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Diabetic retinopathy is a chronic low-grade inflammatory disease; however, the mechanisms
remain elusive. In the present study, we demonstrated that endoplasmic reticulum (ER) stress
was activated in the retina in animal models of diabetes and oxygen-induced retinopathy (OIR).
Induction of ER stress by tunicamycin resulted in significantly increased expression of inflammatory
molecules in the retina. Inhibition of ER stress by chemical chaperone 4-phenyl butyric acid amelio-
rated inflammation in cultured human retinal endothelial cells exposed to hypoxia, and in the ret-
inas of diabetic and OIR mice. These findings indicate that ER stress is a potential mediator of retinal
inflammation in diabetic retinopathy.
� 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction inal vascular leakage in diabetic animals, indicating that a critical
Diabetic retinopathy is the leading cause of vision impairment
in adults in Western world, and this predicament is set to worsen
due to global epidemic of diabetes [1]. Several inter-related path-
ways, such as oxidative stress, polyol pathway, and PKC activation,
have been shown to contribute to diabetes-induced retinal dam-
ages [1]. In addition, diabetic retinopathy is recently recognized
as a chronic low-grade inflammatory disease [2]. We and others re-
ported that inflammatory cytokines, such as tumor necrosis factor-
a (TNF-a), and vascular endothelial growth factor (VEGF) are sig-
nificantly up-regulated in the retina and correlated with vascular
leakage in animal models of diabetes and oxygen-induced retinop-
athy (OIR) [2–4]. The levels of VEGF and TNF-a are also increased in
the vitreous from diabetic patients with retinopathy [5,6]. Inhibi-
tion of the expressions or blockade of the activities of VEGF and
TNF-a suppresses blood–retinal barrier (BRB) breakdown and ret-
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role of inflammation in diabetic retinopathy [7,8]. However, the
mechanisms by which diabetes elicits inflammatory response re-
main elusive.

Endoplasmic reticulum (ER) is the primary intracellular com-
partment responsible for protein biosynthesis and folding. It is also
envisioned as the earliest signal transducing site, responding to
various cellular stressors, such as hypoxia and oxidative stress
[9–11]. ER stress as a result of accumulation of unfolded or mis-
folded proteins in the ER leads to the activation of three ER-local-
ized transmembrane proteins, including inositol-requiring enzyme
1a (IRE1a), PKR-like ER kinase (PERK), and activating transcription
factor 6 (ATF6), which in turn initiate unfolded protein response
(UPR). While transient and low grade ER stress can be overcome
by the UPR, persistent and severe ER stress results in cell apoptosis
and also causes inflammatory gene expression [12–14]. In epithe-
lial and mesenchyme-derived cells, TNF-a expression is up-regu-
lated by ER stress inducers thapsigargin or tunicamycin, and
deficiency of IRE1a significantly decreased ER stress-induced
TNF-a activity [13]. In human aorta endothelial cells, selective siR-
NA targeting of the activating transcription factor 4 (ATF4), an
effector of the PERK UPR arm, attenuate the expression of interleu-
kin 8 (IL-8), IL-6 and monocyte chemoattractant protein-1 (MCP-1)
induced by oxidized lipids [15]. Blockade of ATF4 expression or
activity also mitigates VEGF expression in various types of cells ex-
posed to different stimuli, such as homocysteine, oxidants, and
lsevier B.V. All rights reserved.
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growth factors [16–18]. These results suggest a possible role of ER
stress in the regulation of inflammatory response.

In the present study, we demonstrated, for the first time, that ER
stress is implicated in diabetic retinopathy and in oxygen-induced
ischemic retinopathy. Using ER stress inducer tunicamycin and
chemical chaperone 4-phenyl butyric acid (PBA), we further dem-
onstrated that ER stress is a potential mediator of diabetic-induced
inflammation in retinal endothelial cells and in the retina.
2. Materials and methods

2.1. Animals

C57BL/6J and Akita mice were purchased from the Jackson Lab-
oratory (Bar Harbor, MI). Care, use and treatment of all animals in
this study were in strict agreement with the Statement for the Use
of Animals in Ophthalmic and Vision Research from the Associa-
tion for Research in Vision and Ophthalmology and with the guide-
lines set forth by the University of Oklahoma.

