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Denote by m(n, s) the size of a smallest family & of n-element sets with the property that if
ISMF|=1for all Fe %, then |S NF|=s for some Fe %. We obtain some bounds for m(n, s).

1. Introduction

By an n-graph, n =2, is meant a family ¥ of n-sets called edges. Elements of
U & are called vertices. Let 2<s=<n. An n-graph % is said to have property B(s)
if there exists a subset S of | J% such that 1 <|SNF|<s—1 for all Fe . Such an
S is called a B(s)-set for %. Denote bty m(r, s) the least integer k for which there
exists an n-graph & with k edges which dces not have property B(s). Such an &
will be called an (n, s)-graph. .

It is known that m(2k, 2) =3 and m(2k + 1, 2) =4 for ali positive integers k [6].
The value of m(n, 3) is not known for all values of n. The following summarizes
the available information. (See [1] for detaiis.)

m(n,3)=7, whenever n is a multiple of 3 or 4;
9= m(S. P10
8=m(11, 3)<10;

8=m(n, 3)<<9, for all other values of n.

(1

In the case where n = s the principal resu ts are (dencting m(n, n) by m(n)):

mn)< n?2"+! (2)
and
min)>nt 2" (3)

for every £ >0, n=ng(e). The upper bound is due tc Erdos [6] and the lower
bound to Beck [3]. The value of m(4) is not known. Seymour [9] and Toft [10]
independently showed that m(4)<23 and Seliridge and Aizley [8] have an-
nounced that m(4)=19.

Erdos [5] remarked that the family of r-subsets o7 a set of n +s—1 elements
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does not have property B(s) and hence that

n+s~1)
" .

m(n, s)s(

In [S], Erdds stated that he can prove there exist constants ¢, and ¢,, 1<¢; <c,,
such that

c;<min, s)<cs 4)

but did not give explicit values for ¢, and c,. Everts [7] proved thai f 0<c¢<1
and s =icn], then

Yy _ n(l-c)y\ -1
m(n,s)>2"((2—c)"+(g C\) ) ) (5)

1-c¢

Since 2>((2—c)/(1—-¢))' *>2—-¢ we obtain from (5), on putting flc)=
2Y(1-¢){(2—c))"' " and on noting that f(c)>1 taat

m(n, s)>3(f(c))". (6)
We note that f is increasing on (0, 1) and that lim, _,, f(c)=2 and
. 2
ll_rg f(c)="-,=ez 1.213....

In Section 2 of this paper we prove a number of recurrence inequalities for
m(n, s). These are contained in the following theorem.

Theorem 1. The following recurrence inequalities hold:

mn,s)yssm(n—-1,s—1)+T(n,n—s,n—s+1)+1, o
m(n, $)<(s—Dm(n—1,5-72) (s'_l1>+1, (3)
m(n,s)ssm(n—¢s)+1 provided 0<t<sn-s and n=ts, (9)
m(kl, o) <m(k, wym(l, v)* provided k=u, l=v. (10)

Here, for 2sk<b=n, T(n, k, &) denotes the well-known Turidn number,
namely, the least number of edges a k-graph 9 on n vertices can have so that
every b-subset of | J J contains at least one edze of 7.

We deduce from some of these inequalities that the following upper bounds for
m(n, s) hoid.

Theorem 2.

mi, $)<s32°7Y foralln=s(s—1) (11)
and
m(n, s)<s*2%*' foralln=s. (12)
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We also record in Section 2 the best upper bounds for m(n, 4) that we have
been able to obtain for Ssn<10.

In Section 3 we obtain, by a modification ¢f Everts’ argument, a lower bound
for m(n, s) which is stronger than the one given by (6) for a certain range of
values of n and s. We prove the iollowing theorem.

