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An induced fractional zero-point angular momentum of charged particles by the Bohm–Aharonov (BA)
vector potential is realized via a modified combined trap. It explores a “spectator” mechanism in this
type of quantum effects: In the limit of the kinetic energy approaching one of its eigenvalues the BA
vector potential alone cannot induce a fractional zero-point angular momentum at quantum mechanical
level in the BA magnetic field-free region; But when there is a “spectator” magnetic field the BA vector
potential induces a fractional zero-point angular momentum. The “spectator” does not contribute to such
a fractional angular momentum, but plays essential role in guaranteeing non-trivial dynamics at quantum
mechanical level in the required limit. This “spectator” mechanism is significant in investigating the BA
effects and related topics in both aspects of theory and experiment.

© 2008 Elsevier B.V. Open access under CC BY license.
As is well known, quantum states of charged particles can be
influenced by electromagnetic effects even if those particles are in
a region of vanishing field strength [1,2]. As predicted by Bohm
and Aharonov (BA) [2], experiments [3] showed that in a multi-
ply connected region where field strength is zero everywhere the
interference spectrum suffered a shift according to the amount of
the loop integral of magnetic vector potential around an unshrink-
able loop. Wu and Yang [4] pointed out that the BA effects is due
to the non-trivial topology of the space where the magnetic field
strength is vanishing. The BA effect is purely quantum mechanical
one which explores far-reaching consequences of vector potential
in quantum theory. This effect has been received much attention
for years [5–7]. Recently investigations in this topic concentrated
on revealing new types of quantum phases: The Aharonov–Casher
effect [8], the He–McKellar–Wilkens phase [9] and the Anandan
phase [10].

In another aspect a fractional angular momentum originated
from the Poynting vector produced by crossing the Coulomb field
of a charged particle with an external magnetic field has been pre-
dicted by Peshkin, Talmi and Tassie for years [6,11]. There are lots
of works concerning fractional angular momentum in BA dynamics
and their “fractional” statistics (see the reviews [12–17] and refer-
ences therein). Spatial noncommutativity also leads to fractional
angular momentum [18,19].
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Recently Kastrup [20] considered the question of how to quan-
tize a classical system of the canonically conjugate pair angle and
orbital angular momentum. This has been a controversial issue
since the founding days of quantum mechanics [21]. The problem
is that the angle is a multivalued or discontinuous variable on the
corresponding phase space. A crucial point is that the irreducible
unitary representations of the euclidean group E(2) or of its cover-
ing groups allow for orbital angular momentum l = h̄(n + δ) where
n = 0,±1,±2, . . . , and 0 � δ < 1. The case δ �= 0 corresponds to
fractional zero-point angular momentum. Kastrup investigated the
physical possibility of fractional orbital angular momentum in con-
nection with the quantum optics of Laguerre–Gaussian laser modes
in external magnetic fields, and pointed out that if implementable
this would lead to a wealth of new theoretical, experimental and
even technological possibilities.

In this Letter the induced fractional zero-point angular momen-
tum of charged particles by the BA vector potential is realized via
a modified combined trap. It explores a “spectator” mechanism in
this type of quantum effects: In the limit of the kinetic energy ap-
proaching one of its eigenvalues the BA vector potential alone can-
not induce a fractional zero-point angular momentum of charged
particles at quantum mechanical level in a region of vanishing BA
field strength; But when there is a “spectator” magnetic field the
BA vector potential induces a fractional zero-point angular mo-
mentum in the same region. The “spectator” does not contribute
to such a fractional angular momentum, but plays essential role in
guaranteeing non-trivial dynamics at quantum mechanical level in
the required limit. This type of quantum effects is so remarkable
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that in quantum mechanics the vector potential itself has physical
significant meaning and becomes effectively measurable not only
in shifts of interference spectra originated from quantum phases
but also in physical observables.

