
IOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 108, 15-30 (1985) 

On a Nonconvolution Volterra Resolvent 

OLOF J. STAFFANS 

Institute of Mathemarics, Helsinki University of Technology, 
SF-02150 Espoo 15, Finland 

Submitted by C. L. Dolph 

Under fairly weak assumptions, the solutions of the system of Voherra equations 
x(t)=~~a(t,s)x(s)(iS+f(t),t>O,canbewrittenintheformx(~)=f(~)+~~r(t,s) 
f(s) ds, I > 0, where r is the resolvent of a, i.e., the solution of the equation r(t, s) = 
a(t, s) + Jb a(f, v) r(u, s) dv, 0 <s < 1. Conditions on a are given which imply that the 
resolvent operatorfbJ; r(f, s) f(s) ds maps a weighted L’ space continuously into 
another weighted L’ space, and a weighted L” space into another weighted L” 
space. Our main theorem is used to study the asymptotic behavior of two differen- 
tial delay equations. 0 1985 Academic Press, Inc. 

1. INTRODUCTION 

Consider the system of Volterra equations 

x(r)=~‘a(r,s)x(s)ds+~(r), t > 0. 
0 

Here x is the unknown solution with values in R”, a is a given kernel with 
n by n matrix values, andf is a given R”-valued forcing function. As is well 
known, under fairly weak assumptions, the unique solution of (1.1) is given 
by “the variation of constants formula” 

t > 0, 

where r is the so-called resolvent of a. This reolvent satisfies two equations, 
namely, “the resolvent equation” 

r(f,.s)=u(t,.s)+j’a(& u)r(u,s)dv, O<s<t, 
s 

and “the adjoint resolvent equation” 

409/108/l-2 

r(t, s) = a(t, s) + Jr r(t, u) a(~, s) do, O<s<t. 
s 
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Because of the variation of constants formula, the more detailed infor- 
mation one can get on the resolvent, the better one can understand the 
behavior of the Volterra equation (1.1). 

Here we shall concentrate on one particular property of r. We want to 
know whether the resolvent operator j’~jk r(t, s)~(s) ds maps some 
weighted L’ space continuously into another weighted L’ space, and/or 
some weighted L” space continuously into another weighted L” space. If 
it does so, then one can use standard perturbation techniques to study, e.g., 
the nonlinear equation 

x(t) + 1’ 44 s)Cx(s) + gb, x(s))1 A =f(t), t > 0, 
0 

in an Lp setting. For example, the stability analysis in [7] is based on this 
method (no weights are used in [7]). 

A nonweighted version of the L” case of our main Theorem 3.3 is 
proved by Gustaf Gripenberg in [S, Theorems 1 and 31. In [9], the author 
uses the same technique as Gripenberg to prove the nonweighted L’ ver- 
sion of Theorem 3.3. In [9], it is also shown how one can interpolate 
between the extreme cases p = 1 and p = 00 to get an Lp result which 
applies to intermediate values of p, 1 < p < co. A different Lp result is given 
by Richard Miller in his book [6, pp. 193-2011. For a discussion on how 
the interpolated Lp result relates to Miller’s Lp result, see [9]. Also see [9] 
for a discussion on how the nonconvolution results given here relate to 
known results for convolution-type kernels. 

In Section 2 we define our weighted L’ and L” spaces. The main results 
are given in Section 3, and are proved in Sections 4 and 5. Section 6 con- 
tains two applications to differential delay equations. 

2. OPERATORS ON WEIGHTED Lp SPACES 

We begin by defining the weighted Lp spaces that we need, and describe 
a class of operators mapping one weighted Lp space into another. 

