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Abstract

The energy consumption in Egypt has increased sharply in the past few years, and ultra-energy efficient technologies are desperately
needed for the national energy policy. This paper discusses and explores the possibilities offered by the use of nanomaterial technology
which integrates with building envelope to improve the Energy efficiency and reduce energy consumption in buildings by the use of
energy simulation software. The current study was aimed at testing the thermal performance of the Nano Thermal Model (NTM)
and measuring heat-Transfer Rate, especially the quantity of Heat gain/loss through fabric, compared to conventional building envelope
materials (baseline model) under typical Egypt-Aswan weather conditions. The results indicate the use of nanomaterials can improve the
thermal performance of a building in hot dry climate like Egypt, that especially needed cooling loads during the summer months. It also
shows that the nanomaterials integrated with the envelope of the future building will achieve the lowest scientifically and empirically
recorded values of heat transition in the field of construction. This lowest rates of the fabric heat transfer through the envelope is up
to 72% when comparing the performance of the wholly Nano Thermal Model to the traditional model improved.
© 2014 The Gulf Organisation for Research and Development. Production and hosting by Elsevier B.V.
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1. Introduction profits for their great commercial value (Ge and Gao,

2008). Architectural Engineering and construction technol-

The sector of architecture, engineering and construction
may accept a wide range of Nanotechnology applications
and the nanomaterials. There is an increasing rate of
spending and financial support for developing the nanoma-
terial technology with the target of gaining short run
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ogy which are based on nanomaterials experience a lot of
significant changes and constant developments that were
the most important results of the chief technologies in the
21st century. Creating all the suitable conditions for
achieving accuracy at the molecular and atomic level in
materials engineering has led to production of materials
of many unique qualities which in turn has provided new
and promising solutions for many problems such as; reduc-
ing the rate of heat absorption in the outer envelope of the
building, fire resistance, avoiding energy loss, resources
conservation, reducing pollution, raising the internal envi-
ronment efficiency, extending the life span of the building
materials, lowering the costs of maintenance and process-
ing, reducing and controlling the construction loads and
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increasing the tensile strength in the structural elements,
etc. (Lalbakhsh and Shirazpour, 2011).

Therefore, the nanomaterials integrated with the enve-
lope of the building are considered excellent economic
alternatives which save a lot of money while raising the effi-
ciency of the constructed environment and addressing the
future environmental challenges (Lalbakhsh and Shirazpour,
2011). Nanomaterial technology will serve to provide much
more internal and external architectural designs with
human senses interaction due to the freedom given to the
architects to develop the function and format to meet the
various needs of users.

2. Background of nanomaterials

The term Nano is the literal derivative of the Greek
word “Nanos” which means “dwarf” or a very small thing
(Qian and Juan, 2004). Overall, the nanomaterials can be
defined according to the scientific committee of the Euro-
pean Union as “Materials which have one or more external
dimensions or an internal structure which can exhibit new
properties compared to the same materials without the
nanometric characteristics, or they are a sort of materials
which are composed of separate functional parts and many
of them have one or more dimensions with a measure of
100 nanometre or less”.

3. An overview of energy performance analysis

3.1. Background of energy performance of the building
envelope

Climate change and increasing energy costs have drawn
large attention to energy performance and efficiency. In
2010, electricity consumption in residential (39.9%), indus-
trial (32.7%), commercial (8.1%) and governmental (4.6%),
buildings reached 58% of total electric energy demand in
Egypt. Different studies have shown that the primary
energy supply will not meet the demand starting from
2015; this gap is widening after 2020 (NREA, 2010). As a
result, the demand for building envelope analysis, in which
the physical separator of the building’s interior and the
exterior environment is evaluated, has increased. Rising
energy costs, government regulations, new construction
techniques and materials, and growing concerns about
occupant health are further boosting this demand.

Minimising heat transfer through the building envelope
is crucial for reducing the need for space heating and cool-
ing. In cold climates, the building envelope can reduce the
amount of energy required for heating; in hot climates, the
building envelope can reduce the amount of energy
required for cooling. A building envelope is the key factor
that determines the quality and controls the indoor condi-
tions irrespective of transient outdoor conditions (Sadineni
et al., 2011). The inputs to Envelope-Related Energy
Demand are areas of envelope elements (external walls,
roofs and windows), U-values of envelope materials and

site related parameters, concerning temperature and solar
irradiation (Granadeiro et al., 2013).

