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Abstract 

To investigate the effect of the thermal characteristics of a motorized spindle system on the precision of a machine tool, a thermal error model 
for spindle axial expansion and radial thermal declination is proposed. With precision CNC coordinate boring machine as an object, using the 
five-point method to calibrate spindle system thermal errors by the eddy current sensors for axial thermal elongation and radial thermal tilted 
values, and temperatures of measurement points are obtained by the PT100. The relationships between the rotational speed and temperature 
field, thermal errors are analyzed. Then fuzzy clustering analysis method is used to group and optimize the temperature variables, selecting the 
variables for thermal error-sensitive. Finally the MIMO artificial neural network approach is established for the spindle axial thermal 
elongation and radial thermal drifts. The results indicated that the model prediction accuracy could reach 86% with perfect generalization 
ability under different cutting conditions, providing a theoretical model and thermal characteristic parameters for both thermal error 
compensation and thermal equilibrium design.   
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1. Introduction 

Precision CNC coordinate boring machine is a tool for 
processing complex box-type components. However, the 
accuracy decreases and becomes far lower than the initial 
design value after the machine is used for a long period of 
time. This decreased accuracy over time primarily results 
from inadequate maintenance and accuracy stability, and the 
thermal error is the main factor for the inadequate accuracy, 
accounting for 70% of the total number of errors arising from 
various error sources [1]. Thermal error will account for a 
larger proportion of total error as the machine tools become 
more sophisticated. Moreover, the dynamical characteristic of 
a spindle also affects the thermal error; Zhang Yun proposed a 
holospectrum-based balancing method to improve the 
machining accuracy [2]. A non-uniform temperature 
distribution causes thermal errors in CNC machine tools; this 

distribution becomes non-linear and non-stationary and varies 
with time. The mutual coupling of location and strength of the 
heat source, coefficient of expansion, and machine structure 
create complex thermal characteristics [3]. Donmez proposed 
that changing temperatures produce thermal error and thermal 
error is a major factor for reducing machine precision [4]. 

In recent years, the finite element method (FEM), which is 
used to analyze temperature fields and thermal deformation of 
machine tools, has become a topic of increasing interest, 
where Min established a variety of thermal boundary 
conditions for a thermal state model based on the Fourier 
thermodynamic equation and analyzed the gradient 
distribution of the screw temperature field under different heat 
fluxes [5]. Zhao proposed a method for calculating thermal 
conductivity coefficient of the spindle surface, and simulated 
and analyzed variation principles of temperature field and 
thermal deformation of the spindle [6]. Creighton used the 
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finite element method to analyze temperature distribution 
characteristics for high-speed micro-milling spindle, and 
constructed an exponential model of axial thermal error 
related with the spindle speed and running time [7]. However, 
precision CNC machine tool error is a mutual coupling of 
many complex factors that are affected by many variables, 
and therefore, it is extremely difficult to establish a theoretical 
equation from the perspective of thermo elasticity and heat 
transfer.  

Neural Network can describe nonlinear mappings 
relationship very well. Since Rumelhart proposed learning 
methods of multilayer back propagation [8], many scholars 
have begun to apply neural network to thermal error modeling. 
Chen and Yang [9, 10] used artificial neural networks (ANNS) 
to establish a relationship between temperature and the 
thermal error of a spindle, and the model was useful for 
making generalizations. Zhang integrated gray system model 
and artificial neural network model to establish a gray neural 
network model, and the model has better predictive ability 
than the traditional neural network model [11]. Ouafi 
constructed an artificial neural network model for spindle 
thermal error with the temperature drawing on statistical 
methodology, and carried out the error compensation 
experiments, which effectively improves the machining 
accuracy [12]. Hong studied thermal characteristics of a rotary 
axis on the five-axis machine, and analyzed effect of thermal 
error on errors motion of the rotary axis, then calculated how 
errors motion of the rotary axis can be affected by the thermal 
error with the help of geometric errors [13]. Vyroubal 
presents a method focused on compensation of machine's 
thermal deformation in spindle axis direction based on 
decomposition analysis, which is cheap and effective strategy 
[14]. Vissiere measures spindle thermal drifts with a new 
method which measurement accuracy can reach even to the 
nanometer [15].   

