi) or {u} = V (Hi)
and the other graph is empty. We consider the different cases of lc3-composition without Gi or Hi with respect to the vertex
partition (NG(u), V (G) \ NG[u]). In Fig. 7, we find all twelve situations depending on whether u is in Gi or in Hi and whether
the lc3-composition is complete or incomplete. The full (black) circles represent a simple cograph and an arbitrary graph,
and the empty (white) circles represent edgeless graphs. The upper level composition graphs constitute G[NG(u)] and the
lower level composition graphs constitute G \ NG[u]. By checking every situation, we finally see that every case except one
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Fig. 7. Subcases of the general lc3-composition, considered in the proof of Lemma 18.

Algorithm Lc3-graphRecognition
Input a graph G = (V , E)
Result an answer accept and a pseudo lc3-expression for G, if G is an lc3-graph, or

an answer reject, if G is not an lc3-graph.

begin
set G := G/∼ft;

while no return do
1 if G is edgeless then output (V (G)); return accept

2 else-if G is the result of an lc3-composition of at least two non-empty graphs then
output an lc3-composition scheme;
if all partition graphs are simple cographs then return accept
else set G to the partition graph that is not a simple cograph end if;

3 else-if there is a vertex u such that
SimplifyMod on G−uwith partition (NG(u), V (G) \ NG[u]) returns a graph G′ then

output ‘‘⊗({u}|∅, •)’’; set G := G′

4 else-if there is a pair u, v of non-adjacent vertices where v is almost universal such that
SimplifyMod on G \ {u, v} with partition (NG(u), V (G) \ (NG(u) ∪ {u, v}))
returns a graph G′ then

output ‘‘⊗({u}|{v}, •)’’; set G := G′

5 else return reject end if
end while

end.

Fig. 8. The recognition algorithm for lc3-graphs.

can be obtained from an appropriate lc3-composition respecting the new vertex partition. The most interesting situation
probably is the first case in the second row. This situation becomes a special case of the last case in the first row, since
an edgeless graph and the full-circle graph in the lower level can be merged into a single graph. This can be done, since
their neighbourhoods with respect to the two other composition graphs are equal and simple cographs are closed under
disjoint union with edgeless graphs. The situations with only one level cannot happen since u then would be a universal or
an isolated vertex. In the ‘good’ caseswe apply Lemma 10 to show that G−u is an lc3-graphwhich can be associatedwith the
computed vertex partition. The only ‘bad’ case is the first case of the first row. If all four graphs are non-empty, the algorithm
would reject in the next step. However, then V (G) \ NG[u] contains exactly two vertices (remember that there are no false
twin vertices), and the neighbourhoods of these two vertices partition NG(u) in exactly two sets. Then, V (G) \ NG[u] fails to
satisfy the neighbourhood condition of conditional number 5, and the execution continues with conditional number 6.With
previous arguments, Simplify returns accept or a graph. This completes the proof of the lemma. �

The recognition algorithm for lc3-graphs can be summarised and described as a sequence of iterated reductions by lc3-
decomposition (the inverse of lc3-composition) and application of Simplify. To apply Simplify, a vertex partition has to be
determined. Fortunately, the structure of lc3-graphs allows to restrict to only a few such vertex partitions. The complete
algorithm is given in Fig. 8. The applied procedure SimplifyMod is a variant of Simplify, with the only difference that it
returns a graph on a single vertex instead of an answer accept. This modification helps to present Lc3-graphRecognition
as short as possible (otherwise the algorithm had to distinguish more cases). Note that also Lc3-graphRecognition
provides additional output for constructing an lc3-expression for the input graph. We show in the following that Lc3-
graphRecognition is correct, i.e., that it accepts exactly the lc3-graphs and therefore the graphs of linear clique-width at
most 3.