Let (S, T) be an interval, - cc < S < T < co. Let K be a continuous, 
strictly positive function on (S, T). We define the weighted L* space 
L’(S, T; K) to be the set of measurable, R”-valued functions x on (S, T) 
satisfying 

i 
T Ix(t)l/rc(t) dt < co. 
s 
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Here Ix(t)1 is the norm of x(t) in R”. Analogously, we define L”(S, T; K) to 
be the set of measurable, R”-valued functions x on (S, T) satisfying 

ess sup Ix(t)]/rc(t) < co. 
S<r<T 

Note that if K is bounded from above and away from zero at the endpoints 
S and T, then these weighted spaces are isomorphic to the standard non- 
weighted L’ and L” spaces over (S, T). 

In the sequel we shall use two different weight functions K and 1. They 
are both supposed to be continuous and strictly positive on the interval 
(S, T). 

LEMMA 2.1. Let a be a measurable, n by n matrix valued function of 
(s, t), S < s < t < T, satisfying 

ess sup[J(t)]-’ 1: la(t, s)l rc(s) ds< 00. (2.1) 
S<r<T 

Then the operator x + 1: a(t, s) x(s) ds is continuous from L”(S, T, K) into 
L”(S, T; A). If a satisfies 

ess sup K(S) 1’ [n(t)] PI la(t, s)] dt < CO 
S<s<T s 

(2.2) 

instead of (2.1), then the same operator is continuous from L’(S, T; K) into 
L’(S, T; A). 

Here la(t, s)l stands for a matrix norm of a(t, s) compatible with the 
norm used in R”. The proof of Lemma 2.1 is a direct application of the ver- 
sion of Fubini’s theorem which is given in [8, Theorem 7.121. In [3, 
Theorem 2.6.11 it is shown that the condition (2.1) is necessary as well as 
sufficient in the L” case. 

On several occasions we shall also need “the adjoint operator” induced 
by a, namely, the operator y++JT y(t) a(t, s) dt. Here y is a row vector, 
whereas x was a column vector. It is easy to deduce from Lemma 2.1 that 
the adjoint operator is continuous from L’(S, T; A-‘) into L’(S, T; ~-l) if 
(2.1) holds, and from L”(S, c 1-i) into L”(S, r; IC-~) if (2.2) holds. 

3. THE VOLTERRA EQUATION 

As in the previous section, let (S, T) be an interval, - cc < S < T < co 
We are interested in the solutions of the Volterra equation 

x(t) = j; 4~ s) 4s) ds +f(t). S<t<T. (3.1 
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It turns out that it is convenient to also introduce the corresponding 
adjoint Volterra equation, i.e., the equation 

Y(S) = jT Y(t) 4t> s) dt + g(s), S<S<T. (3.2) s 

Here, and throughout in the sequel, u is an n by n matrix valued, 
measurable function of (s, t), S < s < t < T, x and f are measurable, R” 
column vector valued functions on S-C t < T, and y and g are measurable, 
R” row vector valued functions on S < s < T. 

We ask the following question: If the forcing functions f and g in (3.1) 
and (3.2) belong to a weighted L’ or L” space, is it then true that the 
solutions x and y belong to another weighted L’ or L” space? Before we 
give an answer to this question we want to discuss a local, nonweighted 
result. 

THEOREM 3.1. (i) Let a satisfy (2.1) with K E ;1 1, let -co <SC 
T< co, and suppose that there exist constants E and y such that 

esssup s ’ Ja(t,s)lds<y<l, S’--T<E, S<S’<T’<T. (3.3) 
s<t<T’ T’ 

Then there is a unique function r(t, s) satisfying 

ess sup s ’ \r(t, s)l ds < co, 
S<f<T s 

(3.4) 

and for almost all (s, t), S < s -C t < T, 

r(t,s)=~(t,s)+j~a(t,u)r(u,s)du, 
J 

(3.5) 

and 

r( t, s) = a( t, s) + j’ r( t, II) a(~, s) du. 
J (3.6) 

