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ABSTRACT 

This paper introduces the concept o f  an extended fuzzy relation, which is a 
relation whose values are vectors of  fuzzy relations, some of  which may also be 
extended fuzzy relations. Our motivation is to use extended fuzzy relations to 
replace blocks o f  rules in a fuzzy expert system with one rule. The extended fuzzy 
relation method is shown to contain the generalized modus ponens as a special case. 
The construction of  extended fuzzy relations is illustrated in two examples taken 
from diagnosing mental disorders and image processing. We argue that the existence 
o f  an extended fuzzy relation for a block of  rules may be a criterion for parallel 
execution of  this block instead of  sequential firing of  the rules. 

KEYWORDS: expert systems, f u z z y  relations, pattern recognition 
" l  

1. I N T R O D U C T I O N  

The purposes of this article are to introduce extended fuzzy relations (EFR), 
explain their application to fuzzy expert systems, and show how they may be 
employed to decide between parallel and sequential firing of production rules in 
a fuzzy expert system. We begin with defining extended fuzzy r e l a t i o n s .  Let S 
and T be any two nonempty sets. A regular fuzzy relation R is a function on a 
subset o f S  x Twith values in [0, 1]. The strength of the relation between s E S 
and t E T is given by sRt, the value of R at (s, t), a number between zero and 
one. 

An EFR (R w i l l  be defined in a sequence of steps. The domain of (R will be a 
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subset of U x V, where U = {Ul, " ' ' ,  Urn} and V = {Vl, " " ,  on} are two 
finite sets. The value of 61 at (ui, vj) will be denoted by ui61v-i. 

Level Zero 

We have 

ui61v-i = 7i-i (1) 

where 70 E [0, 1]. A level zero EFR is a regular fuzzy relation. A level zero 
EFR will be represented by 61o. 

Level One 

For all levels e, f _ 1, the elements of  Umay  be vectors; so let ui = ( / d i l ,  " ° " ,  

uiki), a vector of length Ki. Assume that the possible values of uik all belong to 
some universal set Uik. Then 

ui61vj= R#= (Rijl, "" ", Rok i) (2) 

where each Rijk is a regular fuzzy relation 610. RO is a vector of length Ki of 
regular fuzzy relations, and the length of R 0 is the same as the length of u~. A 
level one EFR is written as 611. 

Level Two 

We have 

ui61vj = R 0 (3) 

where Rij is a vector of length Ki whose components are 61~ or 61o extended 
fuzzy relations. A level two EFR is denoted by 612. 

Level L 

The value of 61 is 

ui(Rv-i = Ri-i (4) 

where the components ofRt /are  (Re, 0 __< g _< L - 1. Let 61L be a level L EFR. 

The definition of an EFR will be completed when we specify the domains of  
all the relations mentioned in the foregoing statements. The formal, recursive 
definition of extended fuzzy relations is rather involved, and the reader may 
wish to turn to an example near the end of this section which illustrates the 
notation. 

Because U and V are finite, we may use matrix notation to describe an EFR. 
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Let the rows of a m x n matrix be labeled by Ug and the columns by vj. We then 
place Rij, or "Yij for a 6/0, in the (ij)th cell. If  some ui is not related to some vj, 
then we leave the corresponding (ij) cell empty. When some cells are empty, the 
domain of the EFR will be a proper subset of U x V. Obviously, extended fuzzy 
relations are generalizations of regular fuzzy relations, because for levels e _ 1 
the cells contain vectors of relations. 

We are primarily interested in evaluating an EFR given some data D. We will 
represent D as 

,u l , , ,  

where di = (dil, " " ,  diki) is a vector of length Ki if ui is a vector of length Ki. 
Suppose each dgk takes its values in some universal set ~3ik. The structure of the 
data will vary with the levels of the extended fuzzy relations. The data for some 
(Re will become (generate) all the data for all the extended fuzzy relations 
contained in (Re. Any EFR (Re under discussion will have its domain a subset of 
U × Vwith data D, but any EFR within (Re will be assumed to be defined on a 
subset of O × I7 with da t a / ) .  There may be many 61y, 0 _< j _< g - 1, 
contained in (Re, but we will use the same notation O × f"and/5 for all these 61j 
extended fuzzy relations. 

We will now specify the domains of all the relations contained in a given EFR. 
For Level Zero 61o is defined on a subset of U x V with values in [0, 1]. For 
Level One each Rijk is defined on a subset of ~ k  X Uik with values in [0, 1]. 
For Level Two each Rijk is defined on a subset of ~ik X Uik with values in [0, 
1]. Suppose some Rijk is a 611. This 611 is also defined on a subset of O × I7 
with data/) .  We require Uik C lTand 33ik contain the possible data values / )  for 
611. 

