
TOPOLOGY 
AND ITS 
APPLICATIONS 

ELSEVIER Topology and its Applications 78 (1997) 143-151 

Applications of braid group techniques to the decomposition 
of moduli spaces, new examples a- 

A. Robb 1, M. Teicher* 

Department ~f Mathematics and Computer Science. Bar-llan Universit3; 52900 Ramat Gan, Israel 

Received I 1 December 1995; revised 26 September 1996 

Abstract 

Every smooth minimal complex algebraic surface of general type, X, may be mapped into a 
moduli space, A4c~(x),~z(X ), of minimal surfaces of general type, all of which have the same 

Chern numbers. Using the braid group and braid monodromy, we construct infinitely many new 
examples of pairs of minimal surfaces of general type which have the same Chern numbers and 
nonisomorphic fundamental groups. Unlike previous examples, our results include X for which 
17r~ (X)I is arbitrarily large. Moreover, the surfaces are of positive signature. This supports our 
goal of using the braid group and fundamental groups to decompose A4,:~(x),c2ix) into connected 
components. © 1997 Elsevier Science B.V. 
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O. Introduction 

It was proven by Gieseker  that there exists a quasi-project ive coarse modul i  space, A4, 

of min imal  surfaces of general  type. This space is a un ion  of  components ,  .Mc~(x),c2(x), 

in which all members  have the same Chern numbers .  A major  problem in the theory of 

surfaces is the search for discrete invariants  which characterize the connected components  

of .AAo~,o ~ [3,16]. 
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The Chern numbers are, of course, topological invariants; e2(X) is the topological 

Euler characteristic, and c2(X) may be computed from c2(X) and the signature of X. 

Hence, this may also be regarded as a problem in four-dimensional topology. 

A discrete invariant which has already been used successfully to distinguish connected 

components of A4c~,~ 2 is the divisibility index, r(X), of a surface, X. If Kx is the canon- 
ical divisor of X,  then r(X) is the largest positive integer such that Kx is linearly equiv- 

alent to rD for some divisor D of X. The divisibility index is a deformation invariant. 

Catanese and Manetti have each produced examples of minimal surfaces of general type 

with the same Chern numbers and different divisibilities [2]. Later Catanese and Manetti 
produced examples of homeomorphic minimal surfaces of general type with the same 

divisibility which are not deformations of each other, i.e., they are in different connected 

components of moduli spaces (see [4,9,10]). All of their surfaces are simply-connected. 
Another discrete invariant is the fundamental group. There exist pairs of surfaces which 

have the same Chern numbers and nonisomorphic fundamental groups. For example, 

the Godeaux construction can be used to produce surfaces, X,  such that c~(X) = 2, 
c2(X) : 10, and 7rj (X) is one of the following: ~ 3  Z2; Z2 ® Z4; Zs; the multiplicative 
group {±1,-4-i-4-j :k k} C H [1]. However, there are few examples of such pairs of 

surfaces and the possible fundamental groups are all relatively small. 
In this article, we use new results on Galois covers of Hirzebruch surfaces [15] to 

construct infinitely many new examples of pairs of minimal surfaces of general type, X 

and Y, such that 

c,~(X) = c~(V), c2(X) : c2(V), ~, (X) ~ ~, (V). 

In all of our examples, X and Y have positive signature and 7r~ (Y) = (0}. The funda- 

mental group of X is finite but may be arbitrarily large. Indeed, for every n 6 Z, there 

exists a pair X, Y, such that 17q (X)I > n. 
This article is organized as follows. Section 1 is an introduction to the braid mon- 

odromy map associated to an algebraic curve. Section 2 describes the Galois cover of 
an algebraic surface (our examples are Galois covers of Hirzebruch surfaces). Section 3 

describes how to use braid monodromy theory to calculate the fundamental group of a 

Galois cover. Section 4 contains our examples of pairs of surfaces with the same Chern 
numbers and nonisomorphic fundamental groups. Section 5 gives more examples, which 
are based on a work in preparation by the authors. It also describes how more examples 

might be obtained using Galois covers of K3 surfaces. 

1. The braid group techniques 

We introduce braid monodromy, which is used to compute fundamental groups related 
to surfaces of general type: fundamental groups of the complement of a branch curve 

and fundamental groups of Galois covers. 
We consider the following situation: 
- S is a curve in C 2, p = deg S. 
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- 7r : C 2 --+ C a projection on the first coordinate. 

