Communication

The number of permutations containing exactly one increasing subsequence of length three

John Noonan*
Department of Mathematics, Temple University, Philadelphia, PA 19122, USA

Received 19 September 1995
Communicated by Ira Gessel

Abstract

It is proved that the number of permuations on $\{1,2, \ldots, n\}$ with exactly one increasing subsequence of length 3 is $\frac{3}{n}\binom{2 n+3)}{n}[0,0,1,6,27,110,429, \ldots$ (Sloane A3517)].

Given a permutaion $\sigma \in S_{n}$, an $a b c$ subsequence is a set of three elements, $\sigma(i), \sigma(j), \sigma(k)$, with $\sigma(i)<\sigma(j)<\sigma(k)$ and $i<j<k$. It is known [2-4] that the number of permutations on $\{1,2, \ldots, n\}$ with no $a b c$ subsequences is given by the Catalan number $1 /(n+1)\binom{2 n}{n}$. A natural question is: is there a nice expression for the generating function $\sum_{r=0}^{\left(\frac{n}{3}\right)} B(n, r) q^{r}$, where $B(n, r)$ is the number of permutations on $\{1,2, \ldots, n\}$ with exactly $r a b c$'s, for $1 \leqslant r \leqslant\binom{ n}{3}$? Another question is, for a fixed r, what can one say about the sequence in $n, B(n, r)$? Doron Zeilberger conjectures that for any given r, the coefficients $B(n, r)$ of the generating function are P-recursive in n, i.e. they satisfy a linear recurrence with polynomial coefficients. This is supported by the fact that $B(n, 0)$, being closed form, satisfies a first-order recurrence and hence is P-recursive.

It would be too much to hope for a closed form formula for $B(n, r)$ for general r, and a priori, there is no reason to hope that even $B(n, 1)$ is closed form. To our surprise $B(n, 1)$ did turn out to be closed form, and in this paper we present and prove such a formula. We hope to treat $B(n, r)$, for $r>1$, in a subsequent paper.

Theorem. The number of permutations on n objects that have exactly one abc subsequence is

$$
\begin{equation*}
\frac{3}{n}\binom{2 n}{n+3} \tag{1}
\end{equation*}
$$

[^0]As is the case with many results, in order to prove this, we must first look at a more general result. For $\sigma \in S_{n}$, let $\phi_{k}(\sigma)=\mid\{(i, j): \sigma(i)<\sigma(j)=k$ and $i<j\} \mid$. Let $P_{(n, I)}$ denote the set of all $\sigma \in S_{n}$ with no $a b c$ subsequences and for which $\phi_{j}(\sigma)=0$ for all $j \leqslant I$. Let $P(n, I)=\left|P_{(n, I)}\right|$. The result that the number of permutations on n elements with no $a b c$ subsequences is a Catalan number can be stated as $P(n, 1)=1 /(n+1)\binom{2 n}{n}$. Notice that $P(n, n)=1$. Furthermore, from our definition of $P_{(n, I)}$ it follows that $P_{(n, 0)}=P_{(n, 1)}$.

Lemma 1.

$$
\begin{equation*}
P(n, I)=\binom{2 n-I-1}{n-I}-\binom{2 n-I-1}{n-I-2} . \tag{2}
\end{equation*}
$$

These are the famous ballot numbers, and the proof below can be easily bijectified. Erikson and Linusson [1] had a similar result. We will show that both sides of (2) satisfy the same recursion;

$$
F(n, I)=F(n-1, I-1)+F(n, I+1) \text { for } n>0 \text { and } I>0,
$$

with initial conditions

$$
F(n, 0)=F(n, 1) \quad \text { for } n>0
$$

and

$$
F(n, n)=1 \quad \text { for } n>0
$$

That the right-hand side of (2) satisfies $\left(2^{\prime}\right),\left(2^{\prime \prime}\right)$, and $\left(2^{\prime \prime \prime}\right)$ is purely routine and is left to the reader. As a result of our definition, $P_{(n, 0)}=P_{(n, 1)}$. Furthermore, from the definition of $P_{(n, I)}, P_{(n, n)}$ is the set of permutations on $\{1,2, \ldots, n\}$ with no $a b c$ subsequences and no non-inversions. There is only one such permutation, namely $[n, n-1, \ldots, 2,1]$, hence $P(n, n)=1$.