The thermal energy performance of the building enve-
lope and sustainability is significant to achieve optimal per-
formance of buildings. Moreover, researches have shown
that building envelopes contribute more than 50% of the
embodied energy distribution in major building elements
in residential buildings; it also contributes approximately
50-60% of the total heat gain in buildings (Mwasha
et al., 2011).

3.2. The fabric heat transfer

Whenever there is a temperature difference between the
conditioned indoor space of a building and outdoor ambi-
ent, heat is lost from buildings through the fabric of the
building itself (roof, walls, floor, windows and doors) and
through infiltration of cold air via any holes and gaps
(Oxford, 2013). This is known as fabric heat gain or loss,
depending upon whether heat transfer is to the building
or from the building, respectively. The fabric heat transfer
includes sensible heat transfer through all the structural
elements of a building, but does not include radiation heat
transfer through fenestration. Exact analysis of heat trans-
fer through building structures is very complex, as it has to
consider (Nptel, 2013):

1. Geometrically complex structure of the walls, roofs etc.
consisting of a wide variety of materials with different
thermo-physical properties.

2. Continuously varying outdoor conditions due to varia-
tion in solar radiation, outdoor temperature, wind
velocity and direction etc.

3. Variable indoor conditions due to variations in indoor
temperatures, load patterns etc.

For the fabric heat transfer calculations, the indoor con-
ditions are generally assumed to be constant to simplify the
analysis.

4. Model verification
4.1. Content and scope of the study

The research has done the empirical study — complemen-
tary of the analytical study at the level of design concepts
and their contributions to the sustainable building assess-
ment systems — relating to designing a thermal model to
simulate the energy performance in the future architecture
of a nano building constructed with nano materials which
is illustrated in detail in the previous analytical study.

The empirical part aims at selecting the thermal perfor-
mance for the nano model and indicating rates of saving
energy consumption, rates of gained and lost energy, rates
of internal thermal loads. This is done by comparing the
nano model with the standard model and traditional build-
ing materials — to investigate the possibility of achieving
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sustainability through implementing the comprehensive
points and high rates of performance of energy that repre-
sents the greatest relative weight in all sustainable building
assessment systems.

The empirical study was designed to include the struc-
ture of the envelope of the nano building and conducting
the study at various levels of design to ensure achieving
the required rates of energy performance at each level
apart, then examining the whole model so that the study
involves examining the performance of the following
elements:

- Paints, coatings and insulation materials in the envelope
of the building “Thermal Model Solids”.

- Windows and openings in the envelope of the building
“Thermal Model Voids”.

Fig. 1 shows the chosen base case thermal model in the
study. When making the comparison among the above
mentioned elements regarding nanomaterials (solids and
voids), all other factors such as occupancy schedules, oper-
ation schedules, orientation, ventilation rates, infiltration
rates and internal design conditions are the same as shown
in Fig. 2. All measures and empirical tests were done using
the methods of simulation and analysing the building’s
energy with advanced software through Autodesk Ecotect

Analysis Grid

[No Data Available]

Value Range: 0.00 - 1.00
© ECOTECT v

¥ CALCULATED INFORMATION

Zones: 3

Total Area: 297.760 m2
Floor Area: 72.080 m2
Volume: 173.111 m3

¥ INTERNAL DESIGN CONDITIONS
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Internal Gains Sensible Gain: Latent Gain:
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small power loads per unit
floor area.

l W m2

[(No Schedule]

Infiltration Rate Air Change Rate:  Wind Sensitivity:

Values for the exchange of |g.50 I ,I ID.ZS | ,I Air changes / hr
air between zone and _
outside environment. |[N0 Schedule] v | &

Figure 2. The calculated information of the thermal base case for zone3.

Analysis 2011 software. From comparison between differ-
ent computer based programs, study chooses to use Ecotect
program because of its facilities with respect to make a per-
fect induction about thermal performance of building and

Figure 1. The base case thermal model/Autodesk Ecotect Analysis 2011.
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Figure 3. Summary of climatic conditions in Aswan city during the simulation.
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Figure 4. Thermal properties of the baseline model materials A — Paints and coatings.

wonderful user interface which is easily used by architects
(Crawley et al., 2008). All results are put into diagrams,
tables and charts, and then they were compared and ana-
lysed comprehensively to indicate what is concluded in this

respect.