Theorem 3. Let A and & be positive numbers satisfying

A+1l+e+logA<0. (13)
Then, for sp<s<én

m(n, s)=1e* (14)

where 8 =2e/(A(A +2¢)) and s, is the least integer such that e *1terloeM <1 )

Theorem 3 gives an improvement over (5) in the case where s =[¢n] and c is
small. For example, if we choose A =0.27 and £ =0.03 we iind that (13) is
satisfied. We also find from the argument leading to (14) that one may then
choose s, =34 and § =1, so that

min.s)>3(1.30° for 34<s<ln
while with s =[3n], the lower bound given by (6) is
m(n, s)>3(1.25).

In fact, there is a number ¢, (=0.45 approximately) such that if 0<<c<¢, and
s =[cn], the lower bound given by (14) is sharper than that given by (6), for all
sufficiently large s. However, £ ¢g=<c < 1, (6) is stronger.

2. Upper bounds for m(n, s)

First we record three simple inequalities for m(n, s), the first two of which are
obvious; the third is proved in [1].

mn, s)<m(n,s+1), (15)
mn, s)sm(r+1,s+1), (16)
m(kn, s)=m(n, s). (7

Proof of Theorem 1. Let J be an (1 —s)-graph on n vertices such that every
(n—s+1)-subset of V=JJ contairs an edge of J. We suppose that 7 is
minimal and thus has T(n, n—s5, n—s+ 1) edges. Let % be an (n—1, s — 1)-graph.
We suppose that the vertex sets of 4 and J are disjoint. Let A ={a,, a,, ..., a;}
be a set which is disjoint from U 7 and | 4. Let & be the n-greph consisting of
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the following cdges:

(1) all sets of the form GU{q}, Ge%, i=1,2,...,5s;

(2) all sets of the form TUA, Te 3

(3) the set V.

Then % clearly has sm(n—1,s—1)+T(n,n—s,n—s+1)+1 edges. Suppose ¥
has a B(s)-set S. Then S A. Consider first the case where SN A #@. We may
suppose, without loss of generality, that a,e S and a, ¢ S. Then if |SNG|=1 for
all G €%, we must have |[SNG,|=s—1 for some G,€%. Then |SN(G,U{a,})|=s.
a coutradiction. Hence SN G, =@ for some G,€ % but then SN(G,U{a}) =0,
another contradiction. Secondly, consider the case where SNA=@. Now
|ISNV|<s—1. Hence |SNV|=n-s+1, and thus, by the definition of 7, ST
for some Te J. Thus SNT =@ and consequently S N(TU A) =0, a contradiction.
it follows that % does not have property B(s). This proves (7).

In order to prove (8), let 4 be an (n—1,s—1)-graph and let # be the
complete (n—s+ |)-graph on n vertices. Let A ={a,, a,....,a,_,}. We suppose
that A, |J 4 end J ¥ are pairwise disjcint. Let & be the n-graph consisting of
the following edges:

(1) all sets of the form GU{a;}, Ge¥4, i==1,2....,s—1;

(2) all set of the form HUA, He ¥ ;

(3 the set Y &.

Then F has (s—Dm(n—1,s—1)+(",)+1 edges. We leave to the reader the
verification that % does not have prop=rty B(s).

We now construct the graph that leads to (9). Let 4 be an (n — 1. s)-graph. | et
A ={a,,a,,...,a,} be disjoint from |J¥ For i=1,2,...,s let A=
{a,:(i—1jt+<sk=<it}. Let F be the n-graph whose edges are all sets of the
form GUA, Ge%, i=1,2,...,s together with the set A. Then & has sm(n—
t,s;+1 edges. We leave to the reader the verification that & does not have
property B(s).

We do not present the proof of (10) since the result is a generalization of the
inequality m{ab)=< m(a)m(b)* given in [2]. The proof there carries over with little
change. This completes the proof of Theorem 1.

Proof of Theorem 2. It is now a simple matter to prove Theorem 2. Write
n=qs+t 0<t<s-1. If t=0 we have, by (17) and (2), m(n, s)=m(gs, s)<
m{s)<s?2**'. Hence we may suppose t>0. Then it is easy to check that the

taequality n=s(s—1) implies that the conditions required by (9) are satisfied.
Thus by (9), (17) and (2) we get

m(n, s)<sm(qs, s)+ 1 <sm(s)+1=<s325*",

This proves (11).

