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Abstract

It is proved that the number of permuations on {I, 2, ... , n} with exactly one increasing
subsequence of length 3 is ~(ntn3) [0,0,1,6,27,110,429, ... (Sloane A3517)].

Given a permutaion a E Sn, an abc subsequence is a set of three elements,
a(i), aU), a(k), with a(i) < aU) < a(k) and i < j < k. It is known [2-4] that the number
of permutations on {I, 2, ... , n} with no abc subsequences is given by the Catalan
number 1/(n + 1)(~n). A natural question is: is there a nice expression for the generating
function L ~~~ 0 B(n, r)qr, where B(n, r) is the number of permutations on {I, 2, ... , n} with
exactly r abc's, for 1 ~ r ~ m? Another question is, for a fixed r, what can one say
about the sequence in n, B(n, r)? Doron Zeilberger conjectures that for any given r, the
coefficients B(n, r) of the generating function are P-recursive in n, i.e. they satisfy
a linear recurrence with polynomial coefficients. This is supported by the fact that
B(n,O), being closed form, satisfies a first-order recurrence and hence is P-recursive.

It would be too much to hope for a closed form formula for B(n, r) for general r, and
a priori, there is no reason to hope that even B(n, 1) is closed form. To our surprise
B(n, 1) did turn out to be closed form, and in this paper we present and prove such
a formula. We hope to treat B(n, r), for r> 1, in a subsequent paper.

Theorem. The number of permutations on n objects that have exactly one abc sub­
sequence is

3 ( 2n )
n n + 3 .
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As is the case with many results, in order to prove this, we must first look at a more
general result. For a E Sn, let <!>k(a) = I{(i,j): a(i) < a(j) = k and i < j} I. Let p(n,I) de­
note the set of all a E Sn with no abc subsequences and for which <!>j(a) = 0 for allj :::; I.
Let P(n, I) = Ip(n,n!. The result that the number of permutations on n elements with
no abc subsequences is a Catalan number can be stated as P(n, 1) = Ij(n + l)e:).
Notice that P(n, n) = 1. Furthermore, from our definition of p(n,I) it follows that

p(n,O) = p(n, 1).

Lemma 1.

_(2n - 1- 1) _(2n - I- 1)P(n,1) - 2 .
n-I n-I-

(2)

These are the famous ballot numbers, and the proof below can be easily bijectified.
Erikson and Linusson [1] had a similar result. We will show that both sides of (2)
satisfy the same recursion;

F(n,1) = F(n - 1,1 - 1) + F(n,I + 1) for n > 0 and I > 0,

with initial conditions

F(n,O) = F(n, 1) for n > 0

and

F(n, n) = 1 for n > 0

(2')

(2/1)

(2"')

That the right-hand side of (2) satisfies (2'), (2/1), and (2"') is purely routine and is left to

the reader. As a result of our definition, p(n,O) = p(n, 1)' Furthermore, from the defini­
tion of p(n, I), p(n,n) is the set of permutations on {I, 2, ... , n} with no abc subsequences
and no non-inversions. There is only one such permutation, namely
[n,n - 1, ... ,2,1], hence P(n,n) = 1.

Separate the set p(n, 1) into two sets, K 1 and K l' Let K 1 := {a E p(n, I): cP1+ 1(a) = O}
and K 1 := {aEP(n.1): cP1+1(a) > OJ. The set K 1 is P(n,I+1)'

Sublemma 1.1. If (J E K 1 then (J(n) = 1 or (J(n) = I + 1.

Proof. Let (J E K 1. Assume 1 < (J(n) = j < I + 1. We must have (J(i) = 1 for some
i < n. Thus cPj((J) > 0, contradicting our construction of K 1 . Assume a(n) > I + 1. By
our construction of K 1 , we know that cP1+ d(J) > O. Let i and j be chosen so that
(J(i) < (J(j) = I + 1 and i < j.. Then (J(i) < (J(j) < (J(n) and i < j < n. Hence (J has an
abc subsequence contradicting our consturction of K1 . 0
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Let (J E K 2 and let (JI E 5n - 1 be defined by

{

(J(i) - 1 if (J(n) = 1,

(J1(i) = (J(i) if (J(n) = 1 + 1 and (J(i) < 1 + 1,

(J(i) - 1 if (J(n) = 1 + 1 and (J(i) > 1 + 1.

309

Notice that (JI has no abc subsequences and <pj((Jd = 0 for j::( 1 - 1. Let

t/J: K 2 -. p(n-l,I -I) be defined by t/J((J) = (J I' We will show that t/J is a bijection

between K 2 and P(n-I,I-I)'
First we prove that t/J is one-to-one. Suppose (J, n E K 2 such that t/J((J) = t/J(n) and

(J =I' n. Then (J(n) =I' n(n). From Sublemma 1.1, we must have (J(n), n(n) E {I, 1 + I}.
Without loss of generality we may assume that (J(n) = 1 and n(n) = 1 + 1. Let
(JI = t/J((J) and nl = t/J(n). Since (J E K b (J(i) < (J(j) = 1 + 1 for some i <j. It follows

that (Jt(i) < (JI(j) = 1. Now nl = (JI and so ndi) < nt(j) = 1. It follows that
n(i) < n(j) = 1 < n(n) = 1 + 1 and i < j < n, contradicting our assumption that n has
no abc subsequences. Therefore, n = (J and l/J is one-to-one.