2.2. Mouse model of OIR

OIR mouse model was established as described previously
[4,19]. Briefly, newborn mice at postnatal day 7 (P7) were ran-
domly assigned to experimental or control groups. Mice in exper-
imental groups were exposed to hyperoxia (75% O2) for 5 days
and then returned to normoxia (room air), whilst control groups
were maintained constantly in room air.

2.3. Cell culture

Primary human retinal microvascular endothelial cells (HREC)
were obtained from Cell Systems Inc. (Kirkland, WA) and cultured
in DMEM supplied with 10% fetal bovine serum, 1% heparin, 1% ITS,
1% antibiotics, and 1‰ ECGS as described previously [4]. Cells with
passages of 4–8 were used in the experiments.

2.4. Periocular injection and retina preparation

Periocular injection was performed as described previously
[20]. Briefly, mice were anesthetized with ketamine and xylazine,
and a 30-gauge needle was used to inject 20 ll of desired reagent
into the posterior tenon’s capsule in the inferior temporal quadrant
of the eyeball under an operating microscope. Mice were eutha-
nized at different time points after treatment as indicated. Retinas
were carefully dissected under an operating microscope as de-
scribed [4,20,21], flash frozen with liquid nitrogen and stored at
�80 �C for RNA and protein analysis.

2.5. Real-time reverse transcription (RT)-PCR

TotalRNAwasextractedusingtheRNeasyMiniKit(Qiagen,Valen-
cia, CA) according to manufacturer’s protocol. Real-time RT-PCR was
performed using the iSript cDNA Synthesis Kit and SYBR� Green PCR
Master Mix (Bio-Rad Laboratories, Hercules, CA) as described (41).
The mRNA levels of target genes were normalized by 18s ribosomal
RNA levels. Primers specific for glucose regulated protein 78
(GRP78) (forward, 50-TCATCGGACGCACTTGGAA-30; reverse, 50-
CAACCACCTTGAATGGCAAGA-30) [22] was used in the experiments.

2.6. Western blot analysis

Retinas and cells were lysed in RIPA buffer with protease inhib-
itor cocktail, PMSF and sodium orthovanadate (Santa Cruz Biotech-
nology, Santa Cruz, CA). Protein concentration was quantified by
BCA protein assay (Pierce Biotechnology Inc., Rockford, IL). Fifty
micrograms of protein were resolved by SDS–PAGE and then blot-
ted with specific antibodies: anti-phospho-IRE1a (Abcam, Cam-
bridge, MA), anti-X-box binding protein 1 (XBP1) (Santa Cruz
Biotechnology, CA), anti-phospho-eukaryotic initiation factor
(eIF)2a (Cell Signalling Technology, Boston, MA), anti-ATF4 (Santa
Cruz Biotechnology, CA), anti-GRP78 (Abcam, Cambridge, MA),
anti-VEGF (Santa Cruz Biotechnology, CA), and anti-TNF-a (Abcam,
Cambridge, MA) antibodies. The same membrane was stripped and
reblotted with an anti-b-actin antibody (Abcam) as loading control.

2.7. Immunohistochemistry

Immunohistochemistry was performed on paraffin sections
(5 lm) as described previously [23]. Briefly, retinal sections were
incubated with a rabbit anti-GRP78 antibody (1:500). After exten-
sive washes, the sections were incubated with a Dako EnVi-
sionTM + Single Reagents, a horseradish peroxidase (HRP)-labeled
conjugated with secondary antibody (Dako, Carpinteria, CA), and
then developed with 3,30-diaminobenzidine (Sigma, St. Louis,
MO) as a chromogen.

2.8. Immunofluorescence study in cell culture

GRP78 expression and subcellular location in cultured HREC
were determined by immunofluorescence staining as described
previously [4]. Briefly, HREC were seeded and grown to 80% conflu-
ence on 4-chamber slides (Nalge Nunc International Corp., Naper-
ville, IL). After quiescence for 12 h, cells were exposed to hypoxia
for 16 h. After fixation with 3.7% formaldehyde for 10 min and per-
meabilization, cells were incubated with primary antibody at 4 �C
overnight followed secondary antibody for 1 h. The slides were
visualized and photographed under a fluorescent microscope
(Olympus, Hamburg, Germany).

