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a b s t r a c t

In the present paper, the Lattice-Boltzmann method is employed for the simulation of
immiscible two-phase flow through a 2D porous domain when the volume fraction of the
non-wetting phase is relatively low and thus it flows in the form of disconnected blobs.
The flow problem is solved using an immiscible two-phase LB model where interfacial
forces are expressed in termsof the chemical potential through theGibbs–Duhemequation.
We study the population dynamics of the non-wetting fluid blobs, namely the temporal
evolution of the average blob size, with respect to the applied body force and the wetting
phase volume fraction. Our results show that the system reaches a ‘‘steady state’’ where the
average values of the studied parameters, such as the superficial velocities of both phases,
and the number and size distribution of the blobs remain practically constant in time,
although the temporal fluctuations around average valuesmaybe significant.We show that
the average volume of the blobs decreases (and the population of the blobs increases) as the
body force increases, namely as the viscous forces become dominant over capillary forces.
The effect of the wetting volume fraction on the number of the blobs is more complex; as
the wetting volume fraction decreases at constant body force, the blobs cover larger areas
within the pore space producing larger pressure gradients and the dynamic breakup of
blobs intensifies resulting in increasing blob numbers. However, below a critical value of
the wetting volume fraction, the number of blobs begins to decrease and the non-wetting
phase begins to span the entire pore network.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Two-phase flow in porous media is encountered in a plethora of energy-related, environmental-related and other
industrial applications such as oil/gas recovery, soil remediation and geothermal processes. The two phases can be either a
gas and a liquid phase or two immiscible and/or partial miscible liquid phases. Typical examples of the two phases being gas
and liquid are the case of solution gas during primary production of light oil, and the case of the flowing gas phase dispersed
in the form of bubbles during the aggressive production of heavy oil from unconsolidated sands (‘‘foamy’’ oil). A typical
example of the two phases being immiscible liquids is the presence of NAPL (Non-Aqueous Phase Liquid) pollutants in an
aquifer. Depending on the relative amount of the two phases in the porous medium, the phases can be both continuous or
one phase can be discontinuous and randomly distributed inside the other phase. The case of a discontinuous, immiscible
and randomly distributed non-wetting fluid into a porousmediumhas attracted significant attention, since it is encountered
in a number of practical applications, and is the focus of the present study.
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Thediscontinuous non-wetting fluid (nw-phase) flowswithin thepore void in the formof blobs (otherwise called ganglia)
[1–3], while the wetting fluid (w-phase) forms a continuous spanning film that covers the pore walls. The randomness and
heterogeneity of the porous medium can result in the production of a distribution of blobs of different sizes and shapes. The
blobs flow through the porous medium under the combined effect of capillary, viscous and buoyancy forces. The relative
magnitude of these forces determines the rate atwhich two ormore blobs coalesce to form a larger one and the rate atwhich
single blobs breakup into smaller ones. These forces also determine the ratio of the mobile blobs that flow through the pore
space to the stranded blobs that are immobilized in low permeability regions of the porous medium. The mobilization of
stranded blobs is of key importance to several processes such Enhanced Oil Recovery (EOR) and soil remediation and can
be realized by injecting a wetting fluid, i.e. water, into the porous block or by reducing the surface tension of the fluid/fluid
interface, thus reducing the capillary forces restraining the ganglia. In general, all blobs, both mobile and stranded, undergo
a continuous ‘‘life-circle’’ during which they continuously breakup into smaller blobs and coalesce with other to form larger
ones. However, given any random initial phase distribution and allowing for a sufficiently large amount of time, the system
reaches a ‘‘steady state’’ where the average values of the flow parameters, such as the superficial velocities of the w-phase
and the nw-phase, the number of blobs, and the mobile to stranded blob ratio remain practically constant in time, although
the temporal fluctuations around average values may be significant.
The problem is mainly characterized by the Capillary number Ca = µwuw/γ , which expresses the ratio of viscous forces