Finally, for Level L each RUk is defined on a subset of ~Da x Ua with values 
in[0,  1] . I fRi jk  = (Re, 0--< e_< L - 1, then Ugk C l"andD C_ ~ k .  

We now introduce some general notation for the evaluation of an EFR. The 
evaluation of 61, given D, produces output O given by 

O= D o 61 (6) 

where ,,o,, is some type of composition of D and 61. The output O will be a 
fuzzy subset of V given by 

,o 1 
The composition of D and 61 will be determined from the inner product di * 

Rij of di and Rij and a generalized matrix product. Let 

CVk = dik RijkUik (8) 
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and 

c i j=d i  * Ru=Fi j (co ' l ,  " " ,  ci.iki) (9) 

where F~/is some function that aggregates the cuk values into one value c U. Then 
we define oj in the output O to be 

o j = f ( c l j ,  c2j, " ' ' ,  Cmj)  (10) 

where f is some other function that combines the c U values into one number oj.  
The entire fuzzy output O is represented as D o (R, so let D ( R v  i = o 1 denote a 

single membership value. 
The evaluation procedure is easily visualized using the matrix representation 

for 61. Given the data (di,  • • ", din), we first take the product of this vector with 
the column vector under v 1. The individual products of di and Riy are defined by 
the inner product d~ * Rii .  We then " s u m "  or aggregate these inner products 
over an entire column into the output value oj. Therefore, the composition D o 
61 may be interpreted as a generalized matrix product. 

Now we may present a more precise definition of an EFR. 

LEVEL ZERO Let cij = g (d i ,  "Yij), where g is some function that combines d; 
and 3'ij into one number c o in [0, 1]. No F,j function is required, and oj = f ( c  U, 

• • . ~ Cmj) .  

LEVEL ONE The ciik values are obtained from dikRi.ikUik; the Fii functions 
produce the c U, and then f gives the output oy for all j .  

LEVEL TWO When Rijk is a 610, the cuk values are computed directly from 
dikRijkUik. Soassume Rijkis a (RI. We know Uik C I7", so let uik = 0j E 17". We 
also know dik will be a data value D for (Ri. Then 

Cijk = d i k  (R l Uik :-- D ( R  l ()j = Oj (11) 

where 6j is an output of (R i. When Riik is a level one EFR, c,)-k is the correct level 
one output. 

LEVELL SupposeRijk = (Re, 0 - <  e_< L - 1. Then 

cijk = dik (ReUik = D (ReO i = Oj (12) 

where D, 0j, and 6 /are  the correct level e values for (Re. 
Our intended use of extended fuzzy relations is to model and evaluate 

simultaneously blocks of  rules in a fuzzy expert system. Let us consider 
constructing a level one EFR for the following block of rules. 

If xilRijlAil and/or " "  X i k i R i j k i A i k i  (13) 

then y is B j  for 1 <_ i <_ m ,  1 < j <_ n. Le t  vj = By and Rij  = (Ri j l ,  " " " , RiJki) 
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be the vector of regular fuzzy relations. Also let ui = ( A / l ,  • • " ,  Aiki), I <_ i < 
m, be a listing of the attributes on the left side. The data D contains di = (xil, 
• " ,  xiki), 1 <_ i <_ m.  In the matrix representation of the EFR, each ( i j )  cell 
containing an Ri.i corresponds to a rule in equation (13). Cells are left empty 
when a uj and vy are not related through a rule. The entrees in a v~ column 
represent all rules with the same conclusion oj. The items in a ui row are all the 
rules with the same left-side attributes. The function F u is chosen to reflect the 
structure (ands, ors, nots) in the left side of the rule. If  only " a n d "  is used in a 
rule, then we would consider using minimum for F u. We would also consider 
employing maximum for fbecause  we are "or ing"  over all rules with the same 
conclusion to obtain our confidence oj in vj. The block of rules in equation (13) 
becomes, using the level one EFR, 

if x is D, then y is 0. (14) 

Example 

Let us now consider an example that requires a level three EFR. This is a 
fuzzy expert system for diagnosing mental disorders (Siler and Tucker [8]). 
The information flow in this system is shown in Figure 1. The user is first asked 
a number of questions that, together with their answers, create a set of facts 5:. 
The system asks if certain behavioral manifestations exists in the patient, and the 
user is to enter his/her confidence, from zero to one, that they are present in the 
patient. A subset of  these facts 5:0 are input to a level one EFR (Rs that produces 
a fuzzy set of symptoms. Let ITs = {depressive (Di), manic (M) ,  schizophrenic 
(SI)} be the set of symptoms. The output from (Rs will be a fuzzy subset of Vs. 

