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Denote by m(n, s) the size of a smallest family 4 of a-element sets with the property that if 
ISOFIa 1 for all FE$, then \SnF\as for some FEN. We obtain some bounds for m(rl, s). 

1. IntroQPrctiolm 

By an n-graph, n a2, is meant a family 3 of It -sets ca!Ied edges. Elements of 
IJ 9 are called vertices. Let 2 G s G n. An n-graph 9 is said to have property B(s) 
if there exists a subset S of IJY” such that I G IS n FJ G s - 1 for all FE 9. Such an 
S is called a B(s)-set for .F. Denote by m(ye, s) the least integer k for which there 
exists an n-graph 9 with k edges which does not have property B(s). Such an 9 
will be called an (n, s)-graph. 

It is known that m(2k, 2) = 3 and m(2k + 1,2) = 4 for iili positive integers ic [6]. 
The value of m(n, 3) is not known for all values of n. The following summarizes 
the available information. (See [l] for details.) 

m(n, 3) = 7, whenever n is a multiple of 3 or 4; 

9< rn(5.7JG 10: 

8GW(ll, 3)s 10; 
(1) 

8~ m(n, 3)=%9, for all other values of n. 

In the case where n = s the pri.lcipal resu ts are (denoting vra(n, II) by m(n)): 

nz(n)c n22”” (2) 
and 

I?I(n)>n:~‘2” (3) 

for every E > 0, Iz 2 R,,(E). The upper bound is due to ErddGs [6] and the lower 

bound to Beck [3). The value of m(4) is not known. Seymour [9] and Taft [IO] 
independently showed that m(4)<23 and Selltridge and Aizley [S] have an- 

nounced that IFI( 19. 
Erdiis [5] remarke lily of F; -subsets 0.; a seh of n + s - 1 ele 
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does not have property B(s) and hence that 

In [S], Erdiis stated that he can prove there exist constauts cl and c2, 1 Cc, <c%, 
such that 

c; -=c m(n, s)< c; (4) 

but did not give explicit values for cI and c2. Everts [7] proved that If O<c < 1 

and s = :cr?], then 

m(n, 5)>2”((2-c)“+ (s)“+c)) -‘. (5) 

Since 2>((2-c)/(l -c))‘-~ >2--c we obtain from (5), on putting f(c) = 
2”’ ((1 -c)/(2-c))“-“” and on noting that f(c)> 1 tillat 

m(n, s)>t(f(c))S. (6) 

We note that f is increasing on (0, 1) and that lim,,, f(c) L- 2 and 

lim f(c) =;i- 1.213 , . . . 
cd 

In Section 2 of this paper we prove a number of recurrence inequalities for 
m(n, s). These are contained in the following theorem. 

1. The fobwing recurrence inequalities hold: 

m(n,s)~ssm(n-l,s-l)+Tl;n,n-s,n-s+l)+l, (?) 

m(n, s)S(5 -l)m(n-l,s-1) :. 
n ( > s-l 

+l, 

m(n,s)~sr)z(n-r,s)+l provided O<t~n-s and n%ls, (9) 

m(kl, iii.) s m(k, u)m(l, v)” procided k 3 u, I3 v. (10) 

Here, for 2~ k s 6 G n, T(n, k, b) denotes the well-known Turan number, 
namely, the least number of edges a k-graph 4’ on n vertices can have so that 
every b-subset of U .Y contains at least one ed:;e of 9. 

W’r, deduce from some of these inequalities that the following upper bounds for 
m(n, s) hold. 

and 
m(n, s) S s32’+’ for all n > s(s - 1) 111) 

(12) 
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We also record in Section 2 the best upper. bounds for m(n, 4) that we have 
been able to obtain for 5 9 n % lft. 

In Section 3 we obtain, by a modification of Ever& argument, a lower bound 
for m(n, s) which is stronger than the one given by (6) for a certain range of 
values of n and s. We prove the r’ollowing theorem. 

3. Let A and E be positive numbers satisfying 

A+1+&+logh~0. (13) 

Then, for so< s G Sn 

m(n, s) a fehS (14) 

where S = 2e/(A(h +2e)) and so is the leust integer such that esJA+‘+Ef’“gh’< 1 -A. 

