ON PROPERTY B(s), II

H.L. ABBOTT
Mathematics Department, University of Albera, Edmonton, Alberta, T6G 2G1, Canada

A.C. LIU
Mathema'ics Depariment, University of Regina, Regina, Saskatchewan S4S OA2, Canada

Received 5 November 1979
Revised 1 December 1980

Denote by $m(n, s)$ the size of a smallest family \mathscr{F} of n-element sets with the property that if $|S \cap F| \geqslant 1$ for all $F \in \mathscr{F}$, then $|S \cap F| \geqslant s$ for some $F \in \mathscr{F}$. We obtain some bounds for $m(n, s)$.

1. Introduction

By an n-graph, $n \geqslant 2$, is meant a family \mathscr{F} of n-sets called edges. Elements of $\bigcup \mathscr{F}$ are called vertices. Let $2 \leqslant s \leqslant n$. An n-graph \mathscr{F} is said to have property $B(s)$ if there exists a subset S of $\bigcup \mathscr{F}$ such that $1 \leqslant|S \cap F| \leqslant s-1$ for all $F \in \mathscr{F}$. Such an S is called a $B(s)$-set for \mathscr{F}. Denote ty $m(n, s)$ the least integer k for which there exists an n-graph \mathscr{F} with k edges which does not have property $B(s)$. Such an \mathscr{F} will be called an (n, s)-graph.
It is known that $m(2 k, 2)=3$ and $m(2 k+1,2)=4$ for ili positive integers k [6]. The value of $m(n, 3)$ is not known for all values of n. The following summarizes the available information. (See [1] for detaiis.)

$$
\begin{align*}
& m(n, 3)=7, \quad \text { whenever } n \text { is a multiple of } 3 \text { or } 4 ; \\
& 9 \leqslant m(5,3) \leqslant 10 ; \\
& 8 \leqslant m(11,3) \leqslant 10 ; \tag{1}\\
& 8 \leqslant m(n, 3) \leqslant 9, \text { for all other values of } n .
\end{align*}
$$

In the case where $n=s$ the prizcipal resu ts are (denoting $m(n, n)$ by $m(n)$):

$$
\begin{equation*}
m(n)<n^{2} 2^{n+1} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
m(n)>n^{i-\varepsilon} 2^{n} \tag{3}
\end{equation*}
$$

for every $\varepsilon>0, n \geqslant n_{0}(\varepsilon)$. The upper bound is due to Erdös [6] and the lower bound to Beck [3]. The value of $m(4)$ is not known. Seymour [9] and Toft [10] independently showed that $m(4) \leqslant 23$ and Seltridge and Aizley [8] have announced that $m(4) \geqslant 19$.

Erdös [5] remarked that the family of n-subsets of a set of $n+s-1$ elements 0012-365X/81/0000-0000/\$02.75 © 1981 North-Helland
does not have property $B(s)$ and hence that

$$
m(n, s) \leq\binom{ n+s-1}{n}
$$

In [5], Erdös stated that he can prove there exist constants c_{1} and $c_{2}, 1<c_{1}<c_{2}$, such that

$$
\begin{equation*}
c_{1}^{s}<m(n, s)<c_{2}^{s} \tag{4}
\end{equation*}
$$

but did not give explicit values for c_{1} and c_{2}. Everts [7] proved thai if $0<c<1$ and $s=[c n]$, then

$$
\begin{equation*}
m(n, s)>2^{n}\left((2-c)^{n}+\left(\frac{2-c}{1-c}\right)^{n(1-c)}\right)^{-1} \tag{5}
\end{equation*}
$$

Since $2>((2-c) /(1-c))^{1-c}>2-\varepsilon$ we obtain from (5), on putting $f(c)=$ $2^{1 / c}((1-c) /(2-c))^{(1-c) / c}$ and on roting that $f(c)>1$ that

$$
\begin{equation*}
m(n, s)>\frac{1}{2}(f(c))^{s} \tag{6}
\end{equation*}
$$

We note that f is increasing on $(0,1)$ and that $\lim _{c \rightarrow 1} f(c)=2$ and

$$
\lim _{c \rightarrow 0} f(c)=\frac{2}{\sqrt{\mathrm{e}}}=1.213 \ldots
$$

In Section 2 of this paper we prove a number of recurrence inequalities for $m(n, s)$. These are contained in the following theorem.