Now, (Rs represents a block of rules. An example of a rule from this block is 
as follows: 

I f  [fact = excess energy] AND [fact = many big plans] AND 

[fact = hallucinations], then [symptom -- M]  (15) 

Let us code "excess energy" as EE,  "many big plans" as M B P ,  and 
"hallucinations" as H.  I f  the number of this rule, within this block, is seven, 
then u7 = (EE,  M B P ,  H ) .  Next assume that the user's response to questions 
about these conditions produced confidences c f (EE) ,  c f ( M B P ) ,  and c f ( H ) ,  
respectively. The data input Ds for 6Is would then contain 

( c f (EE) ,  c f ( M B P ) ,  c f ( H ) )  

U7 
(16) 

I f  this rule has prior confidence 0.80 (discussed further in the section on the 
generalized m o d u s  ponens) ,  then to evaluate (Rs we must first find all the c O 
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and, in particular, 

c72 = F72(cf(EE)R721EE, cf(MBP)R722MBP, cf(H)R723H) 

= min (cf(EE), cf(MBP), cf(H), 0.80) (17) 

We have assumed the columns of (Rs are labeled Dl, M, and $1, so the second 
column is for manic. The relations in 6Is are very simple in that they pick off the 
confidence in the given condition. (More complicated relations are presented in 
the example in the section on application.) In this way all the c U are determined, 
and after taking column maximums we obtain the output 

O~=[°~l 'M'S102 03 1 (18) 

We next input O~, together with more facts 5:1, into a level two ERF (Rp to 
determine a fuzzy set of preliminary diagnoses. Let Vp = {depression (/)2), 
schizophrenia ($2), paranoid (P)} be the set of preliminary diagnoses. Here (Rp 
also represents a block of rules, and a rule from this block is 

If [symptom = M ]  AND [symptom = Dd AND 

[fact = persecutory or jealous delusions] AND [fact = HI ,  

then [preliminary diagnosis=DE] (19) 

We code "persecutory or jealous delusions" as PJD. If the number of this rule 
is five, then u5 = (Mr, Dl, PJD, H),  and the data Dp for (Rp will contain 

(5:0, 5:0, cf(PJD), cf(H)) 
(20) 

U5 

The columns in 6~p are labeled DE, $2, P, so 

csl = Fsl(5:o6isM, 5:o(RsDi, cf(PJD)RsI3PJD, cf(H)RsI4H) 

= rain (o2, ol, cf(PJD), cf(H), 0.90) (21) 

where 0.90 is the prior confidence in this rule. The output from CRp is 

OP= [0~22 ' $2 'o2 ~I (22) 

Lastly, Op and other facts 5:2 are put into a level three EFR (R: to obtain a 
fuzzy set of final diagnoses. Let V: = {D31, D3E, D33, S3I, S32, $33, $34, Pl, PE} 
be the collection of final diagnoses where, for example, D32 = manic- 
depressive, $33 = paranoid-schizophrenic, and so on. A rule from fRf is 

If [preliminary diagnosis = $2] AND [fact = PJD] AND 

[fact = H], then [final diagnosis = $33] (23) 
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This rule has number three, so u3 = ( $ 2 ,  PJD, H) and 

((5:0 U 5:1), cf(PJD), cf(H)) 

U3 

is in Df. The column number for $33 is six, so 

C36=F36[(5:o O 5 : l ) ( ~ p S 2 ,  cf(PJD)R362PJD, cf(H)R363H] 

(24) 

= min [02, cf(PJD), cf(H),  1.01 

if the rule confidence is one. The final output is 

, ° 21 

(25) 

(26) 

Using (~f all the rules become 

If the facts are 5:, then the (final) diagnosis is Of (27) 

Notice that multiple copies of columns from (Rs can be in different cells in CRp, 
and multiple copies of columns from ~p  may be in many different cells in (Ry. 

It may happen that we have two rules with the same attributes ui, same 
conclusion oj = Bj, but different relations Rij and R~. We would place both Rij 

t and Rij in the same (ij) cell but use possibly different functions F U and F:. to 
U 

obtain c U and c~, respectively, given data D. Then both cij and c~. would be input 
into f to obtain oj. 

The model can be easily extended to incorporate compound right sides. If 
rules have multiple conclusions, then we would add more columns to the EFR; 
each vj would thus be a vector of conclusions. We may also consider 
generalizing to process multidata simultaneously. The data D were assumed to 
be all the information necessary for one problem (run). To process many 
problems at once, the data are a vector (DI,/)2, " " )  and the output is separated 
into (Oi, 02, "" "). In the example in the section of application, we process 
multidata simultaneously. 