over interfacial forces at fluid/fluid interfaces. uw is the superficial velocity of thewetting fluid,µw is viscosity of thewetting
fluid and γ is the interfacial tension at the fluid/fluid interface. Other parameters that determine the physics of the flow
problem include the phase fraction of the wetting fluid Sw , the density ratio D = ρnw/ρw , the viscosity ratioM = µnw/µw ,
the dynamic contact angle and several parameters that are determined by the geometry of the porous material, such as
the porosity ε and the connectivity of the pores (see Refs. [1–6] for more details on the effects of these parameters). In this
contribution, we focus on the effects of the Capillary number (through the applied body force G) and the phase fraction on
the flow problem.
Several methods have been proposed tomodel blobs dynamics in porousmedia, including pore networkmodeling [1–4],

stochastic simulation [5], mechanistic modeling [6] and the recently developed method of Darcian dynamics [7]. The
characteristic of such methods is that they rely on simplified transport equations and/or mechanistic rules to determine
the spatial distribution and temporal evolution of interfaces. The pressure field is calculated by solving simple flowmodels,
such as Poiseuille or Darcy flow, through simplified void topologies such as pore networks or continuous permeability
mediums, while capillary forces at pores are calculated through Laplace’s law. These approximations, although crude, have
provided the means to qualitatively model population blobs dynamics using reasonable computational resources. On the
other hand, the application of suchmodels is limited to simplified pore geometries and their accuracy is limited given that the
flow and interfacial physics involved are coupled in macroscopic parameters such as relative permeabilities or coalescence
probabilities [4,7].
In recent years, the rapid increase in computational power in conjunction with the continuous development of

rigorous Lattice-Boltzmann (LB) models have provided the tools for a more in-depth understanding of the underlying
physics of immiscible two-phase flows in porous materials. The LB method is especially useful for complex systems in
which the macroscopic governing equations cannot be determined in a straightforward manner while the microscopic
physics is adequately described to a certain level of approximation [8]. Several approaches exist for modeling multiphase
flows using the LB method. These approaches can be classified in three major groups. One approach is based on the
implementation of a pairwise interparticle potential [9,10] between nearest-neighbor molecules of different fluids and
a particle distribution function to describe the flow of each fluid. This approach can be easily extended to multiphase,
multicomponent systems with any number of components both miscible and immiscible. However, this approach leads
to thermodynamic inconsistencies in dense fluids [11] since the intermolecular potential cannot be accurately described by
the nearest-neighbor interaction scheme which completely ignores the repulsive core of the Lennard-Jones potential. The
second approach utilizes the basic assumptions of the van derWaals (vdW) theory and is based on a free energy formulation
of fluid interactions [12]. The basic idea behind this approach is to impose an additional constraint on the equilibrium
distribution function so that its second moment reproduces the desired pressure tensor, and hence this approach is often
called the pressure method. The third approach is guided by an atomistic formalism where interparticle interactions are
introduced by the direct introduction of a forcing term in the LB equation. The forcing term was originally described by
He et al. [13] by considering interparticle interaction using a mean-field treatment. Later, He and Doolen [11] improved
the above model starting from the BBGKY equations and established the thermodynamic foundations of the LB multiphase
models by showing that a kinetic equation that combines Enskog’s theory for dense fluids and the mean-field theory for
long-range molecular interaction can consistently describe non-ideal gases and dense fluid flows. The equation of state is
obtained and the required thermodynamic consistency is achieved. In all cases the basic features of the vdW theory are
retained and these set the thermodynamic limits of the validity of these models.
In this work, we examine the dynamics of nw-phase blobs in 2D pore networks using the Lattice-Boltzmann (LB)

model proposed by He et al. [14] with an improved numerical scheme which incorporates the Gibbs–Duhem equation as
described in [15]. This approach provides the means for a deterministic study of the blob population dynamics in porous
media, namely the temporal evolution of the average blob size and the fraction of the immobile blobs with respect to
the applied body force and the w-phase volume fraction without the need for mechanistic assumptions or stochastic
approaches.
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2. Lattice-Boltzmann approach