Theorem 1. The following recurrence inequalities hold:

$$
\begin{align*}
& m(n, s) \leqslant \operatorname{sm}(n-1, s-1)+T(n, n-s, n-s+1)+1, \\
& m(n, s) \leqslant(s-1) m(n-1, s-a)\binom{n}{s-1}+1, \tag{3}\\
& m(n, s) \leqslant \operatorname{sm}(n-t, s)+1 \quad \text { provided } 0<t \leqslant n-s \quad \text { and } \quad n \geqslant t s, \tag{9}\\
& m(k l, u u) \leqslant m(k, u) m(l, v)^{k} \quad \text { provided } k \geqslant u, \quad l \geqslant v . \tag{10}
\end{align*}
$$

Here, for $2 \leqslant k \leqslant b \leqslant n, T(n, k, b)$ denotes the well-known Turán number, namely, the least number of edges a k-graph \mathscr{F} on n vertices can have so that every b-subset of $\bigcup \mathscr{T}$ contains at least one edge of \mathscr{T}.

We deduce from some of these inequalities that the following upper bounds for $m(n, s)$ hold.

Theorem 2.

$$
\begin{equation*}
m(n, s) \approx s^{3} 2^{s+1} \quad \text { for all } n \geqslant s(s-1) \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
m(n, s) \leqslant s^{3} 2^{2 s+1} \quad \text { for all } n \geqslant s \tag{12}
\end{equation*}
$$

We also record in Section 2 the best upper bounds for $m(n, 4)$ that we have been able to obtain for $5 \leqslant n \leqslant 10$.

In Section 3 we obtain, by a modification of Everts' argument, a lower bound for $m(n, s)$ which is stronger than the one given by (6) for a certain range of values of n and s. We prove the jollowing theorem.

Theorem 3. Let λ and ε be positive numbers satisfying

$$
\begin{equation*}
\lambda+1+\varepsilon+\log \lambda<0 \tag{13}
\end{equation*}
$$

Then, for $s_{0} \leqslant s \leqslant \delta n$

$$
\begin{equation*}
m(n, s) \geqslant \frac{1}{2} \mathrm{e}^{\lambda s} \tag{14}
\end{equation*}
$$

where $\delta=2 \varepsilon /(\lambda(\lambda+2 \varepsilon))$ and s_{0} is the least integer such that $\mathrm{e}^{\mathrm{s}_{1}(\lambda+1+\varepsilon+\log \lambda)}<1-\lambda$.

Theorem 3 gives an improvement over (5) in the case where $s=[c n]$ and c is sinall. For example, if we choose $\lambda=0.27$ and $\varepsilon=0.03$ we ind that (13) is satisfied. We also find from the argument leading to (14) that one may then choose $s_{0}=34$ and $\delta=\frac{1}{4}$, so that

$$
m(n . s)>\frac{1}{2}(1.30)^{s} \quad \text { for } 34 \leqslant s \leqslant \frac{1}{4} n
$$

while with $s=\left[\frac{1}{4} n\right]$, the lower bound given by (6) is

$$
m(n, s)>\frac{1}{2}(1.25)^{s}
$$

In fact, there is a number $c_{0}\left(=0.45\right.$ approximately) such that if $0<c<c_{0}$ and $s=[c n]$, the lower bound given by (14) is sharper than that given by (6), for all sufficiently large s. Huwevti, for $c_{0} \leqslant c<1$, (6) is stronger.

2. Upper bounds for $m(n, s)$

First we record three simple inequalities for $m(n, s)$, the first two of which are obvious; the third is proved in [1].

$$
\begin{align*}
& m(n, s) \leqslant m(n, s+1) \tag{15}\\
& m(n, s) \leqslant m(n+1, s+1) \tag{16}\\
& m(k n, s) \leqslant m(n, s) \tag{17}
\end{align*}
$$

Proof of Theorem 1. Let \mathscr{T} be an ($n-s$)-graph on n vertices such that every $(n-s+1)$-subset of $V=\bigcup \mathscr{T}$ contairs an edge of \mathscr{F}. We suppose that \mathscr{T} is minimal and thus has $T(n, n-s, n-s+1)$ edges. Let \mathscr{G} be an $(n-1, s-1)$-graph. We suppose that the vertex sets of \mathscr{G} and \mathscr{T} are disjoint. Let $A=\left\{a_{i}, a_{2}, \ldots, a_{s}\right\}$ be a set which is disjoint from $\cup \mathscr{T}$ and $\cup \mathscr{G}$. Let \mathscr{F} be the n-greph consisting of
the following cugcs:
(1) all sets of the form $G \cup\left\{a_{i}\right\}, G \in \mathscr{C}, i=1,2, \ldots, s$;
(2) all sets of the form $T \cup A, T \in \mathcal{G}$;
(3) the set V.