Theorem 19. Algorithm Lc3-graphRecognition is an lc3-graph recognition algorithm.
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Proof. We show that Algorithm Lc3-graphRecognition accepts an input graph if and only if it is an lc3-graph. Due to
Lemma 4 and Theorem 13, a graph G is an lc3-graph if and only if G/∼ft is an lc3-graph. Hence, we can restrict to
consider only graphs without non-trivial maximal independent-set modules and show that the while-loop finally ends
with answer accept if and only if the input graph is an lc3-graph. We prove the statement by induction over the number of
vertices of the input graph. A graphwithout false twins is edgeless if and only if it has exactly one vertex. Edgeless graphs are
lc3-graphs, and the algorithm accepts. Now, let the input graph have at least two vertices, which means in particular that it
contains an edge. Let G be the result of an lc3-composition of an edgeless graph, a simple cograph, an arbitrary graph G′ and
three edgeless graphs. Since G′ is a module of G, G′ does not contain false twin vertices. Applying the induction hypothesis,
G′ is accepted by Lc3-graphRecognition if and only if G′ is an lc3-graph. If G is an lc3-graph then G′ is an lc3-graph according
to Lemma 8, if G is not an lc3-graph then G′ cannot be an lc3-graph due to Lemma 10. Hence, Lc3-graphRecognition accepts
if and only if G is an lc3-graph. For the rest of the proof, let G not be the result of an lc3-composition.

First, let G be accepted by Lc3-graphRecognition. This means that conditional number 3 or 4 is positive for G. Let there
be a vertex u such that SimplifyMod on G−u and vertex partition (NG(u), V (G)\NG[u]) returns a graph G′. Since u is neither
isolated nor universal, NG(u) and V (G) \NG[u] are non-empty. Thus, G′ is a proper induced subgraph of Gwithout false twin
vertices due to assumption and by Lemma 18. By induction hypothesis, G−u is an lc3-graph, and due to Lemma 18, there is
an lc3-expression T for G−uwith vertex partition (NG(u), V (G) \NG[u]) or its reverse. Then, T ⊗ ({u}|∅, •) or T ⊗ (•, {u}|∅)
is an lc3-expression for G. The proof for conditional number 4 is similar. Thus, we can conclude that every accepted graph is
an lc3-graph.

For the converse, we can particularly assume that G contains no isolated or universal vertex; otherwise G is the result
of an lc3-composition. Let T be an lc3-expression for G. We distinguish different cases with respect to the last operation
in T . By assumption and since G is not edgeless, the last operation cannot be of the forms (d1) and (d3) and the complex
operation of (d4). Let the last operation in T be of the form (d2). Then, there is a vertex u such that G−u is an lc3-graph
with lc3-expression T ′ with vertex partition (NG(u), V (G) \ NG[u]) or its reverse. Due to Lemma 18, SimplifyMod returns
a proper subgraph of G, and by induction hypothesis, this subgraph is accepted. Now, let the last operation of T be of the
form ⊙(A1|A2, •) or ⊙(•, A1|A2). If ⊙ = ⊕ then A1 is empty, since G contains no isolated vertex. The vertex in A2, say u,
defines vertex partition (V (G) \NG[u],NG(u)) or (NG(u), V (G) \NG[u]) for G−u, and this partition corresponds to the vertex
partition for G(T )−u. We conclude as in the previous case that G is accepted. Let ⊙ = ⊗. If A2 is empty, the case is similar
to the previous case. If A1 is empty, the vertex in A2 is universal. Thus, A1 and A2 are non-empty. The vertex in A2 is adjacent
to all vertices but the vertex in A1, and the vertex in A1 defines a vertex partition for G. Similar to the previous cases, the
algorithm accepts. So, we can conclude that Lc3-graphRecognition exactly accepts the lc3-graphs. �

It remains to consider the running time of the presented algorithms. We show that Algorithm Lc3-graphRecognition
has an O(n2m)-time implementation. This result is partitioned into three subresults. The first subresult has already been
given in Lemma 16. In the following, we consider Simplify and the problem of deciding whether a graph is the result of an
lc3-composition and computing appropriate partition graphs.

Lemma 20. Algorithm Simplify has a linear-time implementation.