- = { x  I # -l(x)as < . p } .  
- Let E be a closed disk on x-axis such that N c Int(E) .  We choose u ~ 0E.  

- Let D be a closed disk on the y-axis such that 7 r - I (E)  n S  C E × D. 

- = {y  I c s }  = 
In such a situation, we are going to introduce "braid monodromy".  

Definition (Braid monodromy of  S w.r.t. E × D, Tr, U). Every loop in E - N starting at 

u has liftings to a system of p paths in (E  - N)  × D starting at ql , . .  •, qp. Projecting 

them to D we get p paths in D defining a motion {ql ( t ) , . . . ,  qp(t)} of p points in D 
starting and ending at K.  

This motion defines a braid in Bp[D, K],  as explained in [14, Chapter III]. Thus 

we get a map ~ : 7ri (E  - N ,  u) -+ Bp[D, K]. This map is evidently a group homomor-  

phism, and it is the braid monodromy of S w.r.t. E × D, 7r, u. We sometimes denote 
by ~ .  

Definition (Braid m o n o d r o m y o f S  w.r.t. 7r, u). When considering the braid induced 
from the previous motion as an element of  the group Bp[C~, K] we get the homo- 

morphism ~ : 7r, ( E  - N ,  u) --+ Bp[C~, K] which is called the braid monodromy of  S 
w.r.t. 7r, u. We sometimes denote ~ by ~ .  

P r o p o s i t i o n  1.1 (Example). Let 

E={m~Cllxl~l }, D={yeCly<~R}, 
R >> l, S is the curve y2 = x", u = 1. Clearly, here n = 2, N = {0}, K = 

{ - 1 ,  + l  } and 7rl ( E - N ,  l) is generated by F = ~ E  (positive orientation). Denote by 

~:Tr l (E  - N,  1) -+ B2[D, K] the braid monodromy of  S w.r.t. E x D, Tr, u. 

Then ~ ( F )  = H ~, where H is the positive half-twist defined by [ -1 ,1 ]  
("positive generator" of  B2 [D, K]). 

Proof .  We can write F = {e 2rit I t E [0, 1]}. Lifting F to S we get two paths: 

3, (t) = (e 2tit, e2~i~t/2), ~2(t) = (e 2~it, -e2~i"t/2).  

Projecting ~l (t), 62(t) to D we get two paths: 

al (t) = er i tv ,  a2(t) = - e  7rit'v, 0 ~< t <~ 1. 

This gives a motion of  { 1 , - I }  in D. This motion is the vth power of  the motion .A4: 

b I (t) = e rrit, b2(t) = - e  tie, 0 ~< t ~< 1. 

The braid of B2 [D, { 1, - 1 }] induced by .M coincides with the half-twist g correspond- 
ing to [ -1 ,1 ]  C D. Thus qo(F) = H ~. [] 

P r o p o s i t i o n  1.2 (Example). Let S be a union of  p lines, meeting in one point so, so = 

(x(so), y(so)).  Let D, E, u, [ (  be as before. Let ~ be the braid monodromy o f  S w.r.t. 
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E x D,  7r, u. Clearly, here N = single point x(so) and :rl (E  - N ,  u) is generated by 
F = OE. Then qo(F) : A~ = A 2 [ D , K ( u ) ] .  

Proof.  By a continuous change of  so and the n lines passing through so (and by unique- 

ness of  A 2) we can reduce the proof to the following case: S = ULk,  Lk: y = jkx ,  

jk  = e z~ik/p, k = 0 , . . . , p -  1. Then N = {0}. We can take E = {c ]Ix[ <~ 1}, u = 1, 

/~ = i~E = {z : e 27tit I t E [0, 1]}. Lifting 0 E  to S and then project it to D we get n 

loops: 

ak(t) = e 2~i(t+k/p), k = O,. . . , p -  1, t E [0,1]. 

Thus the motion of  ak(0) represented by ak(t) is a full twist which defines the braid 

A~ [D, {ak(0)}] = AZp [D, K ( 1 ) ] .  (To check the last fact, see the corresponding actions 
in 7 r l ( D -  K ,u ) . )  [] 

Let S be a curve in C 2, p = degS,  C~ = {(u,y)} .  There exists an epimorphism 

7rl (C~, - S, u0) -+ 7q (C 2 - S, uo), so a set of generators for 7rl (C~, - S, u0) determines 

a set of  generators for 7rl (C 2 - S, uo). 