Now we prove that t/J is onto, Suppose (Jt E P(n-l.I-l)' If <PI((Jd > 0 then let (J be

defined as

(J(i) = {(Jl 1(i) + 1 if i =I' n,
if i = n.

{

(J di) if (J I (i) ::( 1,

(J(i) = (Jt(i) + 1 if (JI(i) > 1,

1 + 1 if i = n.

In both cases notice that (J has no abc subsequences and that <pj{(J) = 0 for j ::( 1. So

(J E K 2 and t/J((J) = (JI' Therefore, t/J is onto and a bijection. We have IP(n,n! =
IP(n,I+l)1 + IP(n-l,I-l)I, so P(n,I) = P(n,1 + 1) + P(n - 1,1 - 1).

Notice that when 1 = 1, using (2) for P(n, 1), we rederive the above-mentioned result

that the number of permutations with no abc's is

P(n 1) = (2n - 2) _(2n - 2) = (2n - 2)![n(n + 1) - (n - 2)(n -1)]
, n-l n-3 (n-l)!(n+l)!

(2n)!
= = en-

n!(n + I)!

Let p~~!l) = {(J E 5n: (J has no abc subsequences and <Pj((J') = 0 for j::( I}. Let
p(l)(n, 1) = IP:~!l)I, Thus p(l)(n, 1) is the number of permutations on {1,2, '" ,n} with

exactly one abc subsequence. Notice that p(l)(n, n - 1) = 0 for all n, and P(l)(3, 1) = 1.
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Lemma 2.
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p(1)(n,1) = (2n - I - 1) _(2n - 1- 1) + (2n - 21 - 2)
n n+3 n-I-4

_ (2n - 21 - 2) + (2n - 21 - 3) _(2n - 21 - 3)
n - I - 1 n - I - 4 n - I _ 2 (3)

To prove this, we prove that both sides of this equation satisfy the recursion

F(n,1) = F(n - 1,1 - 1) + F(n,1 + 1) + P(n - 1,2) for n > 0 and I > 0, (3')

where P(n - 1,2) is as defined above and with the initial conditions

F(n,O) = F(n, 1) for n > 0

and

F(n, n - 2) = n - 2 for n > O.

(3")

(3"')

That the right-hand side of (3) satisfies (3'), (3"), and (3"') is routine. As a result of our
definition, P~;:O)=P~;:1) and so p(1)(n,0)=p(l)(n,1). We can easily compute
p(l)(n,n - 2). If a E P~;:n-z) then cPj(a) = 0 for j ~ n - 2 and a has exactly 1 abc
subsequence. Thus, a is of the form [n - 2, n - 1, n - 3, ... , n - i, n, n - i - 1, ... ,2,1].
There are exactly n - 2 such permutations, hence p(l)(n, n - 2) = n - 2. So we see
that p(l)(n,1) satisfies (3") and (3"').

We prove that p(l)(n,1) satisfies (3') by separating the set P~;:I) into three sets K b

K z, and K 3 • Let K 1 = {a E P~;:I): cPI+da) = O}, K z = {a E P~;:I): cPI+l(a) > 0 and
a(n) participates in the abc subsequence}, and K 3 = {a E P~;:I): cPr + da) > 0 and a(n)
does not participate in the abc subsequence}. The first set is P~;:I+ 1)'

(1)
We must show that IKzl = IP(n-l,r-1)1 and IK3 1 = IP(n-r,z)/.

Sublemma 2.1. If a E Kz then a(n) E {1, I + 1}.

Proof. Let a E K z. If 1 < a(n) = j < I + 1 then a(i) = 1 for some i < n, but then
cPj(a) > 0 contradicting our construction of K z. If a(n) > I + 1 then by our con­

struction of K z, we know that cPI+ 1(a) > O. Let i and j be chosen so that
a(i) < a(j) = I + 1 and i <j. Then a(i) < a(j) < a(n) and i <j < n. Hence a(n) par­
ticipates in an abc subsequence which contradicts our construction of K z. 0

Let a E K z and let al E Sn-l be defined by

j
a(i) - 1 if a(n) = 1,

adi) = a(i) if a(n) = I + 1 and a(i) < I + 1,

a(i) - 1 if a(n) = I + 1 and a(i) > I + 1.
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Notice that a1 has precisely one abc subsequence and 4>j(ad = 0 for j :::; 1 - 1. Let
IjJ:K2 -tP(n-1,1-1) be defined by ljJ(a) = a1' First we prove that IjJ is one-to-one.
Suppose there exist a and n in K 2such that ljJ(a) = ljJ(n) and a -=I- n. Let a1 = ljJ(a) and
n1 = ljJ(n). We must have a(n) -=I- n(n). By Sublemma 2.1, a(n) and n(n) are in {I, 1 + I}.
Without loss of generality we may assume that a(n) = 1 and n(n) = 1 + 1. If a E K 2
then a(i) < a(j) = 1 + 1 for some i < j < n. It follows that adi) < a 1(j) = 1. Thus
n1 (i) < ndj) = 1. But then n(i) < n(j) < n(n) = 1 + 1 which contradicts our con­
struction of K 2 . Therefore, IjJ is one-to-one.