The rates of thermal flow through the envelope of the
building were also measured given the value of whole ther-
mal transmission of the model’s elements and calculating
the rates of heat exchange and total heat exchange of the
outer envelope.
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Figure 5. Thermal properties of the baseline model materials B — Paints and coatings.
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Figure 6. Thermal properties of the Nano model materials — Paints and coatings.

Fabric Gains - Qc + Qs - All Visible Themmal Zones ASWAN, EGY Watts
Hr 360.929 412.389 395.97 700
392.3 436.118 421.828
22 437.033 475.209 455.891
470.858 508.025 774817 560
20 359.09 505.396 534.311 491.436 357.434 420
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14 366.544 539.302 616.326 650.037 634.698 553.405 400.295
504.324 576.2 613.858 608.697 498.593 362.043
12 536.308 575.284 575.047 450.867
476.881 523.186 519.601 383.143
10 412.209 459.709 446.274

387.378 369.117
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Figure 7. Rates of fabric heat transfer through the envelope of the baseline model A — Paints and coatings.

The model and the nanomaterial data were taken from  specified in Nanotechnology that play a central role in
the researches and scientific and technical reports of the affecting the rates of energy consumption (Oxford, 2013;
research which follow the companies and organizations  Nansulate, 2013; Nanogel, 2013; Dowcorning, 2013).
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Figure 8. Rates of fabric heat transfer through the envelope of the baseline model B — Paints and coatings.
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Figure 9. Rates of fabric heat transfer through the envelope of the Nano model — Paints and coatings.
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Figure 10. Thermal properties of the baseline model materials — Thermal insulation of external walls.
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Name |Width  |Densty |SpHeat |Conduct |Type
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Figure 11. Thermal properties of the Nano model materials — Thermal insulation of external walls.
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Figure 12. Rates of fabric heat transfer through the envelope of the baseline model — Thermal insulation of external walls.
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Figure 13. Rates of fabric heat transfer through the envelope of the Nano model — Thermal insulation of external walls.
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Layer Name |Width _ [Densty |SpHeat [Conduct [Type
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Figure 14. Thermal properties of the baseline model materials — Thermal insulation of external roofs.

4.2. Location and climate

The research study was conducted in the city of Aswan —
as a standard model for cities with very hot and dry climate
in Egypt. It is the capital of Aswan governorate and the
most important city in Nuba — the cultural region which
was the southern gate of Egypt for a long time and which
lies on the east bank of the River Nile.

The above variables were formulated under the climate
stability of the region in Aswan city and under the con-
stancy of all the additional building factors except those
included in the variables of the study. The climatic condi-
tions during the experiment are summarised in Fig. 3.

5. Validation tests

5.1. Paints and coatings of the envelope of the building
“Solids — Part A”

The thermal model in the empirical study was assumed
by designing the section of the envelope provided with tra-
ditional, nano paints and coatings and indicating the ther-
mal and physical characteristics and comparing rates of
thermal behaviour and performance of the materials used
in the alternatives studied as shown below.

The Baseline model [A] (traditional building materials).
See Fig. 4.

(1) The outer layer: traditional paints — cement layer,
30 mm thick.

(2) Brick masonry layer: 250 mm thick.

(3) The internal layer: traditional paints — cement layer,
30 mm thick.

The Baseline model [B] (traditional building mate-
rial + outer Nano materials). See Fig. 5.

(1) The outer layer: Nano paints layer, 30 mm thick.

(2) Brick masonry layer: 250 mm thick.
(3) The internal layer: traditional paints — cement layer,
30 mm thick. See Fig. 5.

The Nano model (Nano materials). See Fig. 6.

(1) The outer layer: Nano paints layer, 30 mm thick.
(2) Brick masonry layer: 250 mm thick.
(3) The internal layer: Nano paints layer, 30 mm thick.

5.1.1. Comparison of the thermal performance of paints and
coatings
The performance of the Baseline model [A]. (See Fig. 7).
The performance of the Baseline model [B] (traditional
building materials + outer Nano materials). (See in Fig. 8).
The performance of the Nano model (Nano materials).
(See Fig. 9):

5.2. Thermal insulation of the building envelope “Solids —
Part A”

5.2.1. External walls

The thermal model in the study was assumed by design-
ing the section of the envelope provided with traditional or
Nano thermal insulation and indicating the thermal and
physical characteristics and comparing rates of thermal
behaviour and performance of the materials used in the
alternatives studied as shown below.