1. Dynamics in a modified combined trap

We consider ions constrained in a modified combined trap
including the BA type magnetic field. The Paul, Penning, and
combined traps share the same electrode structure [22]. A com-
bined trap operates in all of the fields of the Paul and Penning
traps being applied simultaneously. The trapping mechanism in
a Paul trap involves an oscillating axially symmetric electric po-
tential Ũ (ρ,φ, z, t) = U (ρ,φ, z) cos Ω̃t with U (ρ,φ, z) = V (z2 −
ρ2/2)/2d2 where ρ , φ and z are cylindrical coordinates, V and d
are, respectively, characteristic voltage and length, and Ω̃ is a large
radio-frequency. The dominant effect of the oscillating potential is
to add an oscillating phase factor to the wave function. Rapidly
varying terms of time in Schrödinger equation can be replaced
by their average values. Thus for Ω̃ � Ω ≡ (

√
2q|V |/μd2)1/2 we

obtain a time-independent effective electric potential [23] V eff =
q2∇U · ∇U/4μΩ̃2 = μω2

P (ρ2 + 4z2)/2 where μ and q(> 0) are,
respectively, the mass and charge of the trapped ion, and ωP =
Ω2/4Ω̃ . A modified combined trap combines the above electro-
static potential and two magnetic fields1: a homogeneous magnetic
field Bc aligned along the z-axis in a normal combined trap and a
BA type magnetic field B0 produced by, for example, an infinitely
long solenoid with radius ρ = (x2

1 + x2
2)

1/2 = a. Inside the solenoid
(ρ < a) B0,in = (0,0, B0) is homogeneous along the z-axis, and
outside the solenoid (ρ > a) B0,out = 0. The vector potential Ac

of Bc is chosen as (Henceforth the summation convention is used)
Ac,i = −Bcεi j x j/2, Ac,z = 0 (i, j = 1,2). The BA vector potential
A0 is: Inside the solenoid A0,i = Ain,i = −B0εi j x j/2, Ain,z = 0;
Outside the solenoid A0,i = Aout,i = −B0a2εi j x j/2xkxk, Aout,z = 0
(i, j,k = 1,2). At ρ = a the potential Ain passes continuously
over into Aout. The Hamiltonian of the modified combined trap
is H = (pi − q Ac,i/c − q A0,i/c)2/2μ + p2

z/2μ + μω2
P (x2

i + 4z2)/2.
This Hamiltonian can be decomposed into a one-dimensional har-
monic Hamiltonian Hz(z) along the z-axis with the axial fre-
quency ωz = 2ωP and a two-dimensional Hamiltonian H⊥(x1, x2),
H = Hz(z)+ H⊥(x1, x2). Inside the solenoid the ion’s motion is the
same as the one with a total magnetic field Bc + B0,in.

In the following we consider the motion outside the solenoid.
The two-dimensional Hamiltonian outside the solenoid is [22,23]

H⊥(x1, x2) = 1

2μ

(
pi + 1

2
μωcεi j x j + μω0a2 εi j x j

2xkxk

)2

+ 1

2
μω2

P x2
i ,

(1)

where ωc = qBc/μc and ω0 = qB0/μc are the cyclotron fre-
quencies corresponding to, respectively, the magnetic fields Bc

and B0,in. The Hamiltonian H⊥ possess a rotational symmetry in
(x1, x2)-plane. The z-component of the orbital angular momen-
tum J z = εi j xi p j commutes with H⊥ . They have common eigen-
states.