Then \mathscr{F} clearly has $\operatorname{sm}(n-1, s-1)+T(n, n-s, n-s+1)+1$ edges. Suppose \mathscr{F} has a $B(s)$-set S. Then $S \neq \varnothing A$. Consider first the case where $S \cap A \neq \emptyset$. We may suppose, without loss of generality, that $a_{1} \in S$ and $a_{2} \notin S$. Then if $|S \cap G| \geqslant 1$ for all $G \in \mathscr{G}$, we must have $\left|S \cap G_{1}\right| \geqslant s-1$ for some $G_{1} \in \mathscr{G}$. Then $\left|S \cap\left(G_{1} \cup\left\{a_{1}\right\}\right)\right| \geqslant s$, a contradiction. Hence $S \cap G_{2}=\emptyset$ for some $G_{2} \in \mathscr{G}$ but then $S \cap\left(G_{2} \cup\left\{a_{2}\right\}\right)=\emptyset$, another contradiction. Secondly, consider the case where $S \cap A=\emptyset$. Now $|S \cap V| \leqslant s-1$. Hence $|\bar{S} \cap V| \geqslant n-s+1$, and thus, by the definition of $\mathscr{T}, \bar{S} \supset T$ for some $T \in \mathscr{T}$. Thus $S \cap T=\emptyset$ and consequently $S \cap(T \cup A)=\emptyset$, a contradiction. It follows that \mathscr{F} does not have property $B(s)$. This proves (7).

In order to prove (8), let \mathscr{G} be an $(n-1, s-1)$-graph and let \mathscr{H} be the complete $(n-s+1)$-graph on n vertices. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{s-1}\right\}$. We suppose that $A, \bigcup_{\mathscr{G}}$ end $\cup \mathscr{H}$ are pairwise disjoint. Let \mathscr{F} be the n-graph consisting of the following edges:
(1) all sets of the form $G \cup\left\{a_{i}\right\}, G \in \mathscr{G}, i=1,2, \ldots, s-1$;
(2) all set of the form $H \cup A, H \in \mathscr{H}$;
(3) the set $\bigcup \mathscr{H}$.

Then \mathscr{F} has $(s-1) m(n-1, s-1)+\left({ }_{s-1}^{n}\right)+1$ edges. We leave to the reader the verification that \mathscr{F} does not have property $B(s)$.

We now construct the graph that lead; to (9). Let \mathscr{G} be an ($n-t, s)$-graph. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be disjoint from $\cup \mathscr{G}$. For $i=1,2, \ldots, s$ let $A_{i}=$ $\left\{a_{k}:(i-1) t+1 \leqslant k \leqslant i t\right\}$. Let \mathscr{F} be the n-graph whose edges are all sets of the form $G \cup A_{i}, G \in \mathscr{G}, i=1,2, \ldots, s$ together with the set A. Then \mathscr{F} has $\operatorname{sm}(n-$ $t, s)+1$ edges. We leave to the reader the verification that \mathscr{F} does not have property $B(s)$.

We do not: present the proof of (10) since the result is a generalization of the inequality $m(a b) \leqslant m(a) m(b)^{a}$ given in [2]. The proof there carries over with little change. This completes the proof of Theorem 1.

Proof of Theorem 2. It is now a simple matter to prove Theorem 2. Write $n=q s+t, 0 \leqslant t \leqslant s-1$. If $t=0$ we have, by (17) and (2), $m(n, s)=m(q s, s) \leqslant$ $m(s)<s^{2} 2^{s+1}$. Hence we may suppose $t>0$. Then it is easy to check that the i.equality $n \geqslant s(s-1)$ implies that the conditions required by (9) are satisfied. Thus by (9), (17) and (2) we get

$$
m(n, s) \leqslant s m(q s, s)+1 \leqslant s m(s)+1 \leqslant s^{3} 2^{s+1} .
$$