Theorem 3 gives an improvement over (5) in the case where s = [CR] and c is 
sinall. For example, if we choose A = 0.27 and E = 0.03 we :ind that 1:13) is 
satisfied. We also find from the argument leading to (14) that one may then 
choose so = 34 and S = 2, so that 

mtn. s)>$(1.30)’ for 34Gs<.$17 

while with s = [in], the lower bound giver1 by (6) is 

m(n, s)>$(1.25)‘. 

In fact, there is a number co (=0.45 apluoximately) such that if OCC *:c, and 
s = [cn], the lower bound given by (14) is sharper than that given by (6), fos all 
sufficiently large s. IIowevei., f jr’ co < c =: 1, (6) is stronger. 

First we record three simple inequaliti.es for m(n, s), the first two of which are 
obvious; the third is proved in [l]. 

m(n, s) s m(n, s -t l), (15) 

m(n,s)~m(v;+l,s+l), (16) 

m(kn, s)S m(~t, s). (17) 

Let 5 be an (~.t -s)-graph on n vertices such that every 

(n-s-t 1)“subset of l V = U $ contains an edge of Y. We suppose that 3 is 
minimal and thus has T(n, n - s. n -s + 1) edges. Let 59 be an (n - 1, s - Ilk-graph. 

at the vertex sets of 3 d d are disjoint. tA=(a,,a, ,...) a,) 

U 3. Let 9 be t n -grz.ph consisting of 
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the following &cs: 
(1) all se% of the form (7U{a,}, GE’!:, i=l,2,...,s; 
(2) all sets of the form T U A, TE 4’; 

(3) the set V. 
Then 9 clearly has sm ( FZ - 1, s - I ) + Th, n - s, n - s + 1) + 1 edges, Suppose 9 

has a &)-set S. Then ,S$ A. Consider first the case where S n A # fl. We may 
suppose, without loss of generality, that u1 E S and a2 $ S. Then if IS n Cl 2 1 for 
all GE%, wemust have ISnG,l~s-1 forsome G+%Then (Sn(G,U{a,})la, 
a con::radiction. Hence S n G2 = @ for some GZ E 3 but then S n (G2 C (Q}) = fl, 
another contradiction. Secondly, consider the case where S n A = @ Now 
JSfY/I~s-1. Hence $nVlal- s t 1, and thus, by the definition of Y, s =I T 
for some T E 5. Thus S n T = 9 and consequently S n (T U A) = 8, a contradiction. 
it foll‘)ws that 9 does not have property R(s). This proves (7). 

In order to prove (8), let % be an (n - 1, s - l)-graph and let X be the 
complete (~1 -s + I j-graph on n vertices. Let A = {a,, a,, . . . , u, _ ,). We suppose 
that A, U ‘8 2 nd ‘CJ 2 are pairwise disjoint. Let 9 be the n-graph consisting of 
the following edges: 

(1) all sets of the form GU{ai), GE%, i=l,2....,s-1; 
(2) all set of the form H U A, HE Z#‘; 
(3; the set U &C 

Then 9 has (s - l)nj (n - 1, s - 1) f (,! ,) + 1 edges. We leave to the reader the 
verification that P! &es not have property B(s). 

!Ve now construct the graph that lead,; to (9). Let 54 be an (n - t. .+-graph. I .et 
A =(a,, u2,. . . , u,,} be disjoint from u %. For i = 1,2, . . . , s let Ai = 
{a,: (i - l)t -i 1 s k s it}. Let 9 be the n-graph whose edges are all sets of the 
form GUAi, GE%, i=l,2 ,..., s togef her with the set A. Then $’ has snl(n - 
t, sj + 1 edges. We leave to the reader the verification that 9 does not have 
property B(s). 

We do not present the proof of (10) since the result is a generalization of the 
inequality m Cub) s in (u)tn( b)” given in [ 21. The proof there carries over with little 
change. This completes the proof of Theorem 1. 

wre 
n=qs+t, Ostss-;. 