Separate the set $P_{(n, I)}$ into two sets, K_{1} and K_{2}. Let $K_{1}:=\left\{\sigma \in P_{(n, I)}: \phi_{I+1}(\sigma)=0\right\}$ and $K_{2}:=\left\{\sigma \in P_{(n, I)}: \phi_{I+1}(\sigma)>0\right\}$. The set K_{1} is $P_{(n, I+1)}$.

Sublemma 1.1. If $\sigma \in K_{2}$ then $\sigma(n)=1$ or $\sigma(n)=I+1$.

Proof. Let $\sigma \in K_{2}$. Assume $1<\sigma(n)=j<I+1$. We must have $\sigma(i)=1$ for some $i<n$. Thus $\phi_{j}(\sigma)>0$, contradicting our construction of K_{2}. Assume $\sigma(n)>I+1$. By our construction of K_{2}, we know that $\phi_{I+1}(\sigma)>0$. Let i and j be chosen so that $\sigma(i)<\sigma(j)=I+1$ and $i<j$. Then $\sigma(i)<\sigma(j)<\sigma(n)$ and $i<j<n$. Hence σ has an $a b c$ subsequence contradicting our consturction of K_{2}.

Let $\sigma \in K_{2}$ and let $\sigma_{1} \in S_{n-1}$ be defined by

$$
\sigma_{1}(i)= \begin{cases}\sigma(i)-1 & \text { if } \sigma(n)=1, \\ \sigma(i) & \text { if } \sigma(n)=I+1 \text { and } \sigma(i)<I+1, \\ \sigma(i)-1 & \text { if } \sigma(n)=I+1 \text { and } \sigma(i)>I+1 .\end{cases}
$$

Notice that σ_{1} has no $a b c$ subsequences and $\phi_{j}\left(\sigma_{1}\right)=0$ for $j \leqslant I-1$. Let $\psi: K_{2} \rightarrow P_{(n-1, I-1)}$ be defined by $\psi(\sigma)=\sigma_{1}$. We will show that ψ is a bijection between K_{2} and $P_{(n-1, I-1)}$.

First we prove that ψ is one-to-one. Suppose $\sigma, \pi \in K_{2}$ such that $\psi(\sigma)=\psi(\pi)$ and $\sigma \neq \pi$. Then $\sigma(n) \neq \pi(n)$. From Sublemma 1.1, we must have $\sigma(n), \pi(n) \in\{1, I+1\}$. Without loss of generality we may assume that $\sigma(n)=1$ and $\pi(n)=I+1$. Let $\sigma_{1}=\psi(\sigma)$ and $\pi_{1}=\psi(\pi)$. Since $\sigma \in K_{2}, \sigma(i)<\sigma(j)=I+1$ for some $i<j$. It follows that $\sigma_{1}(i)<\sigma_{1}(j)=I$. Now $\pi_{1}=\sigma_{1}$ and so $\pi_{1}(i)<\pi_{1}(j)=I$. It follows that $\pi(i)<\pi(j)=I<\pi(n)=I+1$ and $i<j<n$, contradicting our assumption that π has no $a b c$ subsequences. Therefore, $\pi=\sigma$ and ψ is one-to-one.

