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Summary

Unravelling the mechanisms controlling cardiac au-

tomatism is critical to our comprehension of heart
development and cardiac physiopathology. Despite

the extensive characterization of the ionic currents at
work in cardiac pacemakers, the precise mechanisms

initiating spontaneous rhythmic activity and, particu-
larly, those responsible for the specific control of the

pacemaker frequency are still matters of debate and
have not been entirely elucidated [1–4]. By using Dro-

sophila as a model animal to analyze automatic car-
diac activity, we have investigated the function of a

K+ channel, ORK1 (outwardly rectifying K+ channel-1)

in cardiac automatic activity. ORK1 is a two-pore do-
main K+ (K2P) channel, which belongs to a diverse

and highly regulated superfamily of potassium-selec-
tive leak channels thought to provide baseline regula-

tion of membrane excitability. Cardiac-specific inacti-
vation of Ork1 led to an increase in heart rhythm. By

contrast, when overexpressed, ORK1 completely pre-
vented heart beating. In addition, by recording action

potentials, we showed that the level of Ork1 activity
sets the cardiac rhythm by controlling the duration

of the slow diastolic depolarization phase. Our obser-
vations identify a new mechanism for cardiac rhythm

control and provide the first demonstration that K2P
channels regulate the automatic cardiac activity.

Results and Discussion

In Drosophila, the cardiovascular system consists of an
open circulatory system composed by 52 pairs of myo-
cytes that are both endothelial and muscle cells orga-
nized in a tubular structure. The organ is divided into
two distinct morphological and functional domains
along the anterior-posterior axis: the aorta, which con-
stitutes the outflow tract, and the heart itself, which is
the only domain capable of spontaneous rhythmic activ-
ity (Figures 1A–1C, see Movie S1 in the Supplemental
Data available with this article online). The heart, whose
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automaticmyogenicactivity regulates cardiac rhythm, en-
sures the circulation of hemolymph (Figure 1; Movie S1).

Axial information provided by the Hox genes, in com-
bination with segmental information, assigns a unique
positional identity to each myocyte and guides cells to-
ward their specific differentiation pathway [5–7].

Ork1 Is Expressed in the Spontaneous Contracting

Myocytes of the Larval Heart
To identify genes involved in automatic cardiac activity,
we screened for genes that are specifically expressed
in the contractile myocytes of the heart but not in the
aorta myocytes. Among them, we characterized the
genes encoding the Na+-dependent bicarbonate anion
exchanger 1 (NDAE1) [6], the unique Drosophila hyper-
polarization channel nucleotide gated (HCN) [8] generat-
ing the cardiac pacemaker f current [9], and ORK1 (this
study, Figure 1D).

ORK1 (KCNKO) is one of the first members of the two-
pore domain potassium (K2P) channel superfamily iden-
tified in a pluricellular organism and has been biophysi-
cally characterized [10–12]. ORK1 displays the attributes
expected for leak channels and shows macroscopic
currents that are instantaneous, independent of voltage,
and selective for K+. Additionally, current flow through
ORK1 is predominantly determined by the prevailing
electrochemical gradient for K+. These properties,
shared by all K2P channels, have prompted the sugges-
tion that K2P channels are responsible for the leak cur-
rent present in excitable cells and might consequently
contribute to establish and maintain membrane resting
potential [13–15].

Moreover, they are targets of numerous signal trans-
duction events that might make them essential compo-
nents involved in cell excitability [16, 17]. Based on these
criteria, they could be invoked as regulators of the max-
imum diastolic potential and may play an important role
in setting the cardiac rhythm.

Heart Rhythm Increases in Ork1 Mutants

In order to gain insight into the in vivo physiological func-
tion of a K2P channel in cardiac activity, we first analyzed
heart rhythm in Ork1 mutant larvae. Selected from public
databases, we collected four lines carrying a P-element
insertion in close vicinity to the Ork1 gene (Figure 2A).
Ork1 expression, determined by RT-PCR, was dramati-
cally reduced in P(d01340) and PBac(e02481), revealing
these lines to be partial loss-of-function mutants for
Ork1 (Figure 2B). By contrast, the level of Ork1 expres-
sion was unaffected in P(d07318) and P(d09258). Under
standard conditions, heart rhythm has been shown to
be steady and reproducible among individuals and
can be readily recorded [18–20]. In agreement with
our RT-PCR results, a 15% and 30% increase in the car-
diac rhythm was observed in the two mutant lines
PBac(e02481) and P(d01340), respectively (Figure 2C),
whereas it was identical to control animals in the two
lines where Ork1 expression was not affected. Thus,
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accelerated heart rate correlates with reduction in Ork1
expression.