The current study focuses on a spindle system of a box-
type precision CNC coordinate boring machine. Thermal 
balance experiments were performed using a temperature 
displacement acquisition system to measure the distribution of 
the temperature field and thermal deformation at different 
spindle speeds. The study analyzes how different spindle 
speeds affect thermal characteristics, then using fuzzy 
clustering regression analysis method to optimize the 
temperature variables, selected the variables for thermal error-
sensitive, finally the MIMO artificial neural network 
approaches were established for spindle axial thermal 
elongation and radial thermal tilts. Subsequently, a new set of 
sample data is used to validate the model. The results indicate 
that the model has high prediction accuracy with perfect 
generalizations; one can obtain an exact model for subsequent 
thermal error compensation that provides references for the 
characteristic parameter for thermal equilibrium.  

2.  Experimental principles and equipment 

2.1 Experimental system 

The experimental system is shown in Figure 1, which 
focuses on the spindle of precision CNC coordinate boring 

machine. The system analyzes the change in the temperature 
field and the thermal distortion of the spindle system. The 
maximum speed of spindle is N = 20000rpm, and the cooling 
system for the spindle is controlled intelligently by 
temperature. Front and rear bearings and motor were cooled 
respectively.  

The measuring equipment and functions are as follows: a 
synchronous acquisition system (developed by our group with 
NI SCXI as its structural base) is used to determine the 
temperature and thermal deformation. This system uses Pt100 
precision magnetic temperature sensors to measure the 
temperature for the spindle system motor, bearings, pedestal, 
coolant, and environment. High-precision eddy-current 
sensors are applied to measure the spindle thermal drifts. The 
system carries out real-time synchronous acquisition of 
temperature and thermal drifts. 

 

Fig.1. Experimental setup 

 Table 1 presents and describes the machine positions of 
the magnetic temperature sensors (PT100), denoted T1… T11, 
and the eddy-current displacement sensors S1... S5.  

Table 1. Temperature sensor and displacement sensor mounting position 

Temperature sensor / 
displacement sensor Installation location 

T1 

T2 

T3 

T4 

T5 

T6 

T7 

T8 

T9 

T10 

T11 

S1 

S2 

S3 

S4 

S5 

rear bearing  

spindle base 

rear bearing cooling out 

front bearing cooling out 

ambient temperature 

front bearing oriented X- 

front bearing oriented Y+  

motor oriented Y+ 

the cooling in 

motor cooling out  

motor oriented X- 

radial near X-axis  

radial near Y-axis  

radial distal X-axis  

radial distal Y-axis  

Z axial direction 

2.2. Measuring principle 

The spindle thermal drifts are measured by using a five-
point method [16], a displacement sensor fixture and 
measurement diagram are shown in Figure 2. The spindle is 
parallel to Z-axis, and the axial thermal expansion can be 
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obtained by the S5.The radial thermal yaw x  partial X 
direction is measured by the S1 S3, and the radial thermal 
pitch y partial Y direction is measured by the S2 S4. The 
acquisition system recorded the data once every 1s. 

 

            

Fig. 2. (a) The displacement sensor fixture (b) five point’s measurement 
sketch map 

After the spindle running for a long period, the thermal 
elongation expanded to axial direction and thermal angle 
inclined to radial direction, resulting from the uneven 
temperature gradient distribution, which is shown in Figure 3, 
and the thermal yaw angle is:  

0
3 3 3

iL L L                                                                      (1) 

0
1 1 1

iL L L                                                                       (2) 

3 1L L L                                                                     (3) 

tan x
L

D
                                                                         (4) 

Where i denotes the number of measurements. The thermal 
yaw angle is too small in this experiment, that is 0x , so: 

~ tanx x                                                                            (5) 

As shown in Equation (6), the thermal yaw can be 
obtained by applying Equations (1)-(5). 