Now we prove that ψ is onto. Suppose $\sigma_{1} \in P_{(n-1, I-1)}$. If $\phi_{I}\left(\sigma_{1}\right)>0$ then let σ be defined as

$$
\sigma(i)= \begin{cases}\sigma_{1}(i)+1 & \text { if } i \neq n \\ 1 & \text { if } i=n\end{cases}
$$

If $\phi_{I}\left(\sigma_{1}\right)=0$ then let σ defined as

$$
\sigma(i)= \begin{cases}\sigma_{1}(i) & \text { if } \sigma_{1}(i) \leqslant I \\ \sigma_{1}(i)+1 & \text { if } \sigma_{1}(i)>I \\ I+1 & \text { if } i=n\end{cases}
$$

In both cases notice that σ has no $a b c$ subsequences and that $\phi_{j}(\sigma)=0$ for $j \leqslant I$. So $\sigma \in K_{2}$ and $\psi(\sigma)=\sigma_{1}$. Therefore, ψ is onto and a bijection. We have $\left|P_{(n, I)}\right|=$ $\left|P_{(n, I+1)}\right|+\left|P_{(n-1, I-1)}\right|$, so $P(n, I)=P(n, I+1)+P(n-1, I-1)$.
Notice that when $I=1$, using (2) for $P(n, I)$, we rederive the above-mentioned result that the number of permutations with no $a b c$'s is

$$
\begin{aligned}
P(n, 1) & =\binom{2 n-2}{n-1}-\binom{2 n-2}{n-3}=\frac{(2 n-2)![n(n+1)-(n-2)(n-1)]}{(n-1)!(n+1)!} \\
& =\frac{(2 n)!}{n!(n+1)!}=C_{n} .
\end{aligned}
$$

Let $P_{(n, I)}^{(1)}=\left\{\sigma \in S_{n}\right.$: σ has no abc subsequences and $\phi_{j}(\sigma)=0$ for $\left.j \leqslant I\right\}$. Let $P^{(1)}(n, I)=\left|P_{(n, I)}^{(1)}\right|$. Thus $P^{(1)}(n, 1)$ is the number of permutations on $\{1,2, \ldots, n\}$ with exactly one $a b c$ subsequence. Notice that $P^{(1)}(n, n-1)=0$ for all n, and $P^{(1)}(3,1)=1$.

Lemma 2.

$$
\begin{align*}
P^{(1)}(n, I)= & \binom{2 n-I-1}{n}-\binom{2 n-I-1}{n+3}+\binom{2 n-2 I-2}{n-I-4} \\
& -\binom{2 n-2 I-2}{n-I-1}+\binom{2 n-2 I-3}{n-I-4}-\binom{2 n-2 I-3}{n-I-2} \tag{3}
\end{align*}
$$

To prove this, we prove that both sides of this equation satisfy the recursion

$$
F(n, I)=F(n-1, I-1)+F(n, I+1)+P(n-I, 2) \text { for } n>0 \text { and } I>0 \text {, }
$$

where $P(n-I, 2)$ is as defined above and with the initial conditions

$$
F(n, 0)=F(n, 1) \quad \text { for } n>0
$$

and

$$
F(n, n-2)=n-2 \quad \text { for } n>0 .
$$

That the right-hand side of (3) satisfies $\left(3^{\prime}\right),\left(3^{\prime \prime}\right)$, and $\left(3^{\prime \prime \prime}\right)$ is routine. As a result of our definition, $P_{(n, 0)}^{(1)}=P_{(n, 1)}^{(1)}$ and so $P^{(1)}(n, 0)=P^{(1)}(n, 1)$. We can easily compute $P^{(1)}(n, n-2)$. If $\sigma \in P_{(n, n-2)}^{(1)}$ then $\phi_{j}(\sigma)=0$ for $j \leqslant n-2$ and σ has exactly $1 a b c$ subsequence. Thus, σ is of the form $[n-2, n-1, n-3, \ldots, n-i, n, n-i-1, \ldots, 2,1]$. There are exactly $n-2$ such permutations, hence $P^{(1)}(n, n-2)=n-2$. So we see that $P^{(1)}(n, I)$ satisfies ($3^{\prime \prime}$) and ($3^{\prime \prime \prime}$).