In the next section we compare the generalized modus ponens approach to 
the extended fuzzy relation technique for modeling fuzzy production rules. We 
illustrate the use of level one and level two extended fuzzy relations in an image 
processing problem in the section on application. We then argue, in the section 
of parallel versus sequential processing, that the existence of an EFR is a key to 
knowing when a block of rules may be executed in parallel instead of 
sequentially in a fuzzy expert system. The last section contains a brief summary 
and conclusions. 
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T H E  G E N E R A L I Z E D  M O D U S  P O N E N S  

The structure of the generalized modus  ponens  (GMP) is (Zadeh [115, 16]) 

if x is A, then y is B 

x is D, then y is O (28) 

where A and D are fuzzy subsets of U = {u~, . . . ,  urn} and B and O are fuzzy 
subsets of V = {vl, • • ", v,}. One constructs, using A and B, a regular fuzzy 
relation R on U x V with values uiRvj = ~/ij (Mizumoto and Zimmerman [5], 
Mizumoto [6], Whalen and Schott [13], Yager [14]). Then O = D o R for some 
composition , ' o " .  This is exactly our level zero evaluation of an EFR. 

We may also model the GMP as a level one EFR. Consider the following 
block of rules: 

If  xiRijui, then y is vj (29) 

for 1 _ i _ n, 1 < j _ m. The definition of Rij is 

cij = diRijui= g(  di, "Yij) (30) 

and we therefore obtain the same conclusion that y is O as in the GMP. 
Both the GMP and the EFR method are used to construct fuzzy sets; however, 

there are basic differences in the two approaches. The GMP employs a fuzzy set 
B, which is actually part of the rule, to obtain the fuzzy relation on U x V, 
whereas the EFR procedure uses the structure of the left side of a block of rules 
to build the relation on U x V. In general, an EFR cannot be modeled as a 
single GMP. There are three main reasons for this conclusion: (1) the EFR 
method allows for general input; (2) a high-level EFR is evaluated differently 
than a GMP; and (3) the EFR approach can incorporate prior rule confidence, 
thresholding, and consideration of preexisting data stored in working memory. 
In the GMP the di belong to [0, 1], as D is a fuzzy subset of U; in an EFR, 
however, the components of a di can be numbers, strings, fuzzy numbers, or 
discrete fuzzy sets. The only restriction on the di is the data types and relations 
allowed in the system. The example in the next section has the di vectors of fuzzy 
numbers and strings. Therefore, the EFR technique allows for general input, 
whereas the GMP accepts only discrete fuzzy set input. To understand the 
second reason given above, consider a level two EFR 612. Now 612 represents 
blocks of rules, and each block could possibly be modeled as a GMP. We may 
even be able to construct a larger GMP, say &, to model all the blocks and 612. 
However, the evaluation of 612 and (P would be different. Assume we are 
employing the traditional max and min for finding final confidences. Then the 
output from 612 is a fuzzy set O where oj is the column max of a group of 
numbers each the min of other numbers c~/k, and each cuk could be the output of  a 
level one EFR, hence is the column max of a set of numbers each the min of 
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other numbers. None of the suggested methods of evaluating (P will produce the 
oj numbers. The third reason will be discussed below. Modeling the GMP as a 
level one EFR was artificial because we never use 7o = uiRvj tO evaluate an 
EFR. That is, our fuzzy production system (Buckley, Siler, and Tucker [3]; 
Buckley, Siler, and Tucker [4]; Siler, Buckley, and Tucker [10], Siler, Tucker 
[8]) does not require a fuzzy set B to obtain O. However, we do take into 
consideration the preexistence of some fuzzy set for y. 

Suppose, through other blocks of rules or from the initial data base, we 
already have in working memory y is E, where E is a fuzzy subset of V. We 
would not use E to evaluate the EFR, given x is D, but instead we would 
combine O and E into one final fuzzy subset for y. The GMP method does not 
allow for the existence of this fuzzy set E. We will now show how the EFR 
procedure can handle E together with prior rule confidence and thresholding by 
simply changing the Fi/functions. 

Consider the block of rules given in equation (13) modeled by a level one EFR 
(Rj. Let r U, a number between zero and one, be the prior confidence in the rule 
given in the (ij)th cell in (R i. Thresholding is a procedure by which time is saved 
by not completely executing a rule whose left side has low confidence. Let T, a 
number between zero and one, be the threshold value. Suppose there already 
exists in working memory y is E where 

E = [ e ~  e~l 
, . . . ,  ( 3 1 )  

Given that x is D, we first compute 

cok = d~k Ri/kUik (32) 

and 

~ij=di * Riy=hu(col, "" ", cok i) (33) 

where now hi~ is the function that aggregates the ci/k into c,7- Then 

Ie j  if t?/7 < T 
c U max [min (t?i/, ri/), e/I, if G0_> T (34) 

The function F U is the method of obtaining the c 0 from the cok, so now F 0 
contains hi~ and equation (34). Given the c#, we find oj, our final confidence in 
o/, as before, using the f function. 