The LB method is a numerical scheme for the solution of fluid mechanical problems, especially in systems where the
fluid–solid interface is very complex [8]. Space, time and momentum are discretized and the fluid behavior is described by
the evolution of the single-particle distribution functions. In the present study, the simulation of two-phase flow is based on
themethod proposed by He et al. [14] implemented as described by Kikkinides et al. [15]. According to thismethod eighteen
space–time functions fi(Ex, t) and gi(Ex, t), where i = 0, 1, 2, . . . , 8, are required to describe the system in two dimensions.
Denoting δx the lattice spacing and δt the time step, the microscopic velocity in two dimensions, Ee, is discretized in nine

vectors (including the null vector), defined as follows:

Eei =


(0, 0)c i = 0
(±1, 0)c i = 1, 2
(0,±1)c i = 3, 4
(±1,±1)c i = 5, 6, 7, 8

(1)

where c = δx/δt .
The spatio-temporal evolution of fi(Ex, t) and gi(Ex, t) is assumed to follow the equations:

fi(Ex+ Eeiδt, t + δt)− fi(Ex, t) = −
fi(Ex, t)− f

(eq)
i (Ex, t)
τ

+Ωf (2)

and

gi(Ex+ Eeiδt, t + δt)− gi(Ex, t) = −
gi(Ex, t)− g

(eq)
i (Ex, t)

τ
+Ωg (3)

where f (eq)i and g(eq)i are the equilibrium distribution functions,Ωf andΩg are terms associated with the perturbation of the
distribution functions from equilibrium and τ is the relaxation time which is related with the kinematic viscosity ν by:

ν = (τ − 0.5)RTδt. (4)

Here, R is the gas constant and T is the absolute temperature. Assuming molar mass equal to unity and recalling that for the
ideal gas the equation of state is p = ρc2s , where cs is the speed of sound, and cs = c/

√
3 [8], the product RT in lattice units

can be expressed by RT = c2/3.
Before proceeding, it is convenient to introduce the distribution function, Γi(Eu) derived from the Maxwell–Boltzmann

distribution by a Taylor expansion in terms of the Mach number, Eu/cs:

Γi(Eu) = wi

[
1+
Eei · Eu
c2s
+
(Eei · Eu)2

2c4s
−
Eu · Eu
2c2s

]
(5)

where Eu is the fluid velocity andwi is the appropriate integral weights, with values:

wi =

{4/9 i = 0
1/9 i = 1, 2, 3, 4
1/36 i = 5, 6, 7, 8.

(6)

The equilibrium distribution functions of Eqs. (2) and (3) are associated with Γi by the relations:

f (eq)i = ρΓi (7)

and

g(eq)i = wip+ ρRT (Γi − wi) (8)

where ρ is the density and p is the pressure. The intensive parameters ρ, p and T are related through the van der Waals
equation of state:

p =
ρRT
1− bρ

− aρ2 (9)

where a = 9
8RT/Tr , b = 1/3, Tr = T/Tc and Tc is the critical temperature.

The source term Ωg which appears in Eq. (3) incorporates the body force density, EG, acting on the fluid, as well as the
force EFs, relevant to the surface tension. Specifically:

Ωg = −
(2τ − 1)
2τ

(Eei − Eu) · [Γi(Eu)(EFs + EG)− (Γi(Eu)− Γi(E0)) E∇ψ(ρ)]δt (10)

where ψ(ρ) is the deviation of the pressure from that corresponding to the ideal gas:

ψ(ρ) = p− ρRT . (11)
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a b

Fig. 1. Schematic of the 2D pore network.

For a van der Waals fluid consisting of particles with collision diameter σ , the force density due to surface tension can be
expressed by:

EFs = aσ 2ρ E∇∇2ρ. (12)
Finally, the termΩf which is responsible for phase separation is calculated by:

Ωf = −
(2τ − 1)
2τ

(Eei − Eu) · EF
RT

Γi(Eu)δt (13)

where

EF = −ρ E∇
(
RT ln ρ
1− bρ

+
RT
1− bρ

− 2aρ
)
+ ρRT E∇ ln ρ. (14)

The density, velocity and pressure fields are evaluated from the distribution functions fi(Ex, t) and gi(Ex, t) as follows:

ρ(Ex, t) =
8∑
i=0

fi(Ex, t) (15)