Proof. We define a data structure that allows checking for satisfaction of the conditions of the first four conditionals in
constant time. For every vertex, we store the number of neighbours in its own partition set and in the other partition set. For
every number between 0 and |V (G)|, there are five types of buckets containing vertices: two bucket types for each partition
set and a bucket type for the total vertex degree. Vertices appear in these buckets according to their degrees:

– every vertex appears in the bucket of the fifth type that corresponds to its total degree
– a vertex of the left partition set appears in a bucket of the first type, if it has neighbours only in the left partition set; if it

has neighbours only in the right partition set, it appears in a bucket of the second type
– analogous to the previous case, vertices of the right partition set appear in buckets of the third and fourth type, if they

have neighbours in exactly one of the two partition sets.

Finally, there are two variables for the cardinalities of the two partition sets and a variable for the number of edges in the
graph.

Conditionals number 1 and 2 can be decided in constant time. For conditional number 3, at most six buckets have to
be checked: buckets of the fifth type answer whether a vertex is isolated or universal. Buckets of the first and second type
answer whether there is a vertex u in the left partition set such that NG[u] = B or NG(u) = C . So, using these buckets,
satisfaction of the condition of conditional number 3 can be checked in constant time. For the condition of conditional
number 4, an almost universal vertex can be found using the buckets of the fifth type. However, it is not easy to find the
required second vertex. We additionally assign to every vertex of degree |V (G)| − 2 the unique non-neighbour, and vice
versa, if the two vertices are in the same partition set. If the condition is satisfied, there are two non-adjacent vertices u, v
in the left partition set such that v is almost universal and u is adjacent to only vertices in the left partition set, or similarly
with vertices in the right partition set. To decide the condition in constant time, we check the buckets of the first and third
type for a vertex of degree |B| − 2 or |C | − 2, respectively, and with an assigned non-neighbour. For a fast implementation,
we partition the buckets of the first and third type into two subbuckets, one for vertices with assigned non-neighbour and
one for vertices without. Now, if conditional number 3 or 4 is positive, we have to update the data. The update affects only
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neighbours, whose degrees are decreased. Then, they have to be moved into other buckets, which takes constant time for
each vertex. Note that vertices now may have to be added to a bucket of the first four types. Finally, a non-neighbour may
have become almost universal. Here it is to observe that a vertex becomes almost universal at most once. So, when a vertex
becomes almost universal, its unique non-neighbour can be found in time proportional to its degree, and the link can be
established.

For the condition of conditional number 5, it takes constant time to determine whether a partition set contains only one
vertex, say u, andwhetheruhas exactly twonon-neighbours. In timeproportional to the degree of u, the twonon-neighbours
can be determined. Comparing the adjacency lists of the two non-neighbour vertices shows whether the neighbourhoods
can be ordered. If the test fails, the procedure stopswith conditional number 6 or the return command. Conditional number 6
requires linear time due to Lemma 16 and Corollary 6. If the test does not fail, Simplify continues with a completely new
partition, for which the vertex degrees have to be re-computed. Visiting every neighbour of u once, the array representing
the current vertex partition can be modified to represent the new vertex partition. For the vertex degrees, we show that
the modification can be done by considering only edges that are incident to vertices in one of the two partition sets. Let
A be the left or right partition set. The numbers of neighbours in the two partition sets can be computed straightforward
for every vertex in A by reading the adjacency lists. Whenever a vertex from the other partition set appears, its degree pair
is modified (decrease the number of neighbours in the same partition set, increase the number of neighbours in the other
partition set). When a vertex has a neighbour in the other partition set, it is removed from the bucket of one of the first
four types. When this update is done the next time, one of the two partition sets will be empty, so that, when we choose
the correct set A, we obtain overall linear running time. The algorithm does not know the correct partition set. However,
it can compute the degree sum for the two partition sets and choose the partition set of smaller degree sum as A. Then,
vertices may be considered several times, but the effort is always balanced with the deleted vertices. To finish the analysis,
it is important to observe that there is at most one vertex of degree 0 in A, and this will be deleted before execution reaches
conditional number 5 the next time. And for computing the degree sums, only the degree sum of the smaller partition set is
computed and the degree sum of the other partition set is determined by subtraction.