We use the term "weakly monotonic" for the procedure given in equation 
(34) because it never allows a confidence to decrease. That is, we never replace 
a preexisting confidence e/with a lower value. The weakly monotonic method 
may be summarized as follows. First, the confidence in the left side of a rule t~t/ 
is tested for threshold. Second, if t?i/ passes threshold, then the new rule 
confidence is the minimum of t? U and the prior rule confidence r/j. Last, if the 
new rule confidence exceeds e/, then the new rule confidence becomes our new 
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confidence in oj; otherwise, there is no change in our confidence in oj. The final 
confidence in vj is still given as oj, a function of the c U. Of course, one may 
consider using other appropriate functions for max and min in equation (34). 

The main difference between the GMP method and the level one EFR 
approach is their use of preexisting fuzzy sets for the right sides of rules. The 
GMP technique employs a fuzzy set, as part of the rule, for the right side of a 
rule in order to evaluate the rule. The EFR method, in contrast, is used to 
construct the fuzzy set for the right sides of a block of rules. Also, the EFR 
approach allows for preexisting fuzzy sets in working memory for the right sides 
of rules. It is our experience that the GMP is not generally applicable to rule- 
based fuzzy expert systems because (1) we usually do not have fuzzy sets for 
right sides of rules but instead wish to construct these fuzzy sets; and (2) we 
quite often have to deal with preexisting fuzzy sets, in working memory, for the 
right sides of rules. 

APPLICATION 

Our problem was to design an expert system to medically classify regions that 
were previously identified in an echocardiogram. All these details have been 
reported elsewhere (Buckley and Siler [2]; Siler, Tucker, Buckley, Hess and 
Powell [7]; Tucker, Siler, Powell, and Stanley [11]); therefore, we will be 
concerned here only with the facts necessary to construct fuzzy relations. 
Numerical feature extraction was first carried out for each region. The features 
of each region used are area (a fuzzy number a); x-coordinate of the centroid (a 
fuzzy number ~); y-coordinate of the centroid (a fuzzy number .P); type; and 
border. Type equals 1(0) if the pixels in the region are turned on (off), and 
border equals 1(0) if the region touches (does not touch) the border of the 
picture. Using the fuzzy numbers a, .~, and.~, we first constructed fuzzy subsets 
of sets SIZE, XPOS, and YPOS, respectively. We will now discuss in detail the 
type one EFR that goes with SIZE. 

The set SIZE equals {teeny, small, medium, large, huge}. N(r) denotes an 
appropriate fuzzy number centered at r, and LTE (GTE) are regular fuzzy 
relations less than or equal to (greater than of equal to) defined on fuzzy 
numbers. The block of rules used to build the fuzzy subset of SIZE are as 
follows: 

If a LTE N(100), then SIZE teeny 

If a LTE N(200) and GTE N(100), then SIZE small 

If a LTE N(500) and GTE N(200), then SIZE medium 

If a LTE N(1000) and GTE N(500), then SIZE large 

If a GTE N(1000), then SIZE huge 
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We now define a level one EFR 6t a to take the place of this block of rules. Let 
V = SIZE and ul = N(100), u2 = (N(100), N(200)), u3 = (N(200), N(500)), 
u4 = (N(500), N(1000)), and u5 = N(1000) with U = {Ul, " " ,  us}. The 
values of the R U are Rll = LTE, R22 = R33 = R44 = (GTE, LTE), R55 = 
GTE, and all the ( i j )  cells are empty for i g: j .  The data D values are d l =  d5 = 
a and d2 = d3 = d4 = (a, a). This is a very simple EFR because all the cells off 
the main diagonal are empty. The output O = D o 61a, a fuzzy subset of V = 
SIZE, is given by 

O =  I °te--~ny " " "  h~gge05 1 (35) 

where we use minimum for h22, h33, and h44, and n o f i s  required because 61~ is 
diagonal. For example, 

c22 = min (a GTE N(100), a LTE N(200)). (36) 

and 

0 2 =- min (£~22, r22) (37) 

where r22 is the prior confidence in this rule. The confidence o2 will be the same 
confidence in " sma l l "  as obtained in the second rule in the foregoing block of 
rules. In constructing the fuzzy set SIZE we do not employ thresholding and the 
weakly monotonic procedure discussed in the preceding section. In this situation 
we would not have a preexisting fuzzy set for SIZE in working memory.  Using 
61~, this block of rules is replaced by one rule: 

if the area is a, then SIZE is 0 (38) 

In a similar manner two other fuzzy subsets of XPOS = {far left, left, center, 
right, far right} and YPOS = {very high, high, middle, low, very low} are 
constructed using ~? and y, respectively. The blocks of rules used to accomplish 
this may be represented by level one extended fuzzy relations 61x and 61y, 
respectively. 