There is a classical theorem of Van Kampen from the 30's [19,20], which states that 

all relations in 7q (C 2 - S, Uo) come from the braid group Bp via the braid monodromy 

cp~ of  S. We shall formulate it precisely. 

Choose L, a line in infinity transverse to S. Let C 2 = C]? 2 - L. 

Choose coordinates x, y on C 2. Let p~ : 7rl (C - N,  u) --+ t3p the braid monodromy of  

S with respect to 7r, u. 

The group 7rj (C~ - S, Uo) is a free group. 

Van K a m p e n  Theorem.  7r, (C 2 - S, u0) ~- 711 (Cu --  S ,  u 0 ) / { / ~ ( V  ) : V ] /3 E Im 7)4, 
V ~ 7rl (Cu - S, u0)} 

The above formulation of  van Kampen is not very practical because the group pre- 

sentation is not finite. It is possible to simplify the presentation so that it is finite. 

See, for example, [8]. Moreover, since we consider branch curves which are cuspidal, 

one can formulate van Kampen's theorem with relations of  types A B ,  A B A - J B  -1 

and A B A B  ~ A - I B  -1. Even this presentation is rather long and complicated, and 

in order to apply it we have to find symmetries in the braid monodromy factoriza- 

tions. 

2. Galois  covers  and their Chern  numbers  

We use the Galois cover construction of  Miyaoka to construct our examples. 

Definit ion (Galois cover). For X a surface in C]P N and f : X -+ CI? 2 a generic projec- 

tion, we define the Galois cover of  X and f w.r.t, the full symmetric group as: 

.zY = X G a l  : ( X c / ? 2  x ' - .  x X c l ? 2 )  - z~,  

n times 
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where A is the set of n-tuple ( a , , . . . ,  a~) ,a i  = aj  for some i ¢ j. Let f ' ) f  --+ CP  2 

denote the natural projection. 
Let S c CP 2 denote the branch curve of f .  The curve S is singular, with ordinary 

singularit ies--nodes and cusps. 

The surface ~Y is smooth. If deg(S) > 6, then ) f  is minimal and of general type [12]. 

L e m m a  2.1. Let n = deg(X)  and rn = deg(S), Let d and p denote the respective 

numbers of nodes and cusps of S. Then 

rz! (m - 6)2, c2(X) = n ' (  1 3d 4 p )  

Proof. See 7.1.1 of [15]. [] 

L e m m a  2.2. Let E and K denote respective hyperplane and canonical divisors of X .  
Then the Chern numbers of X are functions of cZ(X), c2(X), deg(X),  and E .  K. 

Proof .  Let g denote the genus of an algebraic curve and let e denote the topological 

Euler characteristic of  of a space. 
Let R C X denote the ramification locus of f .  The curve R is a nonsingular model 

of  S. By the Riemann-Hurwitz  formula, R = K + 3E. Thus 

e ( n )  = - n .  (R + K )  = - ( K  + 3 E ) .  (2K + 3E).  

It follows that g(R) is determined by n = E 2, c2(X) =/ . (2 ,  and K .  E.  Similarly, e(E) 

is determined by these quantities. Because ru = deg(S) = deg(R) = E - ( K  + 3E) ,  we 

have that m is determined by these quantities. 

Let S* denote the dual curve to S and let # = deg(S*).  By the preceding section, 

and by Lemma 2.1, it suffices to show that #, d, and p are determined by m, rz, e(E), 
c2(X), and 9(R). We show this by presenting three linearly independent formulae: 

r e ( m -  1)=#+2d+30, 

g ( n )  = ( m  - - 2 )  _ d - p ,  

2 

c2(X) + 'u = 2e (E)  + #. 