Moreouer, for each f E L”(S, T) there is a unique solution x E L”(S, T) of 
(3.1), namely, 

x(t)=f(t)+j’r(t,s)f(s)ds, (3.7) s 

and for each ge L’(S, T) there is a unique solution x E L’(S, T) of (3.2), 
namely, 

y(s) = g(s) + ST g(t) r(t, s) dt. 
s (3.8) 
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(ii) Letasatisfy(2.2) withu=A=l, let -oo<S<T<oo,andsup- 
pose that there exist constants E and y such that 

T’ [a(& s)l dt 6y < 1, T-S’<E, S<s’<T<T. (3.9) 

Then there is a unique function r(r, s) satisfying 

ess sup 
s 

’ Ir(t, s)l dt < CO, 
S<s<T s 

(3.10) 

and also (3.5) and (3.6) for almost all (s, t). Moreover, for each fe L’(S, T) 
there is a unique solution x E L’(S, T) of (3.1), namely, (3.7), and for each 
gE L”(S, T) there is a unique solution YE L”(S, T) of (3.2), namely, (3.8). 

Gustaf Gripenberg proves the existence of a resolvent operator r satisfy- 
ing (3.4), (3.5), and (3.6) in [5, Theorem 11. Once the existence of such a 
resolvent operator is known, the proof of the rest of Theorem 3.1(i) is 
straightforward. Part (ii) of the theorem can be reduced to part (i) by a 
simple change of variables (see Section 4). By and large, Theorem 3.1 can 
be considered as an essentially known result. Still, for the convenience of 
the reader we have included a proof of Theorem 3.1 in Section 4 (a reader 
familiar with [S] may skip the proof of Lemma 4.1 below). 

One version of Theorem 3.1 is also true when S = -cc and/or T= co. 
One simply adds smallness assumptions similar to (3.9) at plus and minus 
infinity. To get this version, take K = ,I = 1 in Theorem 3.3 below. The ver- 
sion one gets by taking T= cc in part (i) was discovered by Gripenberg [5, 
Theorem 31. For still earlier related versions, see [4, Theorem 3, Part l] 
and [lo, p. 5731. 

We want to prove a global, weighted version of Theorem 3.1. As our 
weight functions are bounded from above and away from zero as long as 
one stays away from the endpoints S and T, in the interior of the interval 
(S, T) the weighted result is more or less equivalent to the nonweighted 
result. We shall therefore assume throughout that the hypothesis of 
Theorem 3.1 holds locally, i.e., that it holds whenever the interval (S, T) is 
replaced by an interval (S’, T), satisfying S < S’ < T’ < T. 

To get an estimate on the growth rate of the resolvent close to the 
endpoints S and T we use the following lemma: 

LEMMA 3.2. (i) Let the assumption of Theorem 3.1(i) hold locally on 
(S, T), and suppose that for some E > 0, 

1 la(t,s)l ds< 1. (3.11) 
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Then the resolvent in Theorem 3.1 satisfies 

ess SUp[A(t)] ’ {i jr(t, s)l K(S) ds< I/E. (3.12) 
S<t<T 

(ii) Let the assumption of Theorem 3.l(ii) hold locally on (S, T), and 
suppose that for some E > 0, 

1 la(t,s)l dt,<l. (3.13) 

Then the resolvent in Theorem 3.1 satisfies 

ess sup K(S) [' [i(t)]-' Ir(t, s)l dt f l/c. 
s<s<r s 

(3.14) 

The proof of Lemma 3.2, given in Section 5, has been modeled after the 
proof of Theorem 2.1 in [2]. 

The following theorem is our main result: 

THEOREM 3.3. (i) Let the hypothesis of Theorem 3.1(i) hold locally on 
(S, T). Suppose that there exist constants S’ and T’, S-C S’ -C T < T, such 
that (3.11) holds with T replaced by s’, and with S replaced by T’. In 
addition, suppose that for each V, S-C V < T, 

la(t, s)l [K(S) + L(s)] ds < co. (3.15) 

Then the resolvent Y in Theorem 3.1 satisfies 

ess sup[l(t)] -’ [i Ir(t, s)l K(S) ds < co. 
S<t<T 

(3.16) 

Moreover, for each fE Lm(S, T, JC), formula (3.7) defines a solution 
XE L”(S, T; A) of (3.1), andfor each ge L’(S, T, 2-l) formula (3.8) defines 
a solution YE L’(S, T; K-') of (3.2). 