Sometimes blocks of rules, each represented by an EFR, will form a network, 
with the output of some EFR being the input into another EFR. This is what 
occurred in the image processing problem, as shown in Figure 2. The four EFRs 
in Figure 2 will now be combined into one level two EFR 612. 

The block of rules forming the primary classification may also be represented 
by an EFR 61c. Instead of discussing how to define 61c, we will concentrate on 
combining the EFRs into one level two EFR. A sample of the primary 
classification rules is as follows: 

If SIZE teeny and Border = 1, then Artifact 

If SIZE small and XPOS left and YPOS low, then RA 

If SIZE large and YPOS low and Type = 0 and Border = 1, then Dead-Zone 
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I f  SIZE small and XPOS right and YPOS low and Type = 0, then LA 

If  XPOS center and YPOS very high and Type = 0 and Border = 1, then Dead- 
Zone 

I f  SIZE medium and XPOS left and YPOS high, then RV 

If  SIZE huge and VPOS low and Type = 0 and Border = 1, then Dead Zone 

There are 11 possible classifications, which we will call Cl, • • ", Cll and then 
let V = {C1, " " ,  C11}. Each ui is a vector, of  length at most 5, whose 
components are members  of  SIZE, XPOS, or YPOS, or uik = 1 (0) for Type,  or 
uik = 1 (0) for Border. Also, each R 0 is a vector whose components are ffi~, 
61,~, ffty, Rr ,  or RB where R r  (RB) is a binary relation for Type (Border). For 
the classification rules presented above, let C1 = Artifact, (?2 = RA,  C3 = 
Dead-Zone, C4 = LA,  C5 = R V, and 

ul = (teeny, 1) 

u2 = (small, left, low) 

u3 = (large, low, 0, 1) 

u4 = (small, right, low, 0) 

us = (center, very high, 0, I) 

u6 = (medium, left, high) 

u7 = (huge, low, 0, 1) 

Then we see that 
R l l  = ((Ra, RB) 

R22=((Pta, (R.¢, (Pry) 

R33=((Ra, (Ry, Rr ,  RB) 

R44= (ffto, 61~, 6ty, Rr )  

R53 = ((R~, 61y, RT, Rn) 

R65 = (6ta, fft,~, 6~y) 

R73 = ((Ra, (Ry, RT,  RB) 

This is a level two EFR because the R o contain level one extended fuzzy 
relations. 

The structure of  the data elements di matches the structure of  the ui. For the 
rules presented, we see that for a given region 

dl = (a, Border) 

d2 = ((a, a), (.~, .¢), (.~, y ) )  
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d4 

d5 

d6 

d7 

Application 

= ((a, a), (y,  y) ,  Type, Border) 

= ((a, a), (.¢, .¢), (y, y) ,  Type) 

= ((.~, ~¢), fl, Type, Border) 

= ((a, a), (~, ~), (y,  y))  

= (a, (.P, y) ,  Type, Border) 
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The fuzzy set of primary classifications O is determined by D o CR2. We use 
min for the hij functions, max for f ,  prior rule confidence ru, but no thresholding 
or weakly monotonic methods in equation (34). 

Let us illustrate the method by finding o3 for Dead-Zone. We have 

~33=min ((a, a)(Ra large, (y, y)¢Ry low, Type RrO, Border RB1) (39) 

and 

C33 = min (e33, 7"33) (40) 

The value of (a, a)(Ra large is the 64 output from the CRa EFR. The relation Type 
RrO is one if Type = 0 and zero otherwise, and Border Rs 1 is one if Border = 
1 and zero otherwise. Similarly, we compute c53, c73, ct3, and so forth and obtain 

03 =f(¢33,  C53, C73, "" ") (41) 

Using (R2, the entire primary classification becomes one rule: 

if the data is D, then the classification is O (42) 

In a fuzzy expert system not all rules or blocks of rules may be modeled by 
extended fuzzy relations. One obvious situation is where the right side of a rule 
calls for user interaction. Any action in the right side of a rule that cannot be 
interpreted as making or changing a fuzzy set will not come under the domain of 
extend fuzzy relations. 