The Baseline model (traditional building materials). See
Fig. 10.

(1) The outer layer: traditional paints — cement layer,
20 mm thick.

(2) Brick masonry layer: 100 mm thick.

(3) Thermal insulation layer: polystyrene foam, 50 mm
thick.
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Layer Name |Widh  |Density |Sp.Heat [Conduct. |Type
1. | Ceramic Tiles 100 20000 850000 1.200 25
2. | Cement Mortar 100 16500 920000 0.720 35
3. |Sand 100 22400 840000 1.740 45
50.0 1850 800000 0003 45 ouTsioe
5. | Concrete Floor 150.0 23000 656900 0753 35 T e e e e e
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Thermal Properties
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Figure 15. Thermal properties of the Nano model materials — Thermal insulation of external roofs.

Fabric Gains - Qc + Qs - All Visible Thermal Zones
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445.467 540.583 574.021 561.834 404.622
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425.781 502.686 535.512 525.066 422.81 301.114

14 425.907 493.757 525.366 510.762 440.832 303.395
392.792 456.085 490.28 486.419 391.209
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Figure 16. Rates of fabric heat transfer through the envelope of the baseline model — Thermal insulation of external roofs.

(4) Brick masonry layer: 100 mm thick.
(5) The internal layer: traditional paints — cement layer,
20 mm thick.

The Nano model (Nano materials). See Fig. 11.

(1) The outer layer: traditional paints — cement layer,
20 mm thick.

(2) Brick masonry layer: 100 mm thick.

(3) Thermal insulation layer: Nano Vacuum Insu-
lated Panel, 50 mm thick.

(4) Brick masonry layer: 100 mm thick.

(5) The internal layer: traditional paints — cement layer,
20 mm thick.

5.2.2. Comparison of the thermal performance of thermal
insulation of external walls

The performance of the Baseline model (traditional
building materials). See Fig. 12.

The performance of the Nano model (Nano materials).
See Fig. 13.

5.3. External roofs

The thermal model in the empirical study was assumed
by designing the section of the outer envelope provided
with traditional or nano thermal insulation and indicating
the thermal and physical characteristics and comparing
rates of thermal behaviour and performance of the materi-
als used in the alternatives studied as shown below:

The Baseline model (traditional building materials). See
Fig. 14.

(1) The outer layer: ceramic tiles, 10 mm thick.

(2) Cement mortar layer: 10 mm thick.

(3) Sand layer: 10 mm thick.

(4) Thermal insulation layer: polystyrene foam, 50 mm thick.
(5) The internal layer: concrete floor, 150 mm thick.
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Fabric Gains - Qc + Qs - All Visible Thermal Zones

ASWAN, EGY Watts

Hr 212.702 264.133 296.097 288.332 212.402 -

215.207 274.986 302.881 297.161 218.498
22 224517 294.226 319.877 311.36

723181 304577 330,151 372522 an
20 225.556 314.138 334.592 309.912 223.401 —

234.478 315.424 333.754 310.913
18 244,543 316.017 330.928 318.862

260.091 317.404 336.706 330.38 238.066 -
16 257.697 305.062 328.885 320.916 248.36

261.954 309.498 331.663 32352 261.419 -
14 267.71 311.205 334.588 322.638 275.226

250.656 291.766 318.284 312.04 245.242 -
12 234.334 277.626 305.361 301.753 226.562

212.353 251.552 284.669 280.532 197.272 -
10 180.208 230.37 262.047 254.089 170.143

205.051 237.964 225.928 -

08 185.427 210.764 198.12 -

179.577 193.466 186.219
06 189.736
192.07

04 165.565 232.409

202.229 274.465 b 177.662
02 216.222 254.48 286.531 B 194.264

225.082 268.182 300.588 220.167

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Figure 17. Rates of fabric heat transfer through the envelope of the Nano model — Thermal insulation of external roofs.
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1M Glass Standard 6.0 23000 836800 1.046 75

UValue (W/m2 K} 6.000
Admittance (W/m2 K} 6.000
Solar Heat Gain Coeff, (0-1) 0.94
Visdle Transmittance (0-1) 092
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AR Solar Gain (Heavyw) 047
AR Solar Gain (Lightwt) 064
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Figure 18. Thermal properties of the baseline model materials — Single glazed glass.