0 0
3 1 3 1( ) ( )i i

x
L L L L

D
                                                (6) 

Where 0
3L  and 0

1L  is the radial displacement between the 
sensor probe and the spindle measured by S3, S1 respectively 
in the initial state, 3

iL and 1
iL is the transient displacement 

during the running operation. D is the distance between S1 and 
S3, S2 and S4, and D=120mm.   

Similarly, the thermal pitch angle in the Y direction can be 
obtained:    
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Fig. 3. The spindle thermal inclination sketch 

3. Experimental results and analysis  

The spindle speed affects the temperature field distribution 
and the magnitude of thermal drifts. This section focuses on a 
set of experimental data. In order to simulate the actual 
spindle speed changes during processing, the velocity varies 
in the experiment, and the specific speed distribution is shown 
in Figure 4.   

 

 

Fig. 4. Step Speeds distribution  

3.1.  Temperature distribution  

The spindle system temperatures variations are shown in 
Figure 5. The overall temperatures trend of all the measuring 
points increases with time, but the general increase in 
temperature exhibits cyclical changes with a cycle time. This 
is because temperatures of the spindle system were controlled 
by intelligent cooling system, which sets a temperature 
threshold value and starts to reduce the temperature when the 
component temperature is higher than this threshold value. 
Therefore, the increase in temperature exhibits fluctuations 
changes.   

The front bearing, rear bearing and the motor are cooled 
separately in the cooling processing, but when they are 
cooling, temperatures will be inhibited to increase and the 
cooling fluid takes away an amount of heat energy which is 
less than the heat generated by the spindle, so the overall 
trend is still increasing. And it takes approximately 320min 
for temperature to reach thermal equilibrium, and then the 
rear bearing has the highest temperature reaching 32  due to 
large capacity, heavy load, severe friction which generates 
more heat, and followed by the motor whose temperature is 
27.3 . Temperatures of the other measuring points are about 
26 . The ambient temperature T5 increased from 21.3  to 
23.8 . 
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S2 

S3 

S4 

S5 
X 
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Fig.  5. Temperatures of the spindle  

3.2. Variation of thermal drifts  

Figure 6 presents the spindle thermal drifts. The 
measurements taken from the points in Figure 6 indicate that 
the displacement trends are gradually increased over time, 
eventually reaching thermal equilibrium. Z-axis axial thermal 
elongation increases as time increases, and the direction is 
negative, which indicates that the spindle thermal expansion 
to the negative direction on Z–axis. The time until equilibrium 
is reached is approximately 385 min, with a maximum 
elongation of 39.6μm. The thermal error on X-axis direction 
is positive, which indicates that during the heating process, 
the spindle is away from the displacement sensors S1/S3, it 
deviates from the Z axis, the spindle swings to the negative 
direction in the X axis on the XZ plane, and its thermal yaw 
angle to the Z axis is x , the maximum amount of hot offset 
error is 35μm. Thermal error in Y direction is negative which 
indicates during operation the spindle is closer to the 
displacement sensors S2/S4, and it deviates from the Z-axis, 
and the spindle in the YZ plane pitches to the negative 
direction on the Y–axis, and and its thermal pitch angle to the 
Z axis is y , the maximum thermal offset is of 20.2μm.  
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Fig. 6 Thermal drifts of the spindle 

4. Fuzzy clustering grouping and optimization for 
temperature measuring points  

Famous scholar Ruspini [17] was the first to propose the 
concept of fuzzy partition, he introduced the fuzzy set theory 
into cluster analysis, then, other researchers have presented a 
variety of fuzzy clustering analysis method based on fuzzy 
graph theory, among which include the biggest tree method 
based on Fuzzy Graph Theory [18]. This paper groups 
temperature variables of 11 measuring points using the fuzzy 

clustering, and then applies statistical correlation to optimize 
the measuring points and calculated correlation coefficient 
between each variable temperature and thermal error, finally, 
take the measuring points whose correlation coefficient is 
bigger in each group as the typical temperature variables.   