PARALLEL VERSUS SEQUENTIAL 

An important question being asked by many computer people (both algorithm 
and hardware oriented) is the question of when a problem is suitable for parallel 
processing. In his book Uhr [12] points out that parallel processing will be an 
important part of future computing systems but that many obstacles must be 
overcome prior to widespread use of these techniques. 

Through our work with a parallel rule-firing expert system (Siler, Tucker, and 
Buckley [9]), we have also become interested in this question. We would like to 
be able to quantify those characteristics which are possessed by problems 
suitable for parallel processing and use this as a means of discriminating between 
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those problems which are suitable for parallel processing and those which are 
not. 

The motivation for such work is to us obvious. It has been argued that parallel 
processing will result in an increase in system performance. We have shown [9] 
that for a particular problem, that of echocardiogram image analysis, there is an 
overall increase in run-time performance by a factor of 6 using a software 
emulation of a parallel machine. 

Unfortunately, not all problems are ones that stand to benefit from use of 
parallel computing techniques. In a broad sense we have grouped those problems 
which yield to inductive reasoning as being suitable for parallel processing, and 
those which yield to deductive reasoning as being suitable for sequential 
processing. This measure is a qualitative one and gives no indication of the 
specific nature of the parallelism within the problem. A problem may be one that 
does not fit this classification scheme well, having subproblems that are both 
inductive and deductive in nature. What is needed is a quantitative method for 
expressing the "amount" of parallelism that a problem possesses and where that 
parallelism lies. Once this has been established, we may better apply existing 
techniques to solve the problem at hand. 

To this end we propose that the development of an EFR or a set of related 
EFRs is a technique whereby the parallel nature of a problem can be 
demonstrated. In the preceding discussion we have shown that the evaluation of 
an EFR is (minimally) equivalent to the processing of several rules simultane- 
ously. On a suitably designed machine, we think that an EFR can be effectively 
evaluated in one step. What we must do is to describe such a machine and show 
where the parallelism lies. 

For such a machine, the input would be as described above, a vector of data. 
In a preprocessing step, copies of the data, one for each nonempty (ij) position 
in the EFR, would be produced and distributed to the processing elements, one 
processing element for each nonempty (ij) position. After this preprocessing, 
the evaluation of each of the inner products di * R 0 and the cij would take place. 
In a final post-processing step, the outputs of the rn processors in each column 
can be aggregated to produce the resulting fuzzy output O. 

According to our definition of a level g >_ 1 EFR, each Rij may be a vector of 
Ki extended fuzzy relations. For the EFR to be evaluated as efficiently as 
possible, each of the Ki relations Rijk must be processed simultaneously. This 
requires that there be Ki such machines at each of the (ij) processing elements in 
(R. This results in a hierarchical view of  the parallelism that may exist in a 
problem. 

If we look at the echocardiogram analysis example presented earlier, we see 
that this is an EFR in which each of the relational components Rij can contain 
three EFRs and two binary relations. Clearly this could be represented as a 
problem with two levels of parallelism, the first (lower level) being the 
processing of area and centroid data to generate suitable fuzzy sets for the 
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higher-level process, the generation of the preliminary classifications (see 
Figure 2). 

In our production system, operating in parallel mode, we emulate the machine 
just described. The production system's working memory acts as a central store 
for data that are accessible to all the Rift  c relations, and all those Rij  k relations 
which have suitable data are made active at once. The memory management 
techniques (weakly monotonic) described in the section on the generalized 
modusponens  function as the post-processing step and produce a column output 
for the EFR. 

SUMMARY AND C O N C L U S I O N S  

This article first introduced the idea of an extended fuzzy relation 6t. The 
relation between two elements, say u and v, is u61v = (R1, " " ,  Rx),  where 
each Rk is a regular fuzzy relation or an extended fuzzy relation. Another type of 
extended fuzzy relation has been considered by Bezdek, Pettus, Stephens, and 
Zhang [1] and Zhang, Bezdek, Pettus, and Stephens [17], where u61v is a fuzzy 
set representing a linguistic variable. Their application is knowledge representa- 
tion or information retrieval in an expert system. Our application is the use of 
extended fuzzy relations to replace blocks of rules in a fuzzy expert system with 
one rule. We have shown that our procedure contains the generalized modus 
ponens and have also shown how to construct extended fuzzy relations in two 
examples. We have then argued that knowing that an extended fuzzy relation 
exists for a block of rules may be the key to knowing when to process these rules 
in parallel instead of sequentially. 