We prove that $P^{(1)}(n, I)$ satisfies (3^{\prime}) by separating the set $P_{(n, I)}^{(1)}$ into three sets K_{1}, K_{2}, and K_{3}. Let $K_{1}=\left\{\sigma \in P_{(n, I)}^{(1)}: \phi_{I+1}(\sigma)=0\right\}, K_{2}=\left\{\sigma \in P_{(n, I)}^{(1)}: \phi_{I+1}(\sigma)>0\right.$ and $\sigma(n)$ participates in the $a b c$ subsequence $\}$, and $K_{3}=\left\{\sigma \in P_{(n, I)}^{(1)}: \phi_{I+1}(\sigma)>0\right.$ and $\sigma(n)$ does not participate in the $a b c$ subsequence $\}$. The first set is $P_{(n, I+1)}^{(1)}$.

We must show that $\left|K_{2}\right|=\left|P_{(n-1, I-1)}^{(1)}\right|$ and $\left|K_{3}\right|=\left|P_{(n-I, 2)}\right|$.
Sublemma 2.1. If $\sigma \in K_{2}$ then $\sigma(n) \in\{1, I+1\}$.

Proof. Let $\sigma \in K_{2}$. If $1<\sigma(n)=j<I+1$ then $\sigma(i)=1$ for some $i<n$, but then $\phi_{j}(\sigma)>0$ contradicting our construction of K_{2}. If $\sigma(n)>I+1$ then by our construction of K_{2}, we know that $\phi_{I+1}(\sigma)>0$. Let i and j be chosen so that $\sigma(i)<\sigma(j)=I+1$ and $i<j$. Then $\sigma(i)<\sigma(j)<\sigma(n)$ and $i<j<n$. Hence $\sigma(n)$ participates in an $a b c$ subsequence which contradicts our construction of K_{2}.

Let $\sigma \in K_{2}$ and let $\sigma_{1} \in S_{n-1}$ be defined by

$$
\sigma_{1}(i)= \begin{cases}\sigma(i)-1 & \text { if } \sigma(n)=1, \\ \sigma(i) & \text { if } \sigma(n)=I+1 \text { and } \sigma(i)<I+1, \\ \sigma(i)-1 & \text { if } \sigma(n)=I+1 \text { and } \sigma(i)>I+1 .\end{cases}
$$

Notice that σ_{1} has precisely one $a b c$ subsequence and $\phi_{j}\left(\sigma_{1}\right)=0$ for $j \leqslant I-1$. Let $\psi: K_{2} \rightarrow P_{(n-1, I-1)}$ be defined by $\psi(\sigma)=\sigma_{1}$. First we prove that ψ is one-to-one. Suppose there exist σ and π in K_{2} such that $\psi(\sigma)=\psi(\pi)$ and $\sigma \neq \pi$. Let $\sigma_{1}=\psi(\sigma)$ and $\pi_{1}=\psi(\pi)$. We must have $\sigma(n) \neq \pi(n)$. By Sublemma 2.1, $\sigma(n)$ and $\pi(n)$ are in $\{1, I+1\}$. Without loss of generality we may assume that $\sigma(n)=1$ and $\pi(n)=I+1$. If $\sigma \in K_{2}$ then $\sigma(i)<\sigma(j)=I+1$ for some $i<j<n$. It follows that $\sigma_{1}(i)<\sigma_{1}(j)=I$. Thus $\pi_{1}(i)<\pi_{1}(j)=I$. But then $\pi(i)<\pi(j)<\pi(n)=I+1$ which contradicts our construction of K_{2}. Therefore, ψ is one-to-one.