Layer Name |widh  |Density |SpHeat |Conduct |Type
Glass Standad 6.0 23000 836800 1046 75
it Gap 300 13 1004000 5560 5

Glass Standad 6.0 23000 (836800 1046 75

w|n|=

UValue (W/m2 K} 2710
Admittance (W/m2 K} 0840
Solar Heat Gan Coeff. (01} 0.75
Visble Transmittance (0-1) 092
Refractive Index of Glass:  0.06
Ak Solar Gan (Heavpwt) 021
AR Solar Gain (Lightwt): 029

OUTSIDE
INSIDE

Thickness (mm}): 420
Weight (kg} 27.639
Thermal Properties of Building Materials

Figure 19. Thermal properties of the baseline model materials — Double glazed glass.

The Nano model (Nano materials). See Fig. 15. (3) Sand layer : 10 mm thick.
(1) The outer layer: ceramic tiles, 10 mm thick. (4) Thermal insulation .layer: Nano Vacuum Insu-
(2) Cement mortar layer: 10 mm thick. lated Panel, 50 mm thick.
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ayet Name [Wdh |Densiy |Sp.Hed ICondueL ]Twe
[ Glass Standad 100 80.0 800000 0012 75
U-Value (W/m2.K} 0,930
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Figure 20. Thermal properties of the Nano model materials — NanoGel glass.
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Figure 21. Rates of fabric heat transfer through the envelope of the baseline model — Single glazed glass.
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Figure 22. Rates of fabric heat transfer through the envelope of the baseline model — Double glazed glass.
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Fabric Gains - Qc + Qs - All Visible Thermal Zones

ASWAN, EGY

Hr 193.11 233.092 257.079 252.986 194.238 132.967
190.901 236.185 257.277 255.205 192.769
22 193.269 244.458 265.508 261.184 194.518
184.589 245.147 265.998 254.505 185.635
20 178.009 243.587 261.294 243.982 174.319
175.323 234.983 250.411 233.754 160.205
18 174.087 227.105 237.446 229.596 158.938
178.478 219.337 233.582 229.222 164.479
16 174.615 208.366 224.647 219.829 169.852
178.232 213.144 229.44 222.718 178.163
14 183.349 215.048 234.567 22411 187.073
173.592 203.735 226.01 218.937 167.102
12 164.755 198.237 221.948 216.492 158.385
181.172 208.41 202.614
10 171.838 197.68 189.699
160.203 186.035 175.657
08 154.24 173.76 162.893
156.468 168.685 160.444
06 161.727 172.253 160.587
173.152 180.461 172.722
04 157.321 201.883 216.134 204.655 143.944
191.947 230.876 253.239 243 169.314
02 203.524 237.148 261.751 252177 186.21 140.338
209.399 244.877 268.796 263.31 206.507 [ 149.007
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Figure 23. Rates of fabric heat transfer through the envelope of the Nano model — NanoGel glass.
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Figure 24. Rates of fabric heat transfer through the envelope of the baseline model.

(5) The internal layer: concrete floor, 150 mm thick.

5.3.1. Comparison of the thermal performance of thermal
insulation of external roofs

The performance of the Baseline model (traditional
building materials). See Fig. 16.

The performance of the Nano model (Nano materials).
See Fig. 17.

5.4. Windows and opening of the building envelope “Voids —
Part B”

The thermal model in the empirical study was assumed
by designing the section of the envelope provided with

Watts
270

216

162

Watts
700

560

S
n
o

traditional or Nano glass indicating the thermal and phys-
ical characteristics and comparing rates of thermal behav-
iour and performance of the materials used in the
alternatives studied as shown below:
The Baseline model (traditional building materials):

See Fig. 18.

thick. See Fig. 19.

(A) Single glazed glass: one layer of glass, 6 mm thick.

(B) Double glazed glass: two panes of glass (low-¢), 6 mm

The Nano model (Nano materials). See Fig. 20.
One layer of NanoGel glass, 10 mm thick.
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5.4.1. Comparison of the thermal performance of glass The performance of the Nano model (Nano materials).
windows See Fig. 25.

The performance of the Baseline model (Single glazed).
See Fig. 21.