In order to prove {12) write r =qs+r, 0<r<s. (Again, the case where r=0 is
covered by (17).) Let k be defined by (k—1)g<r=<kq and let t=n-—q(: +k—1).
Then one may check that C-<t<n—s and n=ts so that (9) may be used. Note
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also that k<s—1. We have

mn,s)issmn—1s)+1 (by (9))
=sm(q(s+k—1),s)+1
ssmis+k—-1,5)+1 (by (17))
ssm(s+k—-1.s+k-1)+1 (by (15))
ssmn(2s—-2)+1 (by (16) and k<s-1)
<s§?2 ! (by- (2)).

This completes the proof of Theorem 2.

It would be of interest to know whether for every £ >0, m(n, s)<(2+¢)* when
n=s=s(e). It is not difficult tc show, using the results of Theorem 1. that if
mn, s)<c* for s<n<2s and if s=s(e), then min,s)<(c+e)* for s=n<
s(s —1). Thus the difficulty lies in getting a good upper estimate for m(n, s) when
s<=n<2s. We remark that it follows easily from (10), by an argument which
parallels closely one used in 2], that if 0<c<1 and s=[cn], then
lim,_,.. m(n, s)'* exists.

We conclude this section by listing the best upper bounds we have been able to
obtain for m(n, 4) for S<n=<10. For the values of the Turan numbers quoted in
Table 1, see [4].

Table 1
n mnd) < Results used
& 32 (8), and m(4. 3= 7
6 48 (10, m(2)=3 and m(3,2)=4
7 41 (7). m(6,3)=7 and T(7.3.4)=12
8 23 (17, and m{4)=<23
9 50 (7). m{& 3)=7 and T(9,5.4)=21

—
—~
-~

48 (10), m(2)=3 and m(5.2)=4

3. I ower bounds for m(n, s)

In this section we prove Theorem 3. The argument is probabilistic in nature and
the underlying ideas are similar to those used by Everts [7].

Let t=n and let V={1.2,..., t}. Let F={F,, F,,...,F} be a family of
n-subsets of V. Let X, X5, ..., X, be independent random variatles with values
0 and 1 such that for each i,

A As
P (X =1)== and P(X,=0)=1-—.
n n
For each of the 2' sequences (X, X5,....X,)=x, let S, ={i: X;=1}. S, is thus a
random subset of V whose expected size is tAs/n. For each Fe ¥ and each k,
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rason-n- () (-2

The expected number of sets 11 F which are either disjoint from S, o meet S, is
s or more places is thus

=AU = G 0-37),

If we use the inequality (1—h/n)" <e™ we get

E<re"‘5( g( )( )(1——n~)_k)=re‘“{l+H}, say.

Now
As\ | © B(As)‘
nlog(l n)—n,gil "
<As+n z (—j)
=2 \R
A2%s?
=As +
s n—As
<(A+¢)s provided <--—-2—§f——8n
e)s provided s ATh+z8) ohs
;0 that
(1 _AS) ‘ < (1 _éj)_“ <e(7\+s)s
n n
Thus
(As)«
H< (A+e)s
R
(As)‘{ — (As)¥ )
(A+E)S 1+
=¢ s! kz;,(s-!-l)(s+2)-'-(s+k)}

<erter__X (AS)S <P(.\+e)s ()"S)s

T (aw

— __“1'___ es(A+1+logA)

1-A
<1 provided s=s4(g, A) (by (13).

It foilows that E<2re ™ so that E <1 provided r <3e". Hence there exists an
S, which satisfies 1<|S, NF|=<s—1 for all Fe % and this S, is a B(s)-set for &.
Hence m(n, s)=3e*. This completes the proof of Thecrem 3.
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We conclude by mentioning the following interesting question which was
brought to our attention some time ago by P. Erdés: Is it true that m(n, s)=m(s)
for all n=s? If the answer to this question is yes, and if one could answer
affirmatively the question raised near the end of Section 2, it would follow that
m(n, s) behave essentially like 2° for all nz=s.
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