(ii) Let the hypothesis of Theorem 3.l(ii) hold locally on (S, T), and 
suppose that there exist constants S’ and T, S-C S’ < T’ < T, such that (3.13) 
holds with T replaced by s’, and with S replaced by T’. In addition, suppose 
that for each V, S-C V < T, 

7~ w;C~(s) + W)l /f [--$+&I IaCt S)I dt < 00. (3.17) 
s 
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Then the resolvent r in Theorem 3.1 satisfies 

ess sup rc(s) IT [A(t)]-’ Ir(t, s)l dt < CO. (3.18) 
S<s<T s 

Moreover, for each f E L’(S, T; tc), formula (3.7) defines a solution 
XE L’(S, T; A) of (3.1) andfor each gE L”(S, T K’) formula (3.8) defines 
a solution ye L”(S, T, K-~) of (3.2). 

(iii) In both (i) and (ii), if tc(s)/A(s) is bounded away from zero as 
s+ S+, then the solution x of (3.1) is unique in L”(S, T, A) or L’(S, T; A), 
and if tc(s)/A(s) is bounded from above as s -+ T-, then the solution y of 
(3.2) is unique in L’(S, T; K’) or L”(S, T; K-I). 

4. PROOF OF THEOREM 3.1 

The proof of Theorem 3.1 is based on two lemmas. Our Lemma 4.1 is 
essentially extracted from the proof of [5, Theorem 11, but our Lemma 4.2 
differs from Gripenberg’s corresponding argument. 

LEMMA 4.1. (i) Suppose that 

es sup s ‘la(t,s)l ds<y< 1. 
S<f<T S 

(4.1) 

Then there exists a resolvent r satisfying (3.4) and for almost all (s, t), also 
(3.5) and (3.6). 

(ii) Zf instead, 

esssup Tla(t,s)/dtby<l, I S<s<T s 
(4.2) 

then there exists a resolvent r satisfying (3.10) and for almost all (s, t), also 
(3.5) and (3.6). 

Lemma 4.1 is also true with S = -cc and/or T = 00. 
Before we prove Lemma 4.1, let us make a remark on the nature of the 

integrals in (3.5) and (3.6). For simplicity we discuss only (3.5), with one 
type of bounds on a and r, but the same discussion applies to all the dif- 
ferent cases. We claim that if a satisfies (2.1) with rc E 13 1, and r satisfies 
(3.4), then the integral fi a(t, v) r(v, s) dv is measurable in (s, t), and it 
satisfies the same type of bound as a and r do. That this is true one can see 
in the following way. The functions in this integral are jointly measurable 
in the three variables s, t, and v. So is the characteristic function of the set 
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s < u < t. The product of these three functions is integrable. Apply Fubini’s 
theorem [8, Theorem 7.121, grouping (s, t) together to one variable to get 
the measurability of the integral. One more application of Fubini’s theorem 
gives the desired bound. 

Let us also note that it suffices to prove only part (i) of Lemma 4.1, as 
part (ii) can be reduced to part (i) as follows. Define b(r, s) to be the trans- 
pose of a( -s, - t), and apply part (i) with a replaced by b, and the interval 
(S, T) by the interval ( - T, - S). This gives a function I-, satisfying (3.4), 
(3.5), and (3.6) in the interval ( - T, -S). The desired solution in part (ii) 
is the transpose of r( -s, - t). 

The same transformation can be applied to reduce parts (ii) of all of our 
Lemmas and Theorems to the corresponding parts (i). Therefore 
throughout we omit the proofs of the second parts of the Lemmas and 
Theorems. Observe that this transformation interchanges (3.1) and (3.2) 
with each other, (3.5) and (3.6) with each other, and K and I- ’ with each 
other. (This is our main reason for studying (3.2) in addition to (3.1).) 