Now we prove that IjJ is onto. Suppose a1 E P~;~ 1,1-1)' If 4>1(ad > 0 then a E Sn be
defined by

a(i) = {~ 1(i) + 1 if 1 :::; i < n,

if i = n,

If 4>1(ad = 0 then let a E Sn defined by

{

a1(i) ifa1(i):::;I+l,

a(i)= a1(i) + 1 ifa1(i»1+1,

1 + 1 if i = n.

In either case, it follows that a has exactly one abc subsequence, 4>1 + 1(a) > 0, and a(n)
does not participate in the abc subsequence of a. So a E K2 and ljJ(a) = a1' Therefore,

IjJ is onto and a bijection and IK2 1 = IP~;~1,1-1)1.

Finally, we must construct a bijection between P(n-l,2) and K 3 , Let aEP(n-I,2)' Let
k be chosen so that a(k) = 1. If a(k - 1) -=I- 2 then let a1 E Sn be defined by

1 + a(i)

1

1 + a(i - 1)

1 + 1
n-i

1 + a(n - 1)

if i < k - 1 or k < i < n - 1,
if i = k - 1,

if i = k,
if i = n - 1,

ifn-1<i<n,

if i = n.

If a(k - 1) = 2 then let a1 E Sn be defined by

1 + a(i)

1

1 + a(i + 1)

1 + 1
n-i

1+2

if i < k - 1,
if i = k - 1,
if k - 1 < i < n - 1,

if i = n - 1,

if n - 1 < i < n,

ifi=ll.
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Notice that if a E P(n-I.2) then a1 E K 3 • Indeed by the way we constructed it,
cPj(ad = °for j::;; /. Furthermore, cPI+d(1) > 0, and a1 has exactly one abc subsequ­
ence, consisting of /, / + 1, and the last element of <p(n)..

Let <p:P(n-I.2) --+K 3 be define as <p(a) = a1' We will prove that <p is a bijection.
First we prove <p is one-to-one. Suppose n,a E P(n-I.2) and <p(n) = <p(a). Let

and

Then by the position of / in <p(a) and <p(n), we may conclude that m1 = m2 and
k1 = k2. Next we note that the last element of <p(a) must be the same as the last
element of <p(n), and so either PI = '71 = 2 or Pm2 = '7m,. Similarly, we may conclude
that Pi = '7i for 1 ::;; i ::;; m1 = m2 and ~i = ')'i for 1 ::;; i ::;; k1 = k2. Thus a = nand <p is
one-to-one.

Now we prove that <p is onto. Suppose a = [I + ~1'/ + ~2, ... ,/ + ~k'/'/ + Pb
/ + P2, ... ,/ + Pm,/ + 1,/ - 1,/ - 2, ... ,2, 1,/ +n, wherej;= 2. His easy to see that

a1=[~1'~2""'~bPb1,P2,... ,Pm,nEP(n-I.2) and <p(a1)=a. If a=[I+~l'

/ + ~2, ... ,/ + ~b/'/ + P1,/ + P2, ,/ + Pm,/ + 1,/ - 1,/ - 2, ... ,2, 1,/ + 2]
then a1 = [~1' ~2, ... , ~k, 2,1, PI, P2, ,Pm,] E p(n-1,2) and <p(ad = a. Therefore, <p is
onto and a bijection and IK3 1 = IP(n - /,2)1.

(1) (1) (1) (1)
We have IP(n.I)1 = IP(n.I+lJl + IK2 1+ IK3 1 = /p(n.I+1)1 + IP(n-1,I-l)1 + IP(n-I.2)1·

Therefore, p(1)(n,I) = p(1)(n,/ + 1) + p(l)(n - 1,/ - 1) + P(n - /,2). 0

From the definition of p(l)(n,I), we see that p(l)(n, 1) is the number of permutations
on n objects with exactly one abc subsequence and no other restrictions. Using (3) with
/ = 1, we have

p(1)(n, 1) = (2n - 2) _(2n - 2) + (2n - 4) _(2n - 4) + (2n - 5)
n n+3 n-5 n-2 n-5

_ (2n - 5) = ~ ( 2n )
n-3 n n+3

We observe that p(1)(n, 1) = P(n + 2,5), so the number of permutations on
{1,2, , n} with exactly 1 abc equals the number of permutations a on
{1,2, , n + 3} with no abc's and with cPia) = 0 for j ::;; 6. Doron Zeilberger offers 25
dollars for a nice bijective proof.

Note: A small Maple package accompanying this paper, labc.maple can be obtained
by using your favorite world wide web browser at http://www.math.temple.
eduj '" noonan or by anonymous ftp to ftp.math.temple.edu, directory jpubj
noonan.
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