The first two are classical Plucker formulae. For the third, we may find a Lefschetz pencil 
of byperplane sections of  X whose union is X.  Thus, 

e(X)  + v, = e (CP 1) • e(E) + (number of singular curves in the pencil), 

where e is the topological Euler characteristic. The number of singular curves is equal 

to i L. [] 

R e m a r k  2.3. Lemma 2.1 can easily be modified to give explicit formulae for c2()f) 

and c2()f) in terms of c2(X),  c2(X),  n, and E .  K .  However, such formulae are not 
necessary for our result. 
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3. Fundamenta l  groups of  Galois cover 

Let X be a surface in C~ t~N . Let f be a generic projection f : X -+  C]P 2. Let XGal be 

the Galois cover of X and f w.r.t, the full symmetric group. 

Consider the natural homomorphism 7rl (C z - S, uo) ~ ~9~ for S the branch curve of 

f and u0 any point not in S. In fact, lifting a loop at uo to n paths in X (n = deg f ) ,  

induces a permutation of f -1  (uo). Since # f - J  (uo) = n we thus get an element of Sn. 
Because f is a generic projection, we have 

1 --+ ke r~  --+ 7q (C 2 - S, u0) --+ S~ --+ 1. 

To obtain an isomorphic form of 7rl (XGal) related to the braid monodromy we have to 
choose a certain system of generators for 7r(C 2 - S, uo). 

Let 7r:C 2 - C be the projection on the first coordinate. Let M / c S _C C 2 be the 

points of S where 7rls is not etale. Let M = 7r(M~). The set M is finite. Let u E CM. 
(Trls) - I  (u) is a "good" fibre. Let us take u real, "far enough" from the "bad" points. Let 

uo be a point in C~ = 7r' (u), uo ~ S. 

Let S A C ~  = {ql , . . . ,qp} .  Let 7j be paths from u0 to qj, such that the 7j 's  do 

not meet each other in any point except uo. Let 71j be a small circle around qj. Let 
t 7)gj( ' /))  • The set {Fj}  freely generates 7) be the part of 7j outside ~7j- Take Fj = ~ ~ -1 

7rj(C~ S, u0). F v - { J}j=l is called a good system of generators for 7h (C~ - S, uo). 

We have a surjection 7h (Cu - S ,  uo) £+ 7rl ( C 2 - S ,  uo) -+ 0. The set {u(Fj)} generates 
7rj (C 2 - S, uo). By abuse of notation, we shall denote u(Fj) by Fj. 

Since f is stable, Fj induces a transposition in S~. So F 2 E ker~.  Let (F 2) be the 
normal subgroup generated by F 2. Then (Fj z) c ker~.  By the standard isomorphism 

theorems, we have: 

1 --+ k e r O / ( F  2) --+ 7r,(C 2 -  S, u o ) / ( F  2) ~-+ S~ -+ 1. 

It is convenient to replace C]~ 2 by its "generic" affine part. Let S be now the branch 
curve of f in C 2. Let X nef be the part of Xtal lying over C 2 (C_ C~2). It is evident that Gal 
X Aft (XAf f~  Gal --+ XGal is surjective. We consider first 7h t Gal J" 

(X Aff~ is isomorphic to ker~p/(_F~). Proposit ion 3.1. 7q ~ Gal ) 

Proof. In [11]. [] 

Proposition 3.1 reduces the problem of computing 71" 1 (X Aft) to the computation of a 
subgroup of 7rl (C 2 - S, u0)/(1"2). Using the braid monodromy we get via the Van 
Kampen method (see Section 1) a finite presentation of 7rl (C 2 - S, uo) / (Ff ) .  From this 
presentation via the Reidemeister-Schreier method we get a finite presentation of its 
subgroup k e r ~ / ( F f )  which is 7rl (XA~). Passing to the projective case means adding 
one relation which is H j  Fj = 1. 
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4. The new examples 

Let Fk denote the Hirzebruch (rational ruled) surface of order k. The Picard group of 

Fk is generated by divisors C and E0, where C c Fk is a fiber and E0 C Fk is a zero 

section. We have E o = k, E0.  C = 1, and C 2 = 0. Let Kk denote the canonical divisor 

of Fh:. It is well known that for any k, 

Kk = - 2 E o  + (k - 2)C, c2(Fk) = 8, c2(Fk) = 4. 

Let Fk,(a,b) denote the image of Fk under the embedding induced by aC+bEo (a, b >~ 1 ). 
It is elementary that 

(a) deg(F<(a,b)) = (aC + bE0) 2 = 2ab + b2k, 

(b) K k .  (aC + bEo) = ( -  2Eo + ( k -  2 ) C ) ( a C  + bEo) = - 2 a -  2 b -  bk. 