RTρEu(Ex, t) =
8∑
i=0

gi(Ex, t)Eei +
RTδt
2
(EFs + EG) (16)

p(Ex, t) =
8∑
i=0

gi(Ex, t)−
1
2
Eu(Ex, t) · E∇ψ(ρ)δt. (17)

3. Numerical simulations

Weperformed a series of numerical simulations using a parallel version of the LBmodel described above in order to study
the effect of the applied body force G and the nw-phase fraction Snw on the size distribution of the non-wetting blobs during
the immiscible two-phase flow in 2D pore networks. The porous medium is represented by a 2D computational domain of
size L2 = 10242δx2 that consists of randomly distributed solid and void square blocks of size n2 = 162δx2 (Fig. 1(a)). This
produces a randompore network of solid and void blockswith a size ofN2 = (1024/16)2 = 642. The probability of finding a
void block at each one of theN2 positions in the network is equal to ε, where ε is the porosity of the network. The probability
of finding a solid block is 1− ε. The pore network porosity is set at a very large value ε = 0.729 so that the 2D pore network
is percolating (i.e. the void space is continuous in both directions).
Initially, we consider that the fluids (w-phase and nw-phase) also reside in blocks of size n2δx2 distributed at random

replacing the void blocks with a probability Sw for the w-phase and Snw = 1 − Sw for the nw-phase, where Sw is the area
fraction of the w-phase (Fig. 1(b)). The pore network is subject to periodic boundary conditions in all directions. A constant
body force G is applied along the x direction and the system is allowed to reach a ‘‘steady state’’ where the average values of
the superficial velocities of the w- and nw-phases, and the number of nw-phase blobs, remain practically constant in time,
although the temporal fluctuations may be significant. This typically requires more than 106δt depending on the value of
the body force G. The kinematic viscosity of both phases is taken to be equal by applying the same relaxation time τ = 0.8
for both phases.



A.G. Yiotis et al. / Computers and Mathematics with Applications 59 (2010) 2315–2325 2319

Fig. 2. Pressure drop across the interface of a circular non-wetting drop vs. the drop curvature 1/r .

The selection of Tr for Eq. (9) can be arbitrary in the region Tr < 1. However, it has been shown in previous studies
[15] that the model is more stable and captures phase separation more accurately for temperatures closer to the critical
temperature. For this reason Tr = 0.95 is selected. The pressure and the density corresponding to the same chemical
potential are calculated through Eq. (9) using Maxwell’s equal area rule. Thus p = 0.1068ρ0δx2/δt2, ρnw = 0.5790ρ0
and ρw = 1.4617ρ0, are found respectively. Here ρ0 is a reference density which is set equal to unity.
However, the model can be applied for arbitrary pairs of density ρ∗nw and ρ

∗
w by interpolating over these two density

values [14].

ρ∗ = ρ∗nw +
ρ − ρnw

ρw − ρnw
(ρ∗w − ρ

∗

nw). (18)

In this case, the Maxwell equal area densities are used in Eqs. (2), (7), (13), (14) and (15) for mass conservation, while the
rescaled densities ρ∗nw and ρ

∗
w are used in Eqs. (3), (8)–(12), (16) and (17) for momentum conservation and the calculation

of interfacial forces [14]. In our simulations we take ρ∗nw = 1.0ρ0 and ρ
∗
w = 1.5ρ0. The density assigned to the solid sites is

taken equal to the w-phase density, in order to produce a perfectly wet pore network [16].
The interfacial tension is implemented in the simulations by setting aσ 2 = 0.15 in lattice units. The surface tension

produced for the selected density ratio can be easily calculated by applying Laplace’s law for a stationary circular drop of the
nw-fluid [17]. We consider a 2D computational domain of size 2002δx2 with a circular drop of the nw-fluid located at the
center. The radius of the drop is varied from R = 20δx to R = 60δx and the hydrodynamic pressure both inside and outside
the drop are calculated using Eq. (17).
The pressure drop across the interface follows Laplace’s Law:

pnw − pw =
γ

r
. (19)