It is now a simple matter to prove Theorem 2. Write 
If t=O we ha-de, by (17) and (2), nz(n,s)=m(qs,s)G 

ItZ(SKs22S+1. Hence we may suppose t >O. Then it is easy to check that the 
i.lequality n 3 s(s - 1) implies that the conditions required by (9) are satisfied. 
Thus by (9), (17) and (2) we get 

m(n, s)Ssm(qs, s)+ 1 ~wI(s)+ 1 SS”~“+~. 

This proves (11). 
In order to prove (12) write n = qs + r, 0 c r < s. (Again, the case where r = 0 is 

covered by (17).) Let k be defined by ;:k - 1)q < r c kq and let t = n -q(:s + k - 1). 
era one eck that C.:~n-s and n a ts so that (9) may ble used. Note 
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n2(n, s)cssrl2(n -t, s)+ 1 

= sm(q(s + k - 11, s)+ 1 

(by (9) 

~sm(s+k- l,s1+ 1 (by (17)) 

Csln(s+k-l,s+k-l)+l (by (15)) 

Qr;2(2s-2)+ 1 (by (16) and SC s s .- 1) 
< s.“21r- 1 

(by G9i. 

This completes the proof of Theorem 2. 
It would be of interest to know whether for euery E > 0, na(n, s) < (2 + E)~ when 

n 2 s 3 S(E). It is not difficult tc show. using the results of Theorem 1. that if 
nz(n, s)<c’ for s +2<2s and if SSS(P), then ~j(n,s)<(c+r)’ for s<n< 
s(s - 1). Thus the difficulty lies in getting a good upper estimate for nr (n, s) when 
s s n K?s. We remark that it follows easily from (lo), by an argument which 
parallels closely one used in [2], that if O< c < 1 and s = [cn], then 
lim S_s n2(12, s)l” exists. 

We conclude this section by listing the best upper bounds we have been able to 
obtain for nr(n, 4) for 5 s n s 10. For the values of the Turan numbers quoted in 
Table 1, see [4]. 

I1 m(r1, 4) 5 Rew Iis ised 

i 32 (Sr, and m(3. 3’- ; 
h -18 (101. w(2) = 3 and ri1(3,2) = 4 
7 41 (71. m(6.3)=7 and T(7.3,4)= 12 
8 23 (17). and m(4)~23 
9 CO (7). m(8.3) = 7 and T(9.5. Cl) = 21 

10 4x ( 10). m(2) = 3 and m(S. 2) =; 3 
-- I___- 

s for nz(n, s) 

In this section we prove Theorem 3. The argument is probabilistic in nature and 
the underlying ideas are similar to those used by Everts [7]. 

Let t* 11 and let V ={ 1. 2, . . . , t}. Let 9 = (F,, F2, . . . , F,) he a family of 

~-subsets of V. Let X,, X’,, . . . , Ai be independent random variables with values 

0 and 1 such that for each i. 

,(Xi = l)=’ and 
As 

,CXi = 0) == 1 -- , 
n n 

For each of the 2’ se 
random subset of V 
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TIae expected number of sets 111 9 which :ue either disjoint from S, or meet Sx is 
s or more places is thus 

If we use the inequality (1 - h/n)” <eeh we get 

~(~)(~~(l-~~)~k)=~e~As{l+H), say. 

<(A + E)S provided s <- 
2m 

A!,A+z) 
= 6,n, 

so that 

‘Thus 

(Wk 
k=l (s-t l)(s+2) l ’ l (s+k) 

<,(A++E)S (AS)" <,,(X-tEk (A$ -- 
s!(l-A) ‘-’ 

1 
= - e”‘A+‘+l”“A”’ 

1-A 

< 1 provided s 3 S&E, A) by (13). 

t foilows that E < 2reWhs so that E < 1 provided r < $ehs. ence there exists an 
S, which satisfies 1 s ISX n FIG s - 1 for all1 FE 9 and this S, is a. B(s)-set for 9. 

ce UI (n, s) 2 $ehs. This completes the ,proof of Theorem 3. 
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We conclude by mentioning the following interesting question whi& was 

brought to our attention some time ago by P. Erdiis: Is it true that KV( ~1, S) 2 m(s) 
for all tz 3 s? If the answer to this question is yes, and if one could answer 
affirmatively the question raised near the end of Section 2, it would follow that 
m(n, s) behave essentially like 2” for all n 2~ S. 
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