Now we prove that ψ is onto. Suppose $\sigma_{1} \in P_{(n-1, I-1)}^{(1)}$. If $\phi_{I}\left(\sigma_{1}\right)>0$ then $\sigma \in S_{n}$ be defined by

$$
\sigma(i)= \begin{cases}\sigma_{1}(i)+1 & \text { if } 1 \leqslant i<n, \\ 1 & \text { if } i=n .\end{cases}
$$

If $\phi_{I}\left(\sigma_{1}\right)=0$ then let $\sigma \in S_{n}$ defined by

$$
\sigma(i)= \begin{cases}\sigma_{1}(i) & \text { if } \sigma_{1}(i) \leqslant I+1 \\ \sigma_{1}(i)+1 & \text { if } \sigma_{1}(i)>I+1 \\ I+1 & \text { if } i=n\end{cases}
$$

In either case, it follows that σ has exactly one $a b c$ subsequence, $\phi_{I+1}(\sigma)>0$, and $\sigma(n)$ does not participate in the $a b c$ subsequence of σ. So $\sigma \in K_{2}$ and $\psi(\sigma)=\sigma_{1}$. Therefore, ψ is onto and a bijection and $\left|K_{2}\right|=\left|P_{(n-1, I-1)}^{(1)}\right|$.

Finally, we must construct a bijection between $P_{(n-1,2)}$ and K_{3}. Let $\sigma \in P_{(n-1,2)}$. Let k be chosen so that $\sigma(k)=1$. If $\sigma(k-1) \neq 2$ then let $\sigma_{1} \in S_{n}$ be defined by

$$
\sigma_{1}= \begin{cases}I+\sigma(i) & \text { if } i<k-1 \text { or } k<i<n-I, \\ I & \text { if } i=k-1, \\ I+\sigma(i-1) & \text { if } i=k, \\ I+1 & \text { if } i=n-I, \\ n-i & \text { if } n-I<i<n, \\ I+\sigma(n-I) & \text { if } i=n .\end{cases}
$$

If $\sigma(k-1)=2$ then let $\sigma_{1} \in S_{n}$ be defined by

$$
\sigma_{1}= \begin{cases}I+\sigma(i) & \text { if } i<k-1, \\ I & \text { if } i=k-1, \\ I+\sigma(i+1) & \text { if } k-1<i<n-I, \\ I+1 & \text { if } i=n-I, \\ n-i & \text { if } n-I<i<n, \\ I+2 & \text { if } i=n .\end{cases}
$$

Notice that if $\sigma \in P_{(n-I, 2)}$ then $\sigma_{1} \in K_{3}$. Indeed by the way we constructed it, $\phi_{j}\left(\sigma_{1}\right)=0$ for $j \leqslant I$. Furthermore, $\phi_{I+1}\left(\sigma_{1}\right)>0$, and σ_{1} has exactly one $a b c$ subsequence, consisting of $I, I+1$, and the last element of $\varphi(\pi)$..

Let $\varphi: P_{(n-I, 2)} \rightarrow K_{3}$ be define as $\varphi(\sigma)=\sigma_{1}$. We will prove that φ is a bijection.
First we prove φ is one-to-one. Suppose $\pi, \sigma \in P_{(n-1,2)}$ and $\varphi(\pi)=\varphi(\sigma)$. Let

$$
\sigma=\left[\gamma_{1}, \gamma_{2}, \ldots, \gamma_{k_{1}}, \eta_{1}, 1, \eta_{2}, \eta_{3}, \ldots, \eta_{m_{1}}\right]
$$

and

$$
\pi=\left[\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k_{2}}, \beta_{1}, 1, \beta_{2}, \beta_{3}, \ldots, \beta_{m_{2}}\right] .
$$