Proof of Lemma 4.1. Define 

r,(c s) = 44 s), (4.3) 

r n+ I(4 3) = i’46 u) r,(u, s), n> 1, (4.4) 

for almost all (t, s), SC s < t < T. It follows from (4.1), (4.3), (4.4), Fubini’s 
theorem, and an induction argument that the functions rn(t, s) are 
measurable in (s, t), S < s < t < T, and that 

ess sup I f Ir,(t, s)l ds < y”. (4.5) 
S<t<T S 

Formally, we can define 

46 s)= f rn(t, s), S<s<t<T. (4.6) 

By (4.1), (4.3), (4.4), (4.5), and Lebesgue’s dominated convergence 
theorem, r(t, s), as defined in (4.6), exists for almost all (s, t), S < s < t < T, 
it is measurable, it satisfies (3.4), and (3.5) holds. 

We claim that each r, in addition to (4.4) satisfies also 

rn+ I(t, s) = J’ r,(t, 0) 4u, 3) do, na 1, (4.7) s 

for almost all (s, t), SC s < t < T. To prove this claim, use (4.3), (4.4) 
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Fubini’s theorem, and an induction argument. Now (4.4), (4.5), (4.6), (4.7), 
and Lebesgue’s dominated convergence theorem give 

[‘r(t, ~)u(u,s)dv=~~u(t, v)r(u,s)dv 
s s 

for almost all (s, t), S < s < t < T. Together with (3.5) this implies (3.6), and 
completes the proof of Lemma 4.1. 1 

LEMMA 4.2. (i) Let a satisfy (2.1) with ICE A= 1. Let rl be an almost 
everywhere solution of (3.5) and (3.6) on the interval (S, V), satisfying (3.4) 
with T replaced by V, and let rz be an almost everywhere solution of (3.5) 
(3.6) on the interval (V, T), satisfying (3.4) with S replaced by V. Define 
r( t, s) almost everywhere by r( t, s) = rl( t, s), S < s < t < V, 

r(t,s)=u(t,s)+/Vu(t,u)r,(u,s)du+j’~r~(t,u)u(u,s)du 
J 

+f~r2(t.U)dvfVu(v,u)r,(u,s)du, S<s<V<t<T, (4.8) 
s 

and r(t, s) = r,(t, s), V< s < t < T, Then r satisfies (3.4) and ,for almost all 
(s, t), also (3.5) and (3.6). 

(ii) Let a satisfy (2.2) with K = A = 1. Let r, be an almost everywhere 
solution of (3.5) and (3.6) on the interval (S, V), satisfying (3.10) with T 
replaced by V, and let r2 be an almost everywhere solution of (3.5), (3.6) on 
the interval (V, T), satisfying (3.10) with S replaced by V. Define r(t, s) in 
the same way as in part (i). Then r satisfies (3.10), and for almost all (s, t), 
also (3.5) and (3.6). 

Formally, one can derive (4.8) e.g., by writing (3.5) in the form 

r(t,s)=u(t,~)+~~u(t,u)r(u,s)du+~~u(t,u)r(u,s)du, 
s 

and solving this equation by using the variation of constants formula (3.7), 
with S replaced by V. 

The proof of Lemma 4.2 is rather long, but it is quite straightforward. 
We therefore leave it to the reader. That r satisfies (3.4) or (3.10) is proved 
in the same way as in the proof of Lemma 5.1 below (take K E 1 E 1 in the 
proof of Lemma 5.1). To prove that r satisfies (3.5) and (3.6) one simply 
multiplies (4.3) by a from the left and from the right, integrates, and uses 
Fubini’s theorem and the fact that rl and r2 satisfy (3.5) and (3.6) on their 
respective intervals of definition. 
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Proof of Theorem 3.1. Divide the interval (S, T) into a finite number of 
subintervals, each with length at most s. Then by (3.3) and Lemma 4.1, in 
each subinterval we have a solution of (3.5), (3.6) satisfying (3.4). Applying 
Lemma 4.2 repeatedly to two successive intervals at a time we conclude 
that there exists a function Y, satisfying (3.4), (3.5), and (3.6) in the whole 
interval (S, T). 