1 The derivation of a static effective potential V eff from a rapidly oscillating one
in Ref. [23] does not include a magnetic field or an associated vector potential.
That derivation remains valid in the presence of magnetic fields, see Ref. [22] of
the combined trap. A modified combined trap includes a BA type magnetic field.
The BA effect consists essentially in a shift of the phase of the original wave func-
tion. One can adjust the radio-frequency Ω̃ to compensate the phase shift, there-
fore for a modified combined trap the derivation in Ref. [23] also remains valid.
The modification of Ω̃ leads to the corresponding modification of the effective
frequency ωP = Ω2/4Ω̃ of V eff . In Eq. (1) the ωP means the modified effective
frequency.
1.1. Dynamics in the limit of the kinetic energy approaching its lowest
eigenvalue

In this limit the kinetic energy is Ek = μẋi ẋi/2 = (K 2
1 + K 2

2 )/2μ
where

Ki ≡ pi + 1

2
μωcεi j x j + μω0a2 εi j x j

2xkxk
, [Ki, K j] = ih̄μωcεi j . (2)

Here Ki is the mechanical momenta corresponding to the vector
potentials Ac,i and Aout,i . It is worth noting that the BA vector
potential Aout,i does not contribute to the commutator [Ki, K j].
The canonical momenta pi are quantized, pi = −ih̄∂/∂xi . They
commute each other [pi, p j] = 0. We define canonical variables
Q = K1/μωc and Π = K2 which satisfy [Q ,Π ] = ih̄δi j . The kinetic
energy Ek is rewritten as the Hamiltonian of a harmonic oscillator
Ek = Π2/2μ + μω2

c Q 2/2. The lowest eigenvalue Ek0 of the kinetic
energy Ek is2 Ek0 = h̄ωc/2.

In a laser trapping field, using a number of laser beams and ex-
ploiting Zeeman tuning, the speed of atoms can be slowed to the
extent of 1 ms−1, see [24]. Ions are the common object in cool-
ing and trapping. In order to experimentally realizing the limit of
Ek → Ek0 through laser cooling in a trap ions are used.

In the limit of the kinetic energy approaching its lowest eigen-
value the Hamiltonian H⊥ in Eq. (1) has non-trivial dynamics
[19,25,26]. The Lagrangian corresponding to H⊥ is

L = 1

2
μẋi ẋi − 1

2
μωcεi j ẋi x j − μω0a2 εi j ẋi x j

2xkxk
− 1

2
μω2

P xi xi . (3)

In the limit of Ek → Ek0, the Hamiltonian H⊥ reduces to H0 =
h̄ωc/2 + μω2

P xi xi/2. The Lagrangian corresponds to H0 is

L0 = −1

2
μωcεi j ẋi x j − μω0a2 εi j ẋi x j

2xkxk
− 1

2
μω2

P xi xi − 1

2
h̄ωc . (4)

1.2. Constraints

For the reduced system (H0, L0) the canonical momenta are

pi = ∂L0

∂ ẋi
= −1

2
μωcεi j x j − μω0a2 εi j x j

2xkxk
. (5)

Eq. (5) does not determine velocities ẋi as functions of pi and x j ,
but gives relations among pi and x j , that is, such relations are the
primary constraints [19,26,27]

ϕi(x, p) = pi + 1

2
μωcεi j x j + μω0a2 εi j x j

2xkxk
= 0. (6)

The physical meaning of Eq. (6) is that it expresses the depen-
dence of degrees of freedom among pi and x j . The constraints (6)
should be carefully treated.3 The subject can be treated simply by

2 M. Peshkin pointed out that in the simplest case of the flux line and no other
fields, there can be no wave function whose kinetic energy expectation is zero,
hence no zero eigenvalue of the kinetic energy (a private communication).

3 The momentum pi of Eq. (5) defined from the Lagrangian L0 of Eq. (4) cannot
determine the velocity ẋi as a function of pi and x j . This shows that L0 is singular.
The physical meaning of Eq. (5) is that the corresponding Eq. (6), ϕi(x, p) = 0, is a
primary constraint which expresses the dependence of degrees of freedom among
pi and x j . The Hamiltonian equations of such a constrained system are not unique.
The standard way of deriving them is as follows.

From the Hamiltonian H0 = pi ẋi − L0, using pi = ∂L0/∂ ẋi and the Lagrangian
equation ṗi = ∂L0/∂xi , it follows that

δH0 = ẋiδpi − ṗiδxi .