2.9. Statistical analysis

The quantitative data were presented as mean ± S.D. Statisti-
cal analyses were performed using one-way analysis of variance
(ANOVA) with Bonferroni’s multiple comparison test. Statistical
differences were considered significant at a P value of less than
0.05.
3. Results

3.1. Increased VEGF and TNF-a expression in the retina of Akita mice

The Akita mouse is a genetic model of type 1 diabetes. Previous
studies from us and others showed that inflammatory cytokines
VEGF and TNF-a are major mediators of retinal vascular perme-
ability in STZ-induced diabetic animals [4,7]. Thus, we determined
the expression of VEGF and TNF-a in the retinas of Akita mice. The
results showed that the protein levels of VEGF and TNF-a were in-
creased by 5.45-fold and 2.4-fold, respectively, in the retinas of
Akita mice after 12 weeks of hyperglycemia (Fig. 1A and B). These
results, in keeping with previous studies [4,7,24], indicate a role of
inflammation in retinal damage in Akita mice.

3.2. Up-regulation of GRP78 and activation of IRE1a and eIF2a in the
retina of Akita mice

GRP78 is a prominent ER-resident chaperon, which binds to the
three ER stress sensors, but more stably with misfolded or
unfolded proteins [25]. Thus, upregulation of GRP78 is one of the
most commonly used markers of ER stress. We determined the
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Fig. 1. Over-expression of pro-inflammatory factors and up-regulation of ER stress markers in the retinas of Akita mice. (A) Western blot analysis of TNF-a and VEGF in the
retinas of Akita mice. The membrane was reblotted with b-actin antibody as loading control. (B) Retinal levels of TNF-a and VEGF were quantified by densitometry from four
individual animals (mean ± S.D., n = 4). (C) mRNA level of GRP78 in the retina determined by real-time RT-PCR and normalized by 18S (mean ± S.D., n = 7 in control group and
n = 4 in Akita group). (D) Representative images of GRP78 expression in the retinas from four Akita mice and five littermate controls. Note more intensive signal of GRP78
(brown color) in the inner retina of Akita mice (D-b) when compared to control (D-a). Magnification: 200�. ONL: outer nuclear layer; INL: inner nuclear layer; GCL: ganglion
cell layer. (E) Western blot analysis of phospho-IRE1a, phospho-eIF2a and ATF4 in the retinas of Akita mice. (F) Retinal levels of phospho-IRE1a, phospho-eIF2a and ATF4
were quantified by densitometry (mean ± S.D., n = 8). *P < 0.05 and **P < 0.01.
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expression of GRP78 in the Akita retina by real-time RT-PCR and by
immunohistochemistry. The results showed that GRP78 mRNA was
significantly increased in the retina of Akita mice (Fig. 1C). In keep-
ing, the protein level of GRP78 was also increased in the retina of
Akita mice, with more intensive signals in the inner retina
(Fig. 1D-b). It is notable that GRP78 was constantly expressed at
a modest level in the cytoplasm of cells in the inner nuclear layer
and ganglion cell layer, and the inner segment of photoreceptors
in the non-diabetic control animals (Fig. 1D-a), suggesting GRP78
may play an important role in maintaining the normal ER function
in retinal cells.

We next examined the state of activation of IRE1a and PERK,
two major transmembrane transducers sensing ER stress. The re-
sults showed that the phosphorylation of IRE1a at Ser724 was sig-
nificantly up-regulated, indicating an activation of IRE1a in the
retinas of Akita mice, when compared with age-matched non-dia-
betic controls (Fig. 1E and F). Moreover, robust splicing of XBP1
mRNA by activated IRE1a was observed in these retinas (not
shown). In parallel, phosphorylation of eIF2a was significantly in-
creased in the retinas of Akita mice, indicating increased PERK
activity (Fig. 1E and F). Moreover, expression of ATF4, a down-
stream effector of phosphorylation of eIF2 a was significantly in-
creased (Fig. 1E and F). These findings together indicate that ER
stress is activated in diabetic retinopathy.