If the input graph is an lc3-graph, an appropriate lc3-expression can be obtained from the output operations as shown
in the proof of Theorem 19. Care has to be taken of only the ‘‘turn’’ command. This completes the proof. �

Lemma 21. There is a linear-time algorithm that checks whether a given graph is the complete or incomplete lc3-composition of
at least two non-empty graphs G1,G2,G3,H1,H2,H3 where H1,H2,H3 are edgeless graphs and G1,G2,G3 are an edgeless graph,
a simple cograph and an arbitrary graph. In the positive case, the algorithm outputs an appropriate decomposition.

Proof. The algorithm considers several cases. First, let G be disconnected. If one of the connected components is a simple
cograph then accept; otherwise reject. In the positive case, G is an incomplete lc3-composition where G1,H1,H2,H3 of
Fig. 4 are empty, a simple cograph connected component goes into G2 and all other connected components go into G3. For
the negative case, observe the following. None of the connected components is edgeless as they are not simple cographs, so
they all have to go into the graphs G1,G2,G3 of Fig. 4. If G1 is not empty, the resulting lc3-composition is not disconnected,
so that G1 has to be empty. But with only G2 and G3 non-empty, G cannot be obtained as an lc3-composition with none of
the two composition graphs being a simple cograph.

Second, let G be connected and let the complement of G be disconnected. If one of the co-connected components is a
simple cograph then accept; otherwise reject. Similar to the first case, G can be obtained as the complete lc3-composition of
a simple cograph (in G2) and another graph (in G3). The negative case is more complex. We distinguish between two cases
depending on whether G is an incomplete or complete lc3-composition.

– Let G be an incomplete lc3-composition. By assumption, H2 and H3 of Fig. 4 are empty. Suppose that H1 is non-empty. If
G3 is empty then G = (G1 ⊕H1)⊗G2, and every co-connected component of G is completely contained in either G1 ⊕H1
or G2. Hence, G contains a co-connected component that is a simple cograph. If G3 is non-empty then G1 and G2 are also
non-empty. But then, the complement of G is not disconnected, so that this case cannot happen. Now, let H1 be empty.
Then, G = G1 ⊗ (G2 ⊕G3), and similar to the case about, G1 or G2 ⊕G3 is a simple cograph, and G contains a co-connected
component that is a simple cograph.

– Now, let G be a complete lc3-composition. If H1 is non-empty then G2 is non-empty. Now consider H2. If H2 is non-empty
then the complement of G is connected. Thus H2 is empty. Then G results from an incomplete lc3-composition since G1
and G2 can be merged into G1 and H1 and H2 can be merged into H1. Thus by the previous case we conclude that H1 is
empty. Let G1 be non-empty. By a connectivity argument, Gi is non-empty and Hi is empty for i = 2 or i = 3, and by
symmetry, we can assume that H3 is empty and G3 is non-empty. Note then that every co-connected component of G is
entirely contained either in G3 or in (G1 ⊗G2)⊕H2. According to assumption, G3 is a simple cograph or (G1 ⊗G2)⊕H2 is
a simple cograph. Hence, G contains a co-connected component that is a simple cograph. Finally, if G1 is non-empty then
G = (G2 ⊕ H2) ⊗ (G3 ⊕ H3), and every co-connected component of G is entirely contained in either G2 ⊕ H2 or G3 ⊕ H3.
Hence, G contains a co-connected component that is a simple cograph.