To prove the uniqueness of Y, suppose that rl and r2 satisfy (3.4), (3.5), 
and (3.6). Multiply (3.6) with r replaced by rz from the right by rl, 
integrate, and use Fubini’s theorem and the fact that rl satisfies (3.5) to 
show that for almost all (s, t), 

j’u(t, u)r2(u,~)du=~‘rl(f, u)a(u,s)du. 
s s 

This together with (3.5) and (3.6) imply that r,(t, s) = r,(t, s) for almost all 
(s, t). 

Let f~ L”(S, T), and define x by (3.7). Then, by Lemma 2.1 with 
K = ;1= 1, x E L”(S, T). Multiply (3.7) from the left by a, integrate, and use 
(3.5) to show that for almost all t, 

[ia(t,s)x(S)ds=[ir(t,s)f(s)ds. (4.9) 

Together with (3.7) this implies that x is a solution of (3.1). To prove that 
(3.7) is the unique solution of (3.1), multiply (3.1) from the left by r, 
integrate, and use (3.6) to get (4.9). Substitute (4.9) into (3.1) to get (3.7). 

The proof of the claim concerning the solution (3.8) of the adjoint 
equation (3.2) is completely analogous, so we leave it to the reader. 1 

5. FR~~F OF THEOREM 3.3 

We begin the proof of Theorem 3.3 by proving Lemma 3.2. We remind 
the reader of the argument in Section 4, which shows that part (ii) of all 
our Lemmas and Theorems can be reduced to the corresponding parts (i). 
Therefore, we only prove parts (i) below. 

Proof of Lemma 3.2. Define q(s) = n(s) + UC(S). Multiply (3.6) by q(s), 
integrate, and use (3.11) to get 

ess sup[I.(t)]-’ j’ Jr(t, s)l q(s) ds 
S<r<T s 

<ess sup[A(t)]-’ j’ la(t, s)l q(s) ds 
S<r<T s 
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+ess sup[A(t)]-’ f’ It-(& u)l du $I la(o, s)l q(s) ds 
S<r<T s 

< 1 +ess sup[l(t)] -’ 1’ Ir(t, u)l A(u) dv. 
S<t<T s 

If the very last term is finite, then we can move it over to the far left side, 
and get (3.12). If it is not, then we replace the interval (S, T) by an interval 
(S’, rl), with S< S’ < T’ < T. In this new interval, because of Theorem 3.1 
and the fact that 1 is bounded from above and away from zero, the last 
term is finite, and we get (3.12) with (S, T) replaced by (S’, T’). Letting 
S’+ S+ and T + T- we finally get (3.12). 1 

In our proof of Theorem 3.3 we also need the following modified version 
of Lemma 4.2. 

LEMMA 5.1. (i) Let SC V< T, and let the hypothesis of Theorem 3.1(i) 
hold locally on (S, T). Let the solution Y of (3.5) and (3.6) satisfy (3.16) with 
T replaced by V, and with S replaced by V. Also suppose that (3.15) holds. 
Then r satisfies (3.16). 

(ii) Let S < V < T, and let the hypothesis of Theorem 3.l(ii) hold 
locally on (S, T). Let the solution r of (3.5) and (3.6) satisfy (3.18) with T 
replaced by V, and with S replaced by V. Also suppose that (3.17) holds. 
Then r satisfies (3.18). 