Fig. 2 shows the pressure drop across the interface of a stationary non-wetting drop with respect to the curvature 1/r . The
slope of the curve is equal to the surface tension γ = 3.19 · 10−3ρ0δx3/δt2.
Alternatively, the surface tension can be calculated according the vdW theory where in the vicinity of the critical point,

the EOS for the rescaled fluid densities can be simplified producing the following expression for the bulk free energy E0 [18]:

E0 = β(ρ∗ − ρ∗w)
2(ρ∗ − ρ∗nw)

2. (20)

The parameter β is related to the thickness of the interface ` through:

β =
8aσ 2

`2(ρ∗w − ρ
∗
nw)

2
. (21)

The thickness of a planar interface can be related with the density profile by:

ρ∗(z) =
ρ∗w + ρ

∗
nw

2
+
ρ∗w − ρ

∗
nw

2
tanh(2z/`). (22)
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Fig. 3. Density profile across the fluid–fluid interface.

Fig. 4. Parallel speedup.

Plotting the density profile across the interface (Fig. 3), we find that ` = 7δx for r = 60δx, which after substitution in Eq. (21)
yields β = 0.09796. The surface tension is then calculated by:

γ =
(ρ∗w − ρ

∗
nw)

3

6

√
2aσ 2β (23)

which gives γ = 3.57 · 10−3ρ0δx3/δt2, in good agreement with the value obtained by Laplace’s Law.
The Lattice-Boltzmann model described above is parallelized for implementation on distributed memory computers

using the Message Passing Interface (MPI) libraries. The computational domain (2D) is decomposed in the y-direction in
order to take advantage of Fortran’s column-major storage of multi-dimensional array elements. This scheme ensures that
array elements exchanged across processors withMPI are located in continuousmemory blocks. The parallel speedup of our
algorithm is shown in Fig. 4.

4. Results and discussion

4.1. Steady state flow conditions

The randomness and heterogeneity of the porous medium can result in the production of a distribution of nw-phase
blobs of different sizes and shapes. The blobs flow through the porous medium under the combined effect of capillary
and viscous forces. Capillary forces are proportional to the interfacial tension γ which is kept constant in our study.
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Fig. 5. Temporal evolution of blob numbers.

Viscous forces are proportional to the superficial velocity of the w-phase, uw , which is produced under different values
of G and Sw . The relative magnitude of these forces, expressed through the capillary number Ca, determines the rate at
which blobs coalesce and the rate at which single blobs breakup into smaller ones. These forces also determine the ratio of
the mobile blobs that flow through the pore space to the stranded blobs that are immobilized in low permeability regions
of the porous medium.
The dynamic breakup occurs when larger nw-phase blobs flow through lower permeability regions of the pore network.

The blobs deform under the combined effect of capillary and viscous forces in order to penetrate the smaller pore throats. At
this stage, the frontal and rear parts of the blobs are subjected to different pressure gradients at each side of the pore throat
and this causes further deformation and eventually breakup into two smaller blobs. This process is favored by relatively large
values of the body force G (which corresponds to larger capillary numbers Ca) where the pressure gradients through the
porous medium are more steep and viscous forces cause significant deformation of the interface of the blobs. Furthermore,
larger blobs are expected to breakup at higher rates than smaller ones because they are subjected to larger pressure gradients
as they move through narrow pore throats.
Coalescence occurs when two of more nw-phase blobs come in contact with each other as they flow through the porous

domain. The interfacial tension forces smaller blobs to coalesce in order to produce a larger thermodynamically stable blob
with a lower interfacial free energy. In certain cases of strandedblobs, coalescence is followedby themobilization of stranded
blobs as the larger ones are subject to larger pressure gradients. In general, blob coalescence is favored by larger values of
the interfacial tension and thus smaller values of G and Ca.
All blobs, bothmobile and stranded, undergo a continuous life-circle duringwhich the continuously breakup into smaller

blobs and coalesce with other to form larger ones. The system reaches a ‘‘steady state’’ condition after several million time
steps δt where the rate of blob breakup becomes equal to the rate of coalescence and the number of blobs remains practically
constant with time. Fig. 5 shows the temporal evolution of the nw-phase blobs in one typical simulation. In order to explore
the uniqueness of the solution, we performed simulations starting from different initial numbers of blobs, keeping constant
the area fraction of the nw-phase. In all cases the steady state solution was similar.
Fig. 6 shows the temporal evolution of both the wetting and non-wetting superficial velocities in one typical simulation.