4.1. Hierarchical clustering method  

As the temperature variables are in small quantities, so we 
use system cluster analysis, and the variable packet process is 
shown in Figure 7.   

Training
normalization

Distance
between
samples

Similarity
samples

mergence

New class
distance

Clustering
algorithm
evaluation

Determine
the number
of groups

Y
N

 

Fig. 7. Fuzzy Clustering Grouping 

Assume the temperature variable T= {T1, T2... Tm} is the 
object to be carried out by a fuzzy clustering analysis. Each 
object in T is Tk (k=1, 2... m) whose characteristics can be 
described by a limited number of values. Therefore there is a 
corresponding vector P(Tk)=(Tk1, Tk2,..., Tks ) to the object Tk. 
Tkj(j=1,2,...,s) is the jth characteristics value of Tk. P(Tk) is the 
eigenvectors for Tk. Fuzzy clustering analysis is to divide 
sample T into c fuzzy subsets ~ ~ ~

1 2, ,..., cT T T , according to the 
similarity between the feature vectors.   

Cluster Analysis, also known as hierarchical clustering 
analysis method, is to gradually cluster according to feature 
vector distance criteria. The classification moves from more 
to less, until reaches the desired classification. The following 
are the general steps for system clustering:  

1. Initialize the data. Assuming that T sample set contain m 
subsets T1

(0), T2
(0), ,..., Tm

(0), which form one class, then 
calculate distance between each subset, and obtain m m
dimensional distance matrix 

bD ; 
2. Find the smallest element in the distance matrix 

bD
(except diagonal elements ) , if the minimum element is the 
distance between Ti

(b) and Tj
(b) , and then the two will be 

merged into Tij
(b+1) .Finally, get a new classification T1

(b+1), 
T2

(b+1), ,..., Tm-1
(b+1);   

3. Computing distances between the new categories after 
merging cluster to get the distance matrix

1bD ; 
4. Repeat the second step of the work until the 

classification meets the requirements. 
m=11, set the number of packets C=4, after calculating, 

combination of Euclidean-centroid clustering algorithm 
obtained the optimal grouping, the cluster groupings are 
shown in Figure 8, divide the temperature variables into 
Groups {T1},{T5},{T2, T3 ,T4, T6 ,T9 ,T10},{T7, T8 ,T11 }. 

 

         Fig. 8.  Clustering dendrogram 
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4.2. Optimization of temperature variables  

Based on the results above the groups, correlation 
coefficients between axial thermal error E and the temperature 
Ti can be calculated:  

1

2 2

1 1

i

n

ij i j j
j

T E n n

ij i j j
j j

T T E E

T T E E
                                  (8) 

In the equation, i=1, 2...m, as the temperature measurement 
points. j=1, 2... n, as the number of measurements. Tij is the 
temperature of measuring point; Ej is the thermal elongation, 

iT is the average temperature of ith measurement point, jE  is 
the average thermal elongation. Correlation coefficients are 
shown in Table 2. Selecting the temperature variable whose 
coefficient is higher as a typical variable in each cluster. T10 is 
the outlet liquid temperature of motor coolant, and its 
temperature has more significant influence to motor 
temperature, so it is reserved as a key variable, finally we 
choose T1, T5, T6, T7 and T10 as the typical temperature 
variables.    

Table 2. Correlation Coefficients between Temperature and Axial Thermal 
error  

Temperature Cluster ρ Temperature Cluster ρ 

T1 4 0.9651 T7 1 0.9902 

T2 2 0.8593 T8 1 0.9739 

T3 2 0.9054 T9 2 0.8948 

T4 2 0.9242 T10 2 0.9344 

T5 3 0.9546 
T11 1 09737 

T6 2 0.9706 

5.  MIMO neural network modeling  

The relationship between spindle thermal errors and 
temperatures is strong nonlinear. A multi-input multi-output 
spindle thermal error model was established based on 
feedback neural network (Back Propagation).  