Proof of Lemma 5.1. Clearly, as we assume that (3.16) holds with T 
replaced by V, and with S replaced by V, to prove (3.16) it suffices to show 
that 

ess sup[A(t)] ~’ JsV Jr(t, s)l K(S) ds < CO. 
V<r< T 

It follows from (4.8) and the uniqueness of the resolvent operator that 
for almost all (s, t), S < s < V < t < T, 

where k( t, s) is defined for almost all (s, t), S < s < V < t < T, by 

(5.1) 

k( t, s) = a( t, s) + J’ r( t, v) a(u, s) dv. 
V 
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Now, for almost all t, V-c t < T, 

[J(t)1 -’ jsv 14~ 311 C@) + 4~11 ds 

6 Cal -’ j’ 14~ ~11 C+) + JL(s)I ds s 

+ C4t)l-’ j’ Ir(t, 011 du j” Mu, 311 [K(S) + W)l 4 
V s 

so by (3.16) with S replaced by V, and by (3.15), 

ess sup[n(t)]-’ j’ IQ;, s)l [K(S) + 1(s)] ds < CO. 
V<t<T c‘ 

(5.2) 

Use (5.1), (5.2) and the fact that (3.16) holds with T replaced by V to get 

ess sup[n(t)] -’ jSv Ir(t, s)l K(S) ds 
V<t<T 

6ess sup[J.(t)]-’ 1’ Ik(t, s)l K(S) ds 
V<r<T s 

+esssup[A(t)]-’ jv Ik(t, u)l duj: Ir(u,s)l x(s)ds< co. 
V<!<T s 

This completes the proof of Lemma 5.1. 1 

Proof of Theorem 3.3. Divide the interval (S, T) into three intervals 
(S, S’), (S’, T’), and (T’, T). By Lemma 3.2, in the first and the last interval 
(3.16) is satisfied, i.e., (3.16) holds with T replaced by S’, and with S 
replaced by T’. It is also satisfied in the middle interval, because K and 1 
are bounded from above and away from zero in (S’, T), and (3.4) holds 
with S replaced by S’ and T replaced by T’. Applying Lemma 5.1 two times 
we get (3.16). 

To prove that (3.7) is a solution of (3.1), observe that our hypothesis 
implies 

ess sup[A(t)] -I j’ la(t, s)l [K(S) + n(s)] ds -c CO, 
S<r<T s 

and argue exactly in the same way as in the proof of the corresponding 
claim of Theorem 3.1. 

The uniqueness of the solution of (3.1) in part (iii) follows from the fact 
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that if JC(S)/~~(S) is bounded away from zero as s + S+, then for each T’, 
S-C 7” < T, (3.16) implies that 

ess sup[i(t)]-’ 1’ lr(t, s)\[K(s)+ d(s)] ds-c co. 
S<t<T’ s 

When this condition is true, we can use the same uniqueness computation 
as in the proof of Theorem 3.1 to get uniqueness in the interval (S, T’). 
Letting T + T we get uniqueness in the whole interval (S, T). 

The uniqueness of the solution of the adjoint equation is proved in the 
same way. 1 

6. Two EXAMPLES 

Let us illustrate what type of results one can get from Theorem 3.3 by 
applying it to two examples, namely, to the equations 

x(f)=j,;r 4s) x(s) ds +f(t), o<t<cQ, (6.1) 

and 

x(t) = a(t) jr’-, 4s) ds +f(f), o<r<co. (6.2) 

In both equations we give an initial condition 

x(t) = cp(t), --r<t<o. (6.3) 

These two equations are closely related to certain differential delay 
equations. Differentiating (6.1) one gets 

x’(t)=a(t)x(t)-a(t-r)x(t-r)+f’(t), o<t<cQ, 

and (6.2) is the equation satisfied by the derivative of the solution of 

x’(t)=a(t)[x(t)-x(t--)]+f(t), o<t<co. (6.4) 

Also note that if x is a solution of (6.2), then j:- I x(s) ds is a solution of 
(6.1), with f replaced by 1; _ r f(s) ds, plus a correction term supported on 
[0, r], originating from the initial condition (6.3). 
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To apply Theorem 3.3, we have to write (6.1) and (6.2) in the standard 
form (3.1). Define 

b(t, s) = a(s), t--r<s<t, s>o, 
= 0, otherwise, 

c(t, s) = a(t), O<s<t<s+r, 

= 0, otherwise. 