It indicates that H0 can be expressed as a function of xi and pi . Thus we obtain

δH0(x, p) = ∂H0

∂xi
δxi + ∂H0

∂ pi
δpi .

Because of the constraints ϕi(x, p) = 0 of Eq. (6), H0 plus any linear combina-
tion of ϕi is also a Hamiltonian of the system, i.e., the H0 can be replaced by
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the symplectic method in [28,29]. In this Letter we work in the
Dirac formalism. The Poisson brackets of the constraints (6) are

Cij = {ϕi,ϕ j} = μωcεi j . (7)

From Eq. (7), {ϕi,ϕ j} �= 0, it follows that the conditions of the
constraints ϕi holding at all times do not lead to secondary con-
straints.

Cij defined in Eq. (7) are elements of the constraint ma-
trix C . Elements of its inverse matrix C−1 are (C−1)i j = −εi j/μωc .
The corresponding Dirac brackets of {ϕi, x j}D , {ϕi, p j}D , {xi, x j}D ,
{pi, p j}D and {xi, p j}D can be defined. The Dirac brackets of ϕi
with any variables xi and p j are zero so that the constraints (6)
are strong conditions. It can be used to eliminate dependent vari-
ables. If we select x1 and x2 as the independent variables, from
the constraints (6) the variables p1 and p2 can be represented by,
respectively, the independent variables x2 and x1 as

p1 = −1

2
μωc x2 − μω0a2 x2

2xkxk
,

p2 = 1

2
μωcx1 + μω0a2 x1

2xkxk
. (8)

The Dirac brackets of x1 and x2 is

{x1, x2}D = 1

μωc
. (9)

We introduce new canonical variables x = x1 and p = μωc x2. Their
Dirac bracket is {x, p}D = 1. According to Dirac’s formalism of
quantizing constrained systems the corresponding quantum com-
mutation relation is [x, p] = ih̄.

1.3. Quantum behavior of the reduced system

Now we consider quantum behavior of the reduced system
(H0, L0). By defining the following effective mass and frequency,
μ∗ ≡ μω2

c /ω2
P , ω∗ ≡ ω2

P /ωc , the Hamiltonian H0 is represented
as H0 = p2/2μ∗ + μ∗ω∗2x2/2 + h̄ωc/2. We introduce an annihi-
lation operator A = √

μ∗ω∗/2h̄ x + i
√

1/2h̄μ∗ω∗ p and its conju-
gate one A†. The operators A and A† satisfies [A, A†] = 1. The
eigenvalues of the number operator N = A† A is n = 0,1,2, . . . .
Using A and A†, the reduced Hamiltonian H0 is rewritten as
H0 = h̄ω∗(A† A + 1/2) + h̄ωc/2.

Now we consider the angular momentum of the ion. Using
Eq. (8) to replace p1 and p2 by, respectively, the independent vari-
ables x2 and x1, the orbital angular momentum J z = εi j xi p j is
rewritten as

J z = q

2πc
Φ0 + 1

2
μωc

(
x2

1 + x2
2

)
, (10)

where Φ0 = πa2 B0 is the total flux of the magnetic field B0 inside
the solenoid. Similarly, using A and A† to rewrite J z , we obtain

H0(x, p) + λi(x, p)ϕi(x, p). From the above two equations, including the contribu-
tions of δ(λi(x, p)ϕi(x, p)), it follows that the Hamiltonian equations read

ṗi = − ∂H0

∂xi
− λk

∂ϕk

∂xi
, ẋi = ∂H0

∂ pi
+ λk

∂ϕk

∂ pi
.

Eq. (6) gives ∂ϕk/∂ pi = δki . From the reduced Hamiltonian H0 obtained from L0 in
Eq. (4) it follows that ∂H0/∂ pi = 0. Thus the second equation reduces to

ẋi = λi .