3.3. Activation of ER stress and increased inflammation in OIR

OIR is a widely used animal model for ischemic retinal diseases,
such as retinopathy of prematurity (ROP) and proliferative diabetic
retinopathy (PDR) [4,19,26]. We have previously shown that
inflammatory cytokines, including VEGF and TNF-a, are signifi-
cantly up-regulated in the retinas of OIR mice at P16, which con-
tribute to subsequent retinal vascular leakage and
neovascularization in the retina [4,27]. Here we further evaluate
the implication of ER stress in retinal inflammation in OIR. The re-
sults showed that in OIR mice at P15, expression of GRP78 was sig-
nificantly increased in the retina at both the RNA level (Fig. 2A) and
the protein level (Fig. 2B), when compared with non-oxygen-trea-
ted littermate controls. In keeping, phosphorylation of eIF2a and
the expression of ATF4 were also significantly up-regulated in
the retinas of OIR mice (Fig. 2C and D), suggesting that ER stress
is enhanced in the OIR retina.
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3.4. Up-regulation of inflammatory cytokines in the retina by ER stress
inducer tunicamycin

To further confirm the causative role of ER stress in retinal
inflammation, we used a common ER stress inducer tunicamycin
to determine whether ER stress is sufficient to induce retinal
inflammation in vivo. Periocular injection, a non-invasive local
delivery route, was employed to minimize the side effects of intra-
vitreal injection on retinal inflammatory status. Twenty-four hours
after tunicymycin (10 lg/eye) treatment, the expression of TNF-a
and VEGF was robustly increased in the retina by 5.1-fold and
4.3-fold, respectively, when compared to that in the contralateral
eyes receiving vehicle treatment (Fig. 3A,B). Activation of ER stress
was confirmed by increased expression of ER markers, such as
GRP78 and ATF4 (Fig. 3C,D). Periocular injection of a low dose
(1 lg/eye) of tunicamycin also induced a significant increase of
TNF-a and VEGF expression in the retina (not shown).
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Fig. 3. Up-regulation of pro-inflammatory factors in the retina by tumicamycin. Adult
control in the contralateral eye. Twenty-four hours after injection, retinas were dissecte
stress markers (GRP78 and ATF4) (C and D) were determined by Western blot analysis
3.5. Inhibition of ER stress by chemical chaperone ameliorates
hypoxia-induced inflammation in retinal vascular endothelial cells

Hypoxia is an important feature of diabetic retinopathy and a
potent inducer of inflammation in the retina [4,28]. Our previous
studies showed that exposure of retinal vascular endothelial cells
to hypoxia causes significant increase of expression of inflamma-
tory cytokines, including VEGF and TNF-a [4]. Thus, here we
examined whether hypoxia induces inflammatory cytokine over-
expression via ER stress in cultured HREC. Exposure of HRECs to
hypoxia (2% O2) for 16 h significantly increased GRP78 expression
(Fig. 4A), in parallel with increased phosphorylation of IRE1a and
eIF2a, and expression of ATF4 (Fig. 4B and C), indicating an activa-
tion of ER stress by hypoxia. Hypoxia also significantly up-regu-
lated VEGF and TNF-a expression as expected (Fig. 4D). Pre-
treatment of cells with PBA attenuated hypoxia-induced VEGF
and TNF-a over-expression (Fig. 4D), in parallel with a decrease
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in ER stress markers (Fig. 4B and C). These results suggest that ER
stress is, at least in part, responsible for hypoxia-induced inflam-
mation in retinal endothelial cells.

3.6. Local or systemic administration of PBA mitigated VEGF expression
in the retina of Akita or OIR mice

We further determined the effects of PBA on VEGF expression in
the retina of Akita and OIR mice. Previous studies showed that sys-
temic administration of PBA restored blood glucose homeostasis in
diabetic animal models [10]. Thus, PBA (0.4 lmol/eye) was deliv-
ered by periocular injection and same amount of vehicle was in-
jected into the counterlateral eye as control in the same Akita
mouse to avoid possible interference of blood glucose on retinal
inflammation. The treatment was given in the Akita mice after
hyperglycemia onset, twice a week, for 6 weeks. The OIR mice re-
ceived daily intraperitoneal injection of PBA (40 mg/kg body
weight) from P7 to P14. The expression of VEGF in the retina was
measured by Western blot analysis. The results showed that retinal
VEGF expression was markedly decreased by PBA treatment in
both the Akita mice (Fig. 5A) and the OIR mice (Fig. 5B).