Then (6.1) becomes 

X(t)=~ib(t,S)X(S)ds+g(t), 
0 

where 

g(t) =f(t) + j(o, 4s) cp(s) 4 

=f(tf, 

and (6.2) becomes 

x(t)=j.;c(t,s)x(s)ds+h(t), 

where 

4t)=f(t)+4t)[" cp(s)d~, 1-r 

=f(th 

(6.5) 

(6.6) 

o<t<co, (6.7) 

o<t<co, 

O<t<r, 

r<t<co. 

(6.8) 

We suppose that a is locally integrable, that K and II are strictly positive 
functions on [0, co), that gEL”(O, co; K), and that h~L’(0, 03; K). We 
want to apply Theorem 3.3(i) to (6.7), and Theorem 3.3(ii) to (6.8). 
Because of (6.5), (6.6) and the local integrability of a, on each interval 
(0, T) with 0~ T< co, the kernel b satisfies (2.1) with rc=A= 1, and also 
(3.3). Likewise, on each interval (0, T), 0 < T< co, the kernel c satisfies 
(2.2) with u=A= 1, and also (3.9). It is also easy to show that (3.15) and 
(3.17) hold (as b(t,s)=c(t,s)=O for t-s>>, one can restrict t to the 
interval I’< t < Y + r, and s to the interval V< s < V+ r; observe that 
(3.15) and (3.17) need not hold uniformly in I’). In this case, as fc and 3, are 
continuous and strictly positive at zero, the conditions (3.11) and (3.13) 
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will automatically be true on an interval (0, T), for T sufficiently small. The 
only conditions which are not more or less automatically satisfied are 
(3.11) and (3.13) with T= co, and with S to be chosen freely, 0~ SC co. 
For instance, if we take I = (1 + t)- ’ and n(t) = 1, then (3.11) is satisfied 
with a replaced by b if it is true that 

s 
(Lr la(s)1 ds< 1 -K/t, s<t<co, (6.9) 

for some positive constants K and S. With the same choice of K and 1, we 
have (3.13) satisfied with a replaced by c if (6.9) holds for some S > 0 and 
K > r (note that the condition K> 0 is not sufficient in this case). 

We have obtained the following result: If a is locally integrable on 
[0, co), if (6.9) holds for some positive constants K and S, and if g is 
measurable and satisfies 

ess sup( 1 + t) I g(t)1 < co, 
o<t<m 

then the solution x of (6.7) satisfies 

ess sup lx(t)1 < co. 
o<r<m 

If in addition (6.9) is true for some constant K> r, and if h is measurable 
and satisfies 

s 
m (1 + t) /h(t)/ dz < co, 

0 

then the solution x of (6.8) satisfies 

s 
a, Ix(t)1 dr < 00. 

0 

As we mentioned earlier, the derivative of the solution of (6.4) satisfies 
(6.2). Equation (6.4) has been studied, e.g., in [ 1 ] and [2]. The condition 
(6.9) with K> r is the same as the condition Atkinson and Haddock get in 
[l, Theorem.3.21. This is no coincidence. Recall that condition (6.9) with 
K> r comes from Lemma 3.2(ii), and that the proof of Lemma 3.2(ii) has 
been modeled after the proof of Theorem 2.1 in [2]. 

If a satisfies 

’ lim inf I la(s)1 ds < 1 
*-cc *-r 
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rather than (6.9), then one can choose K and I to be decaying exponentials, 
and one gets exponential convergence of the solutions of (6.7) and (6.8) to 
zero (cf. [2, Corollary 1 and Theorem 2.23). 
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