Firing rules in parallel, as opposed to sequentially, has two main advantages. 
First, a rule conflict algorithm, to determine which rule to fire when a group of 
rules become fireable, is not needed. Second, there is no stacking of unfired 
rules with subsequent backtracking. Parallel execution can result in a substantial 
reduction in system overhead and an increase in computational efficiency [9]. 
However, when operating in a parallel mode we need a memory conflict 
algorithm. When the system attempts to execute several rules all having the same 
conclusion, we need to decide on the final confidence we will place in this 
conclusion. Our system employs weakly monotonic logic for memory conflict 
resolution. The incorporation of weakly monotonic logic into the extended fuzzy 
relation technique has been discussed in the section on the generalized modus 
ponens. 

Future research is needed to determine existence theorems for extended fuzzy 
relations. Results such as the following are needed for expert systems: I f  your 
problem has characteristics ~,/3, .y, • • . ,  then theorem 3 says that there exists an 
extended fuzzy relation for this problem. Therefore, characteristics c~,/3, 3', " " " 
are sufficient for putting the problem on a parallel machine. 



194 J.J.  Buckley et al. 

References 

1. Bezdek, J. C., Pettus, R. O., Stephens, L. M., and W.-R. Zhang, Knowledge 
representation using linguistic fuzzy similarity relations, Int. J. Man-Machine 
Stud. (to appear). 

2. Buckley, J. J., and Siler, W., Echocardiogram analysis using fuzzy numbers and 
relations, Fuzzy Sets & Syst. (to appear). 

3. Buckley, J. J., Siler, W., and Tucker, D., A fuzzy expert system, Fuzzy Sets & 
Syst. 20, 1-16, 1986. 

4. Buckley, J. J., Siler, W., and Tucker, D., FLOPS, A fuzzy expert system: 
Applications and perspectives, in Fuzzy Logics in Knowledge Engineering (C. V. 
Negoita, and H. Prade, Eds.), Rheinland, Germany, Verlag TUV, 256-274, 1986. 

5. Mizumoto, M., and Zimmermann, H.-J., Comparison of fuzzy reasoning methods, 
Fuzzy Sets & Syst. 8, 253-283, 1982. 

6. Mizumoto, M., Fuzzy reasoning under new compositional rules of inference, 
Kybernetics 12, 107-117, 1985. 

7. Siler, W., Tucker, D., Buckley, J. J., Hess, R. G., and Powell, V. G., Artificial 
intelligence in processing a sequence of time-varying images, Proceedings of  the 
International Society for Optical Engineering 548, 194-199, 1985. 

8. Siler, W., and Tucker, D., FLOPS, A Fuzzy Logic Production System User's 
Manual, Kemp-Carraway Heart Institute, Birmingham, Ala. 1986. 

9. Siler, W., Tucker, D., and Buckley, J. J., A parallel rule firing fuzzy production 
system with resolution of memory conflicts by weak fuzzy monotonicity, applied to 
the classification of multiple objects characterized by multiple uncertain features, 
Int. J. Man-Machine Studies (to appear). 

10. Siler, W., Buckley, J. J., and Tucker, D., Functional requirements for a fuzzy 
expert system shell, in Artificial Intelligence: Applications of  Quantitative 
Reasoning (L. Zadeh and E. Sanchez, Eds.), Pergamon Press, New York, 21-31, 
1987. 

11. Tucker, D., Siler, W., Powell, V. G., and Stanley, A. W. H., FLOPS: A fuzzy 
expert system used in unsupervised enchocardiogram analysis, Computers in 
Cardiology, 341-344, 1985. 

12. Uhr, L., Algorithm-Structured Computer Arrays and Networks, Academic 
Press, New York, 1984. 

13. Whalen, T., and Schott, B., Alternative logics for approximate reasoning in expert 
systems: A comparative study, Int. J. Man-Machine Stud. 22, 327-346, 1985. 

14. Yager, R. R., On the implication operator in fuzzy logic, Info, Sci. 31, 141-164, 
1983. 



Extended Fuzzy Relations: Application 195 

15. Zadeh, L. A., A theory of approximate reasoning, in Machine Intelligence 9 (J. E. 
Hayes, D. Michie, and L. I. Kulich, Eds.), John Wiley, New York, 149-194, 1979. 

16. Zadeh, L. A., The role of fuzzy logic in the management of uncertainty in expert 
systems, Fuzzy Sets & Syst. 11, 199-227, 1983. 

17. Zhang, W. R., Bezdek, J. C., Pettus, R. O., and Stephens, L. M., Linguistic fuzzy 
relations in expert systems, presented at the Third Annual Computer Science 
Symposium on Knowledge Based Systems: Theory and Applications, Univ. South 
Carolina, Columbia, So. Carolina, 1986. 