This proves (11).
In order to prove (12) write $n=q s+r, 0<r<s$. (Again, the case where $r=0$ is covered by (17).) Let k be defined by $(k-1) q<r \leqslant k q$ and let $t=n-q(s+k-1)$. Then one may check that $\mathrm{C} \cdot<t \leqslant n-s$ and $n \geqslant t s$ so that (9) may be used. Note
also that $k \leqslant s-1$. We have

$$
\begin{align*}
m(n, s) & \leqslant s m(n-t, s)+1 & & (\text { by }(9)) \tag{9}\\
& =\operatorname{sm}(q(s+k-1), s)+1 & & \\
& \leqslant \operatorname{sm}(s+k-1, s)+1 & & (\text { by }(17)) \\
& \leqslant \operatorname{sm}(s+k-1, s+k-1)+1 & & (\text { by }(15)) \\
& \leqslant s m(2 s-2)+1 & & (\text { by }(16) \text { and } k \leqslant s-1) \\
& <s^{3} 2^{2 s-1} & & (\text { by }(2)) . \tag{2}
\end{align*}
$$

This completes the proof of Theorem 2.
It would be of interest to know whether for every $\varepsilon>0, m(n, s)<(2+\varepsilon)^{s}$ when $n \geqslant s \geqslant s(\varepsilon)$. It is not difficult te show, using the results of Theorem 1, that if $m(n, s)<c^{s}$ for $s \leqslant n<2 s$ and if $s \geqslant s(\varepsilon)$, then $m(n, s)<(c+\varepsilon)^{s}$ for $s \leqslant n<$ $s(s-1)$. Thus the difficulty lies in getting a good upper estimate for $m(n, s)$ when $s \leqslant n \leqslant 2 s$. We remark that it follows easily from (10), by an argument which parallels closely one used in [2], that if $0<c<1$ and $s=[c n]$, then $\lim _{s \rightarrow \infty} m(n, s)^{1 / s}$ exists.

We conclude this section by listing the best upper bounds we have been able to obtain for $m(n, 4)$ for $5 \leqslant n \leqslant 10$. For the values of the Turán numbers quoted in Table 1, see [4].

Table 1

n	$m(n, 4) \leqslant$	Results used
6	32	(8), and $m(4,3)-;$
6	48	$(101, m(2)=3$ and $m(3,2)=4$
7	41	$(7, m(6,3)=7$ and $T(7,3,4)=12$
8	23	(17), and $m(4) \leqslant 23$
9	50	$(7), m(8,3)=7$ and $T(9,5,6)=21$
10	48	$(10), m(2)=3$ and $m(5,2)==4$

3. L ower bounds for $m(n, s)$

In this section we prove Theorem 3. The argument is probabilistic in nature and the underlying ideas are similar to those used by Everts [7].
Let $t \geqslant n$ and let $V=\{1,2, \ldots, t\}$. Let $\mathscr{F}=\left\{F_{1}, F_{2}, \ldots, F_{r}\right\}$ be a family of n-subsets of V. Let $X_{1}, X_{2}, \ldots, X_{i}$ be independent random variables with values 0 and 1 such that for each i,

$$
\mathbb{P}_{r}\left(X_{i}=1\right)=\frac{\lambda s}{n} \quad \text { and } \quad \mathbb{P}_{r}\left(X_{i}=0\right)=1-\frac{\lambda s}{n} .
$$

For each of the 2^{t} sequences $\left(X_{1}, X_{2}, \ldots, X_{t}\right)=x$, let $S_{x}=\left\{i: X_{i}=1\right\} . S_{x}$ is thus a random subset of V whose expected size is tisin. For each $F \in \mathscr{F}$ and each k,
$0 \leqslant k \leqslant n$,

$$
\mathbb{P}_{r}\left(\left|S_{x} \cap F\right|=k\right)=\binom{n}{k}\left(\frac{\lambda s}{n}\right)^{k}\left(1-\frac{\lambda s}{n}\right)^{n}
$$

The expected number of sets in \mathscr{F} which are either disjoint from S_{x} or meet S_{x} is s or more places is thus

$$
F-r\left(\left(1-\frac{\lambda s}{n}\right)^{n}+\sum_{k=s}^{n}\binom{n}{k}\left(\frac{\lambda s}{n}\right)^{k}\left(1-\frac{\lambda s}{n}\right)^{n-k}\right)
$$

If we use the inequality $(1-h / n)^{n}<\mathrm{e}^{-h}$ we get

$$
E<r \mathrm{e}^{-\lambda s}\left(1+\sum_{k=s}^{n}\binom{n}{k}\left(\frac{\lambda s}{n}\right)^{k}\left(1-\frac{\lambda s}{n}\right)^{-k}\right)=r \mathrm{e}^{-\lambda s}\{1+H\}, \text { say. }
$$