In this example the Lagrange multiplier λi is just the velocity ẋi .
J z = qΦ0/2πc + h̄(A† A + 1/2). The zero-point angular momentum
of J z is J0 = h̄/2 + qΦ0/2πc. In the above the term4

J AB = q

2πc
Φ0 (11)

is the zero-point angular momentum induced by the AB vector
potential. J AB takes fractional values. It is related to the region
where the magnetic field B0,out = 0 but the corresponding vector
potential Aout �= 0.

2. Dynamics in the case of Bc = 0

It is worth noting that here Bc , like a “spectator”, does not
contribute to J AB . In order to clarify the role played by Bc , we
consider the case of Bc = 0. In this case the modified combined
trap is as stable as a Paul trap. The corresponding kinetic energy
reduces to Ẽk = μẋi ẋi/2 = (K̃ 2

1 + K̃ 2
2 )/2μ where

K̃ i ≡ pi + μω0a2 εi j x j

2xkxk
, [K̃ i, K̃ j] = 0. (12)

In the above K̃ i is the mechanical momenta corresponding to
the BA vector potential Aout,i . Unlike the ordinary vector poten-
tial, the special feature of the BA vector potential is that it does
not contributes to the commutator [K̃ i, K̃ j]. Because K̃ i are com-
muting, behavior of Ẽk is similar to a Hamiltonian of a free
particle. Its spectrum is a continuous one. When Ẽk approach-
ing some constant Ẽk(�= 0) the Hamiltonian H⊥ reduces to H̃0 =
Ẽk + μω2

P xi xi/2. The Lagrangian corresponding to H̃0 is

L̃0 = −μω0a2 εi j ẋi x j

2xkxk
− 1

2
μω2

P xi xi − Ẽk. (13)

From L̃0 we obtain the canonical momenta

p̃i = ∂ L̃0

∂ ẋi
= −μω0a2 εi j x j

2xkxk
. (14)

Now we clarify that the case Ẽk = 0 should be excluded. The limit
of the kinetic energy Ek = μẋi ẋi/2 → 0 corresponds two possi-
bilities: ẋi = 0 or μ → 0. In the case ẋi = 0 the Lagrangian L in
Eq. (3) reduces to L̃′

0 = −μω2
P xi xi/2. The corresponding canonical

momenta p̃i = ∂ L̃′
0/∂ ẋi = 0. Therefore there is no dynamics. Ac-

cording to the definition of the frequency Ω the other possibility
μ → 0 is forbidden.

Eq. (14) gives the reduced primary constraints

ϕ̃i = p̃0i + μω0a2 εi j x j

2xkxk
= 0. (15)

Here the special feature is that the corresponding Poisson brackets
are zero,

C̃i j = {ϕ̃i, ϕ̃ j} ≡ 0. (16)

4 Ref. [11] investigated the angular momentum J originated from the Poynting
vector produced by crossing the Coulomb field E of a charged particle with an ex-
ternal magnetic field B,

J = 1

4πc

∫
r × [

E × B(r)
]

d3r.

In cases where the magnetic field is only in the z-direction, this angular momentum
reduces to

J z = − qφ

2πc
,

where φ = ∫ ∫
Bz(x1, x2)dx1 dx2 is the total magnetic flux. J z is the angular mo-

mentum of the electromagnetic fields. In cases where the magnetic field Bz is pro-
duced by an infinitely long solenoid, this angular momentum exists only inside the
solenoid. J z should be distinguished from J AB of Eq. (11). J AB is the angular mo-
mentum of the charged particle. It is worth noting that J AB is induced by the BA
vector potential outside the solenoid and does not exist inside the solenoid.
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From Eq. (16), {ϕ̃i, ϕ̃i} ≡ 0, it follows that the conditions of the
constraints ϕ̃i holding at all times lead to secondary constraints
ϕ̃

(2)
i = −μω2

P xi . The Poisson brackets {ϕ̃(2)
i , ϕ̃ j} = 0, {ϕ̃(2)

i , ϕ̃
(2)
j } =

0, and {ϕ̃(2)
i , H̃0} = 0, so that persistence of the secondary con-

straints ϕ̃
(2)
i in course of time does not lead to further secondary

constraints ϕ̃
(3)
i .