4. Discussion

ER stress has been implicated in the pathogenesis of a broad
range of diseases involving accumulation of unfolded or misfolded
proteins in the ER [9,10,25]. Interestingly, recent evidence suggests
that ER stress is also a possible cause of inflammation [14,15,29].
Several studies demonstrated that ER stress up-regulated expres-
sion of inflammatory cytokines, such as TNF-a, in various cultured
cell lines [13,15,16]. In the present study, we demonstrated that ER
stress is elevated in the retina of animal models of diabetes and
OIR, two major diseases causing BRB breakdown and retinal vascu-
lar leakage. Furthermore, we showed that induction of ER stress by
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tunicamycin is sufficient to elicit retinal inflammatory gene
expression, and moreover, inhibition of ER stress by chemical
chaperone PBA significantly attenuated inflammatory cytokine
VEGF and TNF-a expression in cultured primary HREC and in the
retina of Akita mice and OIR mice. These results provide the first
evidence that ER stress contributes to retinal inflammation in dia-
betic retinopathy.

The Akita mouse model is a commonly used genetic model of
type 1 diabetes. Several features of non-proliferative diabetic reti-
nopathy have been observed in the retinas of Akita mice, including
vascular leakage and formation of acellular capillaries [24]. In
keeping, the expression of VEGF and TNF-a were significantly in-
creased in the Akita retinas (Fig. 1). Increased expression of VEGF
and TNF-a was also observed in the retinas of OIR mice (Fig. 2), a
well-accepted model for proliferative diabetic retinopathy, which
develops retinal ischemia and consequent aberrant new vessel
growth in the retina. Interestingly, we found that multiple ER
stress markers, including GRP78, phospho-IRE1a, and phosphor-
eIF2a were significantly up-regulated in the retina of both animal
models. Although the mechanisms remain elusive, we speculate
that hypoxia is a possible cause of ER stress in the retina of diabetic
and OIR mice. It is well accepted that intraretinal hypoxia is an
important pathophysiological feature of diabetic retinopathy
[28,30]. Supplement of inspired oxygen to patients with chronic
diabetic macular edema significantly reduced retinal thickness,
and the discontinuation of oxygen therapy caused increased thick-
ening of the macula, suggesting that retinal hypoxia is involved in
the development and maintenance of diabetic macular edema [31].
Remarkable intraretinal hypoxia has also been observed in OIR
mice at P12 (not shown). In addition, there is overwhelming evi-
dence showing that hypoxia induces expression of inflammatory
cytokines, such as VEGF and TNF-a, which mediate endothelial cell
injury and blood–retinal barrier breakdown in diabetic retinopathy
[4,32,33]. Our results demonstrated that exposure of cultured pri-
mary HREC to hypoxia induced significantly increased expression
of GRP78, and phosphorylation of IRE1a and eIF2a (Fig. 4), suggest-
ing a potent effect of hypoxia on inducing ER stress in retinal endo-
thelial cells. Moreover, attenuation of ER stress by PBA significantly
mitigated VEGF and TNF-a expression induced by hypoxia, indicat-
ing that ER stress is, at least in part, responsible for hypoxia-in-
duced inflammatory cytokine expression in retinal endothelial
cells.

In addition to hypoxia, a number of deleterious factors, such as
oxidant generation, advanced glycation end product formation,
growth factor overexpression, contribute to endothelial cell dys-
function in diabetes [32–35]. Among these factors, oxidative stress
is another potential cause of ER stress in the diabetic retinas. Sev-
eral studies demonstrated that various oxidants or oxidatively
modified lipids induce ER stress in cultured endothelial cells and
neurons [29,36,37]. Moreover, accumulation of misfolded proteins
in the ER results in generation of reactive oxygen species [38], and
deletion of C/EBP homologus protein (CHOP), a downstream effec-
tor of PERK–eIF–ATF4 pathway, significantly reduced oxidative
stress and pancreatic b cell apoptosis [11]. These studies suggest
that oxidative stress is closely associated with ER stress. We found
that retinal expression of 3-nitrotyrosine (3-NT) is markedly in-
creased in Akita mice (not shown), indicating enhanced production
of peroxynitrite, a potent oxidant generated from the reaction of
superoxide and nitric oxide in the diabetic retina. Significantly in-
creased NADPH activity and lipid hydroperoxide production was
also observed in the retina of OIR mice [39,40]. Thus, it would be
great interest to pursue if and how oxidative stress interacts with
ER stress and the UPR in diabetic retinopathy in future studies.

Taken together, our study demonstrated that ER stress is acti-
vated in the retina and retinal endothelial cells under diabetic
and hypoxic conditions. At least two UPR branches are involved
in ER stress response and may contribute to inflammation in dia-
betic retinopathy. Further studies are warranted to investigate
which UPR pathway(s) is responsible for the regulation of inflam-
matory response in diabetic retinopathy.
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