For every pair of positive integers s, t, define 

X s , t  =/~o,(s+t,2t),  Ys,t = ?l,(s,2t)- 

Proposition 4.1. For any s, t, 

c~(X.s,t) -= c~(Ys,t) ,  c2(Xs,t)  = c2(Ys,t). 

Proof .  Since X~,t and Y~,t are Galois covers we can prove the proposition by using 
Lemma 2.2. Because all rational ruled surfaces have the same Chern numbers, then in 

order to apply Lemma 2.2 it suffices to prove that the degrees and the intersection of the 

hyperplane divisor with the canonical divisor, are the same for F0,(~+t,2t) and Fl,(<2t). 
This is easily done with the above formulae (a) and (b). [] 

Theorem 4.2. Let s, t be odd integers such that gcd(s,  t) = 1. Let 

n(& t) = deg(Fo,(~+t,2t) ) = 4st + 4t 2. 

Then 

rr, (X~,t) '~ ( ~  Z/2Z ,  7r, (Y~,t) ~ {0}. 
n(s,t)-2 

Proof .  The case of  X~,t follows directly from [13, Theorem 10.2]. This states that 

7q(F0,(a,6)) ~ @n(a,b)_zZ/cZ where c = gcd(a,b) .  The case of  Y~,~ follows di- 

rectly from [15, Theorem 0.1]. This states that for any k, 7rl(Fk,(a,b)) is trivial when 
gcd(a,b)  = I. [] 

Theorem 4.3. Xs,t and Ys,t are minimal surfaces of general ~. pe which are 4-manijblds 
with positive signature. 

Proof. In [15]. 
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By combining Proposition 4.1, Theorems 4.2 and 4.3, we obtain our examples. Each 

example is a pair of 2 smooth minimal surfaces of general type with positive signature 

which have the same Chern numbers and nonisomorphic fundamental groups. One fun- 

damental group is trivial and the other one is a commutative finite group. The examples 

include X for which 17r~ (X)I is arbitrarily large. 

5. Other examples 

It is possible to use Galois covers of other embeddings of Hirzebruch surfaces. For 

example, we obtain nonisomorphic fundamental groups if s and t are both odd but not 

necessarily relatively prime. Nonisomorphic fundamental groups are also obtained if 
8 = t .  

However, these cases require Theorem 5.1, whose proof is in [6]. This theorem is a 
generalization of the results of [13] and [15]. Its proof uses the topological and group- 

theoretic techniques of these articles. 

Theorem 5.1. Let Fk,(a,#) denote the Galois cover of Fk,(a,b). Let n(a, b) = deg(Fk,(a,b)) 

and c = gcd(a, b) then 

n(a,b)-2 

It is likely that the Galois construction can be used to produce many more examples of 
pairs of surfaces with the same Chern numbers and nonisomorphic fundamental groups. 

To illustrate this, we will consider covers of K3 surfaces. 

An analog of Theorem 5.1 is Conjecture 5.2. 

Conjecture 5.2. Let X C C]? N be an embedded K3 surface, with hyperplane section E 

and degree n. Let D c X be the hyperplane section of  a embedding of  X of  minimal 

degree, and assume that E =_ sD. Then 

n- -2  

Conjecture 5.2 can be proven in the cases for which D 2 = 4, 6, 8 (in these cases, X 

is a complete intersection). It' should be possible to combine results on the degenerations 
of K3 surfaces of Ciloberto, Lopez, and Miranda [5] with braid monodromy techniques 
[11,13,15] to prove the other cases. It should be mentioned that similar results exist for 

other surfaces [18]. 
Let a, b c Z + be distinct even square integers. Let X and Y be embedded K3 surfaces, 

each of degree a2b 2. Assume that the smallest possible degrees of embeddings of X and Y 
are a 2 and b 2 respectively. It is elementary that the K3 surfaces X and Y above satisfy 

the hypotheses of Proposition 4.1. Hence, .~ and Y" have the same Chern numbers. 

Conjecture 5.2 would imply that 7rl ()()  ~ ~ n - 2  Zb and 70 (-~) ~ ~]~n 2 Za, which 
would imply the existence of many more families of examples. 
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