The superficial phase velocity is calculated by integrating the interstitial velocities of each phase divided by the overall
domain area. The system reaches a steady state value where the average velocities remain practically constant with time
although the temporal fluctuations are relatively large.

4.2. Effect of G and Snw

As stated earlier, the numerical simulations are carried out until the superficial velocities and the numbers of the
nw-phase blobs reach a steady state, where the average values remain practically constant. Both the superficial fluid
velocities and the number of the nw-phase blobs at steady state conditions are determined by the applied body force G
and the area fraction of the nw-phase Snw .
The temporal evolution of the superficial velocities of the w- and nw-phase, when the w-phase fraction is Sw = 0.9, are

shown in Fig. 7(a) and (b), respectively, for G = 4 · 10−6ρ0δx/δt2 and G = 2 · 10−5ρ0δx/δt2. The corresponding capillary
numbers are Ca = 0.015 and Ca = 0.085, respectively. Larger values of G produce higher pressure gradients across the
porous domain and larger values of the superficial velocities, as expected. The superficial w-phase velocity reaches a steady
state value within a few thousand time steps and it remains practically constant from that point on. The w-phase velocity
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Fig. 6. Temporal evolution of superficial fluid velocities.

a b

Fig. 7. Temporal evolution of wetting (a) and non-wetting (b) superficial fluid velocities for various values of G and Sw = 0.9.

and the resulting capillary number are directly proportional to the value of the body force G (Fig. 7(a)), which shows that for
these values of G and Sw viscous forces dominate over capillary forces, as expected for this range of Ca [1]. The superficial
nw-phase velocity (Fig. 7(b)) presents significant temporal fluctuations especially for larger values of G (and Ca). These
fluctuations should be attributed to the pressure build-up in lower permeability regions of the pore network where the
blobs coalesce and eventually breakup when the capillary pressure exceeds a critical value.
When the nw-phase fraction increases, the capillary forces on the nw-phase ganglia become more significant as shown

in Fig. 8 for Sw = 0.7. The steady state superficial w-phase velocity is lower for all values of G (Fig. 8(a)) compared to the
steady state velocities of the w-phase for the same values of G shown in Fig. 7(a) for Sw = 0.9. The capillary numbers are
Ca = 0.047 for G = 2 · 10−5ρ0δx/δt2 and Ca = 0.0067 for G = 4 · 10−6ρ0δx/δt2, respectively. This should be attributed
to the formation of larger nw-phase ganglia that block the low permeability flow paths and reduce significantly the relative
permeability of thew-phase. Furthermore, for Sw = 0.7 thew-phase velocity is not directly proportional toG as for Sw = 0.9,
but decreases at a faster rate as G decreases. As G decreases, capillary forces becomemore dominant over viscous forces, the
rate of dynamic breakup decreases and the percentage of stranded nw-phase blobs also increases. It is also very interesting
to note that for Sw = 0.7 the superficial velocities of the w- and nw-phase are practically equal (Fig. 8).
According to Dias and Payatakes [2], viscous forces dominate over capillary forces when the Capillary number is Ca >

10−5, which is the case for all the simulation presented above. Under these conditions the effect of the viscosity ratio M
is crucial. When M > 1, fluid/fluid interfaces become unstable along the direction of the flow and the blobs span across
the domain producing viscous fingering patterns. The condition M > 1 favors the mobilization of stranded blobs and may
produce relative permeabilities greater than one for the non-wetting phase [16]. In our simulations the viscous ratio is
alwaysM = 2/3 < 1 and fluid/fluid interfaces are stable. The effect ofM will be studied in a forthcoming publication.
Fig. 9 shows the temporal evolution of the number of the nw-phase blobs for Sw = 0.9 and Sw = 0.7. The effect of G is

more profound when the nw-phase area fraction is relatively low (Fig. 8(a)). The number of blobs increases with G because
the dynamic breakup of the nw-phase blobs intensifies. Similar findings have been reported by [4] using a mechanistic pore
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ba