Third, let G be connected and co-connected. We first describe the different situations. If G is an incomplete lc3-
composition then H2 and H3 of Fig. 4 are empty and G1,G2,G3,H1 are non-empty (otherwise, G or its complement would
be disconnected) and maximal modules of G in a P4-structure. Remember that the P4 is a chordless path on four vertices.
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The complement graph of a P5 is called house, and a bull is obtained from a P4 and an additional vertex that is adjacent to
the two middle vertices of the P4. If G is a complete lc3-composition then we distinguish the following cases:

– If G1 is empty then H2, (G3 ⊕ H3),G2,H1 are non-empty and maximal modules of G in a P4-structure.
– IfG2 is empty thenH1 is empty. By assumption,G1,G3,H2,H3 are non-empty andmaximalmodules ofG in a P4-structure.
– If G3 is empty then (G1 ⊕ H1),G2,H3,H2 are non-empty and maximal modules of G in a P4-structure.
– If H2 is empty then G2 is empty, since G is co-connected. With a similar argument for the rest of the composition graphs

we conclude that H2 must be non-empty since G is connected and co-connected.
– If H3 is empty then we have the following two cases. If G1 is empty then H1,G2,G3,H2 are maximal modules of G in a

P4-structure. If G1 is non-empty then G1,G2,G3,H1,H2 are maximal modules of G in a bull-structure. In any other case,
Gwould be neither connected nor co-connected.

– If H1 is empty then G1,H2,H3 and at least one of G2 and G3 must be non-empty. If G2 is empty then G1,G3,H2,H3 are
maximal modules of G in a P4-structure. Similarly, if G3 is empty then G1,G2,H3,H2 are maximal modules of G in a
P4-structure. If both G2 and G3 are non-empty then G1,G2,G3,H2,H3 are maximal modules of G in a house-structure.

– If G1,G2,G3,H1,H2,H3 are non-empty then all these graphs are maximal modules of G in a situation exactly described
by Fig. 4.

Hence for the decision algorithm, compute the maximal modules of G and the corresponding prime graph. Check for the
prime graph whether it is one of the above-mentioned (P4, house, bull, the graph shown in Fig. 4), check for edgeless graphs
and simple cographs and test whether the graphs that are not edgeless are in the correct positions. If all conditions are
satisfied then accept; otherwise reject. Correctness immediately follows from the study above.

For the running time, we observe the following: (1) edgeless graphs and simple cographs can be recognised in linear time
due to Corollary 6, (2) connected components and co-connected components can be computed in linear time, (3) maximal
modules and corresponding prime graphs can be computed in linear time [7]. Then, only a finite number of configurations
have to be checked (in the third case), so that all this sumsup to total linear running time. The output is obtained as described,
and we conclude the proof. �

Theorem 22. There is an algorithm that decides in O(n2m) time whether a given graph has linear clique-width at most 3. If so,
a linear 3-expression is output.

Proof. By Theorems 13 and 19, it suffices to analyse the running time of Algorithm Lc3-graphRecognition. For a given
graph G, G/∼ft can be computed in linear time. Every while loop execution is done with a smaller graph, so that there
are at most n while loop executions. A single while loop execution takes time O(nm): linear time for checking for an lc3-
composition (Lemma 21) and at most 2n applications of Simplify (SimplifyMod, more precisely, which also has a linear-
time implementation) that require linear time each due to Lemma 20. This shows the total O(n2m) running time. The linear
3-expression is obtained by first constructing an lc3-expression and then converting it into a linear clique-width expression
according to the rules established in the proof of Theorem13. Note that the length of both expressions is linear in the number
of vertices. �

8. Conclusions

We have given characterisations for graphs of linear clique-width at most 2 and at most 3 of different types. One type
of characterisation is via graph decomposition schemes. For graphs of linear clique-width at most 3, we have presented an
efficient recognition algorithm using the decomposition approach. We have also seen that our decomposition for graphs of
linear clique-width at most 3 generalises the decomposition for graphs of linear clique-width at most 2. Can this approach
be extended to graphs of linear clique-width at most 4, or in general to graphs of arbitrarily bounded linear clique-width?

For graphs of linear clique-width at most 2, there exists a characterisation by a small set of forbidden induced subgraphs.
Does there exist an easily describable set of forbidden induced subgraphs that characterises graphs of linear clique-width
at most 3?
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