Now

$$
\begin{aligned}
-n \log \left(1-\frac{\lambda s}{n}\right) & =n \sum_{l=i}^{\infty} \frac{1}{l}\left(\frac{\lambda s}{n}\right)^{l} \\
& <\lambda s+n \sum_{l=2}^{\infty}\left(\frac{\lambda s}{n}\right)^{l} \\
& =\lambda s+\frac{\lambda^{2} s^{2}}{n-\lambda s} \\
& <(\lambda+\varepsilon) s \text { provided } s<\frac{2 \varepsilon n}{\lambda(\lambda+z \varepsilon)}=\delta_{0} n
\end{aligned}
$$

so that

$$
\left(1-\frac{\lambda s}{n}\right)^{-k} \leqslant\left(1-\frac{\lambda s}{n}\right)^{-n}<e^{(\lambda+\varepsilon) s}
$$

Thus

$$
\begin{aligned}
H & \leqslant \mathrm{e}^{(\lambda+\varepsilon) s} \sum_{k=s}^{n} \frac{(\lambda s)^{k}}{k!} \\
& \leqslant \mathrm{e}^{(\lambda+\varepsilon) s} \frac{(\lambda s)^{s}}{s!}\left\{1+\sum_{k=1}^{\infty} \frac{(\lambda s)^{k}}{(s+1)(s+2) \cdots(s+k)}\right\} \\
& \leqslant \mathrm{e}^{(\lambda+\varepsilon) s} \frac{(\lambda s)^{s}}{s!(1-\lambda)}<\mathrm{e}^{(\lambda+\varepsilon) s} \frac{(\lambda s)^{s}}{\left(\frac{s}{\mathrm{e}}\right)^{s}(1-\lambda)} \\
& =\frac{1}{1-\lambda} \mathrm{e}^{s(\lambda+1+\log \lambda)}
\end{aligned}
$$

$$
<1 \text { provided } s \geqslant s_{0}(\varepsilon, \lambda) \quad \text { (by (13). }
$$

It foilows that $E<2 r \mathrm{e}^{-\lambda s}$ so that $E<1$ provided $r<\frac{1}{2} \mathrm{e}^{\lambda s}$. Hence there exists an S_{x} which satisfies $1 \leqslant\left|S_{x} \cap F\right| \leqslant s-1$ for all $F \in \mathscr{F}$ and this S_{x} is a. $B(s)$-set for \mathscr{F}. Hence $m(n, s) \geqslant \frac{1}{2} \mathrm{e}^{\lambda s}$. This completes the proof of Thecrem 3.

We conclude by mentioning the following interesting question which was brought to our attention some time ago by P. Erdös: Is it true that $m(n, s) \geqslant m(s)$ for all $n \geqslant s$? If the answer to this question is yes, and if one could answer affirmatively the question raised near the end of Section 2, it would follow that $m(n, s)$ behave essentially like 2^{s} for all $n \equiv s$.

References

[1] H.L. Abbott and A. Liu, On property B(si, Ars Combin. 7 (1979) 25ヶ-260.
[2] H.L. Abbott and L. Moser, On a combinatorial problem of Erdös and Hajnal, Canad. Math. Bull. 7 (1964) 177-182.
[3] J. Beck, On 3-chromatic graphs, Discrete Math. 24 (1978) 12;-137.
[4] V. Chvátal, Hypergraphs and Ramseyian theorems, Ph.D. Thesis, University of Waterloo (1970).
[5] P. Erdös, On a combinatorial problem, Nordisk Mat. Tidskr. 11 (1963) 5-10.
[6] P. Erdös, On a combinatorial problem II, Acta Math. Acad. Sci. Hungar. 15 (1964) 445-447.
[7] F. Everts, Colorings of sets, Ph.D. Thesis, University of Colorado (1977).
[8] J.E. Selfridge and P. Aizley, Notices Amer. Math. Soc. 24 (1977) A-452.
[9] P. Seymour, A note on a combinatorial problem of Erdös and Hajnal, J. London Math. Soc. 8(2) (1974) 681-682.
[10] B. Toft, On color critical hypergraphs, in: A. Hajnal et al., eds., Infinite and Finite Sets (North-Holland, Amsterdam, 1975) 14ヶ5-1457.