Because of C̃i j ≡ 0, the inverse matrix C̃−1 does not exist. The

Dirac brackets {ϕ̃i, x j}D , {ϕ̃i, p j}D , {ϕ̃(2)
i , x j}D , {ϕ̃(2)

i , p j}D , {xi, x j}D ,
{pi, p j}D , and {xi, p j}D cannot be defined. According to Dirac’s
formalism of quantizing constrained systems, there is no way to
establish dynamics at quantum mechanical level. This means that
the BA vector potential alone cannot lead to non-trivial dynamics
at quantum mechanical level in the required limit, thus does not
contribute to the energy spectrum and angular momentum at all.

It is clear that though the vector potential Ac,i of the “specta-
tor” magnetic field Bc does not contribute to J AB , it plays essential
role in guaranteeing non-trivial dynamics at quantum mechani-
cal level in the limit of the kinetic energy approaching one of its
eigenvalues. This example reveals that, unlike ordinary vector po-
tential, the physical role played by the BA vector potential is subtle.
This needs to be carefully analyzed at quantum mechanical level.

3. Dynamics in the case of B0 = 0

In order to further clarify the essential difference between
Ao and Ac in the region of B0,out = 0 we consider the case of
B0 = 0. In this case the modified combined trap reduces to a
combined trap. The Hamiltonian H⊥(x1, x2) in Eq. (1) reduces to
Ĥ⊥(x1, x2) = (pi + μωcεi j x j/2)2/2μ + μω2

P x2
i /2. Its kinetic energy

is Êk = (K̂ 2
1 + K̂ 2

2 )/2μ where

K̂ i ≡ pi + μωcεi j x j/2, [K̂ i, K̂ j] = ih̄μωcεi j . (17)

In Eq. (17) K̂ i is the mechanical momenta corresponding to the
vector potentials Ac,i . The commutation relations between K̂ i ’s are
the same as the ones between Ki ’s in Eq. (2). The eigenvalues of Êk
is Êkn = h̄ωc(n + 1/2), which are just the Landau levels of charged
particles in an external magnetic field.

In the following we consider the limit of Êk approaching the
lowest eigenvalue Êk0 = h̄ωc/2. The Lagrangian corresponding to
Ĥ⊥ is

L̂ = μẋi ẋi/2 − μωcεi j ẋi x j/2 − μω2
P xi xi/2. (18)

In the limit of Êk → Êk0, the Hamiltonian Ĥ⊥ reduces to Ĥ0 =
h̄ωc/2 + μω2

P xi xi/2 which is the same as H0. The Lagrangian cor-
responds to Ĥ0 is

L̂0 = −μωcεi j ẋi x j/2 − μω2
P xi xi/2 − h̄ωc/2. (19)

For the reduced system (Ĥ0, L̂0) the canonical momenta are p̂i =
∂ L̂0/∂ ẋi = −μωcεi j x j/2. It leads to the following constraints

ϕ̂i = pi + μωcεi j x j/2 = 0. (20)

The Poisson brackets of ϕ̂i are the same as ones of the constraints
ϕi in Eq. (7):

Ĉi j = {ϕ̂i, ϕ̂ j} = μωcεi j . (21)

From Eq. (21), {ϕ̂i, ϕ̂ j} �= 0, it follows that the conditions of the
constraints ϕ̂i holding at all times do not lead to secondary con-
straints.