Fig. 8. Temporal evolution of wetting (a) and non-wetting (b) superficial fluid velocities for various values of G and Sw = 0.7.

a b

Fig. 9. Temporal evolution of the number of non-wetting blobs for various values of G for Sw = 0.9 (a) and Sw = 0.7 (b).

networkmodel. As the nw-phase fraction increases, the effect of G becomes negligible because the porousmedium is rich in
nw-phase and the nw-phase blobs span the entire domain, including both low and high permeability regions, leaving little
space for smaller blobs. Furthermore, for larger values of Snw , the blobs become longer and the pressure gradient across
it increases, resulting in a higher probability of mobilization. According to Amili and Yortsos [7], increasing the nw-phase
fraction Snw , produces a blob crowding effect which also results in a higher probability of mobilization and dynamic breakup
as the flow path for the w-phase is restricted and viscous forces increase to match the applied pressure gradient. This is also
observed in our simulations for Sw = 0.7, where the nw-phase flows mainly through a few spanning blobs (Fig. 10 for
Sw = 0.7). The number of blobs remains practically constant regardless of G (Fig. 9(b)) although the blob size distribution
changes.
Finally, we plot the phase distribution patterns at an arbitrary time step (t = 2 · 106δt) at ‘‘steady state’’ for all values of

G and Sw presented in Fig. 10. This figure shows that for larger values of the applied body force G, the blobs become longer in
shape, oriented in the direction of the flow andmay even span the entire domain when the nw-phase fraction is sufficiently
large (i.e. for Sw = 0.7). In this extreme case, the blobs coalesce into a few large spanning blobs providing a continuous
nw-phase path along the entire porous medium. In the opposite case, when the nw-phase fraction is low, the number of the
blobs increases as G increases, while their average size decreases.

5. Conclusions

We employed the Lattice-Boltzmann method for the simulation of immiscible two-phase flow through a 2D porous
domain when the area fraction of the non-wetting phase is relatively low and it flows in the form of disconnected blobs.
The forcing terms in the LB model used in this study are derived using a mean-field approach for the fluid density close
to interfaces and the Gibbs–Duhem equation for chemical equilibrium. We studied the population dynamics of the non-
wetting fluid blobs, namely the temporal evolution of the average blob size with respect to the applied body force and the
wetting phase fraction. Our results show that the system reaches a ‘‘steady state’’ where the average values of dependent
parameters, such as the superficial velocities of both phases, and the number and size distribution of the blobs remain
practically constant in time, although the temporal fluctuations around average values may be significant. We show that
the average volume of the blobs decreases (and the population of the blobs increases) as the body force increases, namely as
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Fig. 10. Phase distribution patterns at an arbitrary time step (t = 2 · 106δt) for all values of G and Sw considered in this study.

the viscous forces become more significant over capillary forces because the dynamic breakup intensifies under these
conditions. The effect of the wetting area fraction on the number of the blobs is more complex; as the wetting fraction
decreases at constant body force, the blobs cover larger areas within the pore space producing larger pressure gradients and
the dynamic breakup intensifies resulting in increasing blob numbers. However, below a critical value of the wetting area
fraction where the non-wetting phase begins to span the entire pore network, the number of blobs begins to decrease, as
smaller blobs coalesce to the larger spanning ganglion.
The numerical approach considered in this study has several advantages, including the straightforward treatment of

complicated boundary structures and the significant parallel efficiency of the algorithm, but also several limitations, as with
all numerical methods. Given the mesoscopic nature of the method, the computational resources required are significant.
However, this is easily overcome due to the parallel efficiency of the method that allows for the solution of flow problems
in very large 3D domains. This LB model is also known to have stability issues for large density and viscosity ratios. This is
due to the discretization schemewhich is used to track the fluid/fluid interfaces. Larger ratios lead to large density gradients
and sharper interface profiles which are known sources for numerical instabilities. This problem has been addressed in the
past using more efficient schemes for the calculation of density gradients.
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