The performance of the Baseline model (Double glazed 6. Discussion and conclusion
— Low e). See Fig. 22.
The performance of the Nano model (Nano materials). From the comparison among all the previous cases and
See Fig. 23. simulation studies which are summarised in Figs. 26-28, we
can conclude that:
5.5. The overall thermal performance of the building

envelope - The thermal performance of the Nano paints was totally
better than that of the traditional paints. It reduced the rates

The performance of the Baseline model (traditional of the heat exchange process outcome through the outer
building materials). See Fig. 24. envelope to 40% in the case of the external and internal

Fabric Gains - Qc + Qs - All Visible Thermal Zones ASWAN, EGY Watts

Hr 103.62 129.139 148.226 144,192 105.368 -
108.628 142,422 158.902 153.137 113.143
22 115.03 156.359 168.321 159.788 116.857 -
117.027 161.296 172172 158.31 113.437
20 113.39 160.719 164.499 150.182 107.726 -
115.384 155.476 162.012 150.874 110.923
18 131.217 165.697 174.077 167.465 124.212
97.6993 150.284 182.486 192.887 188.272 137.367 -
16 98.3673 153.517 180.228 197.37 189.523 144.466
99.3754 155.442 180.401 195.605 190.237 151.188 112.38 -
14 98.5681 157.13 182.835 195.333 189.522 161.622 -
143.363 167.653 180.961 178.803 143.314
12 132.46 156.352 168.747 168.734 130.115
121.857 145514 159.727 159.921 117.186 -
10 102.452 132.076 144,958 142,342 98.3518
115.319 130.439 124.074 -
08 100.313 112,174 104.85
94.0481 99.4506 -
06 97.4776 106.22
112.632 118.41 116.406 -
04 120.743 129.117 125.362 99.6087 -
119.207 131.866 128.731 104.2
02 116.449 13213 126.722 102.463
I 112.71 130.341 126.132 97.2761
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Figure 25. Rates of fabric heat transfer through the envelope of the Nano model.
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Figure 26. Achieving the lowest value recorded scientifically of heat transfer values of Nano model which amounted to over 70% when compared to the
baseline model.
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Figure 27. Achieving ultra-low U-values and advanced performance of Nano model less than baseline model.

18

16

14
12.05
= 10.57
—

10

Thermal Lag (hrs)

' 11.2
I

Paints and coatings

® Baseline model

Thermal insulation-External

walls

® Nano model

Thermal insulation-External
roofs

m Baseline model B

Figure 28. Increasing the thermal lag values of Nano model compared to the baseline model.

surfaces and up to 30% in the case of the external surfaces
only. This confirms the possibility of access to convergent
rates in the thermal performance in both cases.

Using the Nano insulating layers in the outer walls can
achieve better values of fabric heat transfer than walls
insulated with the traditional substances (such as poly-
styrene) which were of the best insulating substances
that have high rates of performance. The study
concluded that Thermal transmittance coefficient
(U-value) is eight (8) times less than traditional

insulation materials, which has resulted in reducing rates
of fabric heat transfer through the envelope by 45%.
Achieving optimal values of Thermal transmittance coef-
ficient (U-value) of the roof insulation that is nine (9)
times less than traditional insulation materials, as well
as reducing the outcome of fabric heat transfer between
the outer environment and the inner space by 44%.

The significant influence of windows in the building
envelope on the thermal performance and heat exchange
processes can be achieved by using Nano glass material.
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They led to reduction in the heat exchange processes
over the windows made of single monolayer glass by
81%. This value was 55% with respect to the windows
made of dual-layer low-emission glasses, which are of
the best types in reducing rates of thermal transition
and enhancing the thermal performance of the inner
space.

The nanomaterials integrated with the envelope of the
future building achieved the lowest scientifically and
empirically recorded values of heat transition in the field
of construction. The lowest rates of heat exchange in the
envelope is up to 72% when comparing the performance
of the wholly Nano Thermal Model to the traditional
model improved.

Using the nanomaterials can improve the thermal per-
formance of a building, especially needed cooling loads
during the summer months, and achieve an ultra-low
U-value and advanced performance of fabric gains
(Walls: 40% — roofs: 44% — Windows: 81% — Overall:
72%) less than baseline model.

The thermal lag value of the Nano paints (12.05 h) and
Nano insulation (walls: 16.48 h — roofs: 12.66) was bet-
ter than that of the traditional insulation materials.
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