By the similar procedure of treating the constraints (6), we find
that the reduced system (Ĥ0, L̂0) has non-trivial dynamics at quan-
tum mechanical level in the limit of Êk → Êk0. The constraints
(20) are strong conditions which can be used to eliminate depen-
dent variables. We select x1 and x2 as the independent variables.
The variables p1 and p2 can be represented by, respectively, x2
and x1 as p1 = −μωc x2/2, p2 = μωcx1/2. The Dirac brackets of
x1 and x2 is {x1, x2}D = 1/μωc . We introduce new canonical vari-
ables x = x1 and p = μωcx2. Their Dirac bracket is {x, p}D = 1.
The corresponding quantum commutation relation is [x, p] = ih̄.
Using these results the orbital angular momentum J z = εi j xi p j

can be represented by the canonical variables x and p as Ĵ z =
(p2/2μ + μω2

c x2/2)/ωc . The zero-point angular momentum can
be read out from this harmonic-like “Hamiltonian”, Ĵ0 = h̄/2. We
note that in this case there is no fractional zero-point angular mo-
mentum.

The above results elucidate that Ac are essentially different
from A0: the Ac alone can lead to non-trivial dynamics at quantum
mechanical level in the limit of the kinetic energy approaching its
lowest eigenvalue.

4. Gauge transformation

As is well known, we can perform a gauge transformation
χ so that the resulting vector potential A′

out = Aout + ∇χ = 0.
A suitable gauge function5 is χ = −B0a2 tan−1(x2/x1)/2. In the
Schrödinger equation the corresponding gauge transformation is
G = exp(iqχ/ch̄). Under this gauge transformation the Hamiltonian
H⊥(x1, x2) in Eq. (1) is transformed into H⊥ → G H⊥G−1 = H ′⊥ =
(pi + μωcεi j x j/2)2/2μ + μω2

P x2
i /2. Here H ′⊥ is the same Ĥ⊥ .

In the limit of the kinetic energy approaching its lowest eigen-
value the corresponding reduced constraints are the same ϕ̂i in
Eq. (20). Under the gauge transformation G the angular momen-
tum J z = εi j xi p j is transformed into J z → G J z G−1 = J ′

z = x1 p2 −
x2 p1 + qΦ0/2πc. Using the constraints ϕ̂i in Eq. (20) to represent
p1 and p2 by, respectively, the independent variables x2 and x1,
the first term in J ′

z reads x1 p2 − x2 p1 = μωc(x2
1 + x2

2)/2. Thus we
obtain

J ′
z = q

2πc
Φ0 + 1

2
μωc

(
x2

1 + x2
2

)
. (22)

J ′
z is the same J z in Eq. (10). This result shows that the fractional

zero-point angular momentum induced by the BA vector potential
is a real physical observable which cannot be gauged away by a
gauge transformation.

In summary, this Letter explores a “spectator” mechanism in BA
effects. It is clarified that the BA vector potential alone cannot lead
to non-trivial dynamics at quantum mechanical level in the limit
of the kinetic energy approaching one of its eigenvalues. In such a
limit the BA vector potential alone cannot induce a fractional zero-
point angular momentum. When there is a “spectator” magnetic
field the BA vector potential induces a fractional zero-point angu-
lar momentum. The induced effect essentially depends upon the
participation of a “spectator” magnetic field. The “spectator” vector
potential does not contribute to the fractional angular momen-
tum, but plays essential role in guaranteeing non-trivial dynamics
at quantum mechanical level in the required limit. The “spectator”
mechanism is significant in both aspects of theory and experiment.
In the theoretical aspect, it is revealed that, unlike ordinary vector
potentials, the physical role played by the BA vector potential is
subtle. This needs to be carefully analyzed at quantum mechan-
ical level. In the experimental aspect, existence of a “spectator”
magnetic field is necessary for inducing the fractional angular mo-
mentum by the BA vector potential. As an example, the modified
combined trap provides a realistic way to realize this “spectator”
mechanism.

5 This gauge function is singular at x1 = 0. The values of the polar angle φ on
both sides of x2 = 0, x1 < 0 differ by 2π . There is a cut along the negative semi-axis
of x1, the so-called Dirac string. However, there is no need to perform a singular
gauge transformation. See, for example, Ref. [27].
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