Then by the position of I in $\varphi(\sigma)$ and $\varphi(\pi)$, we may conclude that $m_{1}=m_{2}$ and $k_{1}=k_{2}$. Next we note that the last element of $\varphi(\sigma)$ must be the same as the last element of $\varphi(\pi)$, and so either $\beta_{1}=\eta_{1}=2$ or $\beta_{m_{2}}=\eta_{m_{1}}$. Similarly, we may conclude that $\beta_{i}=\eta_{i}$ for $1 \leqslant i \leqslant m_{1}=m_{2}$ and $\alpha_{i}=\gamma_{i}$ for $1 \leqslant i \leqslant k_{1}=k_{2}$. Thus $\sigma=\pi$ and φ is one-to-one.
Now we prove that φ is onto. Suppose $\sigma=\left[I+\alpha_{1}, I+\alpha_{2}, \ldots, I+\alpha_{k}, I, I+\beta_{1}\right.$, $\left.I+\beta_{2}, \ldots, I+\beta_{m}, I+1, I-1, I-2, \ldots, 2,1, I+j\right]$, where $j \neq 2$. It is easy to see that $\sigma_{1}=\left[\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}, \beta_{1}, 1, \beta_{2}, \ldots, \beta_{m}, j\right] \in P_{(n-I, 2)}$ and $\varphi\left(\sigma_{1}\right)=\sigma$. If $\sigma=\left[I+\alpha_{1}\right.$, $\left.I+\alpha_{2}, \ldots, I+\alpha_{k}, I, I+\beta_{1}, I+\beta_{2}, \ldots, I+\beta_{m}, I+1, I-1, I-2, \ldots, 2,1, I+2\right]$ then $\sigma_{1}=\left[\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}, 2,1, \beta_{1}, \beta_{2}, \ldots, \beta_{m},\right] \in P_{(n-I, 2)}$ and $\varphi\left(\sigma_{1}\right)=\sigma$. Therefore, φ is onto and a bijection and $\left|K_{3}\right|=|P(n-I, 2)|$.

We have $\left|P_{(n, I)}^{(1)}\right|=\left|P_{(n, I+1)}^{(1)}\right|+\left|K_{2}\right|+\left|K_{3}\right|=\left|P_{(n, I+1)}^{(1)}\right|+\left|P_{(n-1, I-1)}^{(1)}\right|+\left|P_{(n-I, 2)}\right|$. Therefore, $P^{(1)}(n, I)=P^{(1)}(n, I+1)+P^{(1)}(n-1, I-1)+P(n-I, 2)$.

From the definition of $P^{(1)}(n, I)$, we see that $P^{(1)}(n, 1)$ is the number of permutations on n objects with exactly one $a b c$ subsequence and no other restrictions. Using (3) with $I=1$, we have

$$
\begin{aligned}
P^{(1)}(n, 1)= & \binom{2 n-2}{n}-\binom{2 n-2}{n+3}+\binom{2 n-4}{n-5}-\binom{2 n-4}{n-2}+\binom{2 n-5}{n-5} \\
& -\binom{2 n-5}{n-3}=\frac{3}{n}\binom{2 n}{n+3}
\end{aligned}
$$

We observe that $P^{(1)}(n, 1)=P(n+2,5)$, so the number of permutations on $\{1,2, \ldots, n\}$ with exactly $1 a b c$ equals the number of permutations σ on $\{1,2, \ldots, n+3\}$ with no $a b c$'s and with $\phi_{j}(\sigma)=0$ for $j \leqslant 6$. Doron Zeilberger offers 25 dollars for a nice bijective proof.

Note: A small Maple package accompanying this paper, labc.maple can be obtained by using your favorite world wide web browser at http://www.math.temple. edu/ ~noonan or by anonymous ftp to ftp.math.temple.edu, directory /pub/ noonan.

Acknowledgements

Much thanks to Doron Zeilberger for his suggestion of this problem and his help with this paper. Thanks also to John Majewicz who helped with proof-reading. Special thanks are due to Ira Gessel for many valuable comments.

References

[1] K. Erikson and S. Linusson, The size of Fulton's essential set, The Electronic J. Combin. 1, R6 (1995) 18 pp .
[2] D. Knuth, The Art of Computer Programming, Vol. 3, Sorting and Searching (Addison-Wesley, Reading, MA, 1973).
[3] R. Simion and F.W. Schmidt, Restricted permutations, Eur. J. Combin. 6 (1985) 383-406.
[4] J. West, Permutations with forbidden subsequences and stack sortable permutations, Ph.D. Thesis, MIT, Cambridge, 1990.

[^0]: *E-mail: noonan@math.temple.edu, World Wide Web: http:/www.math.temple.edu/ ~ noonan.