( )P T                                                                               (9) 

Where ( , , )x yP E is an output vector of the model, 
including axial thermal elongation E, thermal yaw angle error 

x on XZ plane, and thermal pitch angle error y on YZ plane. 
The input vector is 1 5 6 7 10( , , , , )T T T T T T , and is neuron 
weight matrix, T P  is the transfer mapping function.     

5.1. Model Structure 

Setting a desired target, the efficiency of learning and 
iterations, the trainlm algorithm is used to train the network. 
Figure 9 illustrates the model structure; the hidden contains 
two layers of neurons, made up of 5 * 1 neurons. The network 
constitutes 5 input temperature variables, 3 output thermal 
drifts variables.    
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Fig.  9. Neural network structure 

5.2. Model output 

The experimental data in Figure 4 is as the training sample, 
and build the neural network model. The comparisons 
between predicted and experimental values are shown in 
Figure 10-12. The average absolute value of the residuals of 
axial thermal error E, radial thermal yaw angle x  and 
thermal pitch angle y  were 1.35μm, 1.56 " and 1.55" 
respectively, and the root squared mean error (RSME) is 
respectively of 2.98, 3.99 and 4.09. Moreover, predictive 
ability of the three thermal drifts was 94.6 %, 84.4 %, and 
84.5 %, which indicate that the predictive power of the model 
is good.    

0 50 100 150 200 250 300 350 400 450
-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

El
on

ga
tio

n 
(μ

m
)

Time (min)

 experiment
 prediction
 residual

  
0 50 100 150 200 250 300 350 400 450

-20

-15

-10

-5

0

5

Th
er

m
al

 y
aw

 ('
')

Time (min)

 experiment
 prediction
 residual

 

Fig. 10. Axial thermal elongation        Fig. 11. Radial thermal yaw angle 
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Fig. 12. Radial thermal pitch angle  

6. Model validation  

To verify the validity of the model, the new data samples 
were used to predict the spindle thermal errors. Figure 13 
describes the spindle speeds map corresponding to the new 
data samples.  

 

Fig. 13. Stochastic spindle speeds distribution 
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Figure 14-16 compares the model predictions with the 
measured values using Equation (9). The average absolute 
value of the residuals of axial thermal error E, radial thermal 
yaw angle x  and thermal pitch angle y  were 2.47μm, 1.34 " 
and 1.59" respectively. Moreover, predictive ability of the 
three thermal drifts was 90%, 88.8% and 87.2%, indicating 
the model has a good predictive ability and perfect 
generalization. 
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Fig. 14. Axial thermal elongation     Fig. 15. Radial thermal yaw angle 
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Fig. 16. Radial thermal pitch angle 

7.  Conclusions  

In this paper, using fuzzy clustering analysis method to 
group and optimize the temperature variables, and spindle 
axial / radial thermal errors ANN model is established, then 
the following conclusions can be reached.    
(1) The Neural Network thermal error model based on fuzzy 

clustering pre-processing has an ability to predict 
precisely, and it is strong in generalization also. In 
addition, the model could be used for thermal error 
compensation technology to improve the precision of 
coordinate boring machine.  

(2) The method of correlation analysis is used to optimize 
temperature variables, reducing the number of 
independent variables in modeling, and it can reduce 
modeling costs effectively. Furthermore, it also reduces 
the costs of thermal error compensation. 

(3) The spindle thermal drifts include an axial thermal 
elongation, radial thermal yaw angle error and the radial 
thermal pitch angle error, and a unified multi-input 
multi-output predictive model can be established by the 
neural network. Moreover, the unified model makes it 
easy to implement the compensation of thermal error in 
the coordinate boring machine.   
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