Cardiac Tube-Specific Ork1 Inactivation

Accelerates Heart Rate
To address the issue of whether Ork1 functions autono-
mously in the heart, Ork1 was specifically inactivated in
the cardiac tube by targeted expression of dsRNA>Ork1
via the UAS-Gal4 system [21, 22]. Seven independent
transgenic lines carrying dsRNA-Ork1 under the control
of UAS sequences were obtained and crossed with the
cardiac tube-specific NP1029-Gal4 line [8]. A membrane
bound GFP was coexpressed along with UAS-dsRNAs
to facilitate automatic measurements of heart rate
(Figure 3A, Movie S2). In the four transgenic lines that
were examined thoroughly, cardiac rhythm was in-
creased from 18% to 40% when compared to control
(Figures 3B and 3D, Movie S2). The increase in heart
rate was inversely correlated with the level of Ork1 ex-
pression, determined by RT-PCR (Figure 3C). In addi-
tion, the observed acceleration in heart rhythm was
correlated with the expression level of the dsRNA trans-
gene, the effect being more pronounced at 29�C, at
which temperature Gal4 is fully active, than at 21�C
(Figure 3D). Importantly, Ork1 downregulation did not
lead to arrhythmia and did not significantly affect dias-
toles and systoles diameter (Figures 3A and 3B). The
specificity of RNAi, known to be very high in Drosophila

Figure 1. The Drosophila Cardiac Tube

(A) A cardiac tube in living white pupa labeled with NP1029-GAL4-

driven membrane bound GFP showing morphological and func-

tional differences between the aorta and the heart (see Movie S1).

(B) Expression of nuclear DsRed (red) and of membrane bound GFP

(green) driven by 1029-Gal4 in late third instar larva.

(C) Schematic drawing of a third instar larval cardiac tube. The posi-

tion of the microelectrode (m) for action potentials recording in the

posterior heart is indicated. Arrowhead indicates tracheal tube.

(D) In situ hybridization revealed Ork1 RNA (red) predominantly ex-

pressed in the heart (schematized in red in [C]). Nuclear labeling

by DAPI (blue). Anterior is left in all panels.
 [23], was warranted by the congruent consequences of
Ork1 inactivation by RNAi and in Ork1 mutants.

Arrest of Heart Beating after ORK1 Overexpression
Conversely, overexpression of wild-type Ork1 cDNA in
the whole cardiac tube during larval stages led to a com-
plete arrest of heart beating (Figures 3A and 3B, Movie
S2) and a totally dilated cardiac tube (Figure 3A). The
heart beating was restored during electrical stimulation
(Movie S3), indicating that ORK1-overexpressing cardio-
myocytes remain excitable and have not been affected in
their contractility. Arrest of heart beating was also ob-
tained by expressing a constitutively open variant of
ORK1 [12] (Figures 3A and 3B). Noteworthy is that ex-
pression of ORK1 led also to electrical silencing of the
circadian pacemaker neurones [24, 25]. Together, these
observations indicate that cardiac rhythm is directly cor-
related with ORK1 expression. A low level of ORK1 ex-
pression accelerates heart rate, whereas increasing the
level of ORK1 expression completely blocks heart beat-
ing. These results strongly suggest that heart rhythm is
largely influenced by ORK1-induced K+ current.

Recording Intracellular Action Potentials

Reveals that Ork1 Determines the Rate
of the Slow Diastolic Depolarization

To investigate how Ork1 dosage manipulation affects
the membrane cardiomyocytes electrical properties,
we undertook the recording of intracellular action poten-
tials by the microelectrode method, which turned out to

Figure 2. Heart Rate in Ork1 Mutants

(A) Genomic organization of Ork1. Coding sequences are painted in

black. The arrows show the positions of the P element insertions.

(B) RT-PCR for Ork1 (top) or for the ubiquitously expressed Actin 5C

gene (bottom) with RNA samples isolated from Ork1 mutants (right)

or control y,w; CS (left) third instar larvae.

(C) Heart rate in Ork1 mutants was measured in white pupae. In y,w;

CS (control), the mean heart rate was 155 6 4 bpm (n = 17) and rep-

resents 100% of control. Two P element lines showed a significant

increase of heart rhythm while the remaining two behave similarly

to wild-type flies. Data are expressed as mean 6 SEM. *p < 0.05;

**p < 0.01.
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Figure 3. Heart Rate in Ork1 Loss and Gain of Function

(A) High-magnification images of GFP-expressing larval hearts of the indicated genotypes. The amplitude of relaxation and contraction was

identical in control and dsRNA>Ork1 hearts. ORK1 and constitutively open ORK1-overexpressing hearts are completely and permanently dilated

(see Movie S2).

(B) Waveforms representative of heart beatings in larvae of the indicated genotype were obtained by monitoring membrane bound GFP fluores-

cence in the indicated rectangles (in [A]) with the relaxation (R) and contraction (C) states indicated in (B).

(C) RT-PCR for Ork1 (top) or for the ubiquitously expressed Actin 5C gene (bottom) with RNA samples isolated from yw; dsRNA>Ork1; Tub>Gal4

individuals (right) or control (y,w; ;Tub>Gal4) (left) third instar larvae.

(D) Heart rate in Ork1 loss of function. Heart rate was calculated in larvae as mentioned above and in the Experimental Procedures. The mean

heart rate representative of 100% of control was measured in yw, CS x 1029-Gal4 third instar larvae and was 161 6 5 bpm (n = 47). Inactivation of

Ork1 increased the heart rate. Data are expressed as mean 6 SEM. ***p < 0.001.
be more reliable than the only other method hitherto
reported [26]. Action potentials, corresponding to the
wave of depolarization, were systematically recorded
with the microelectrode implanted in the contractile
myocytes of the posterior heart (at the end of the sixth
segment, see Figure 1C). In those conditions, stable
and reproducible action potentials were recovered (Fig-
ure 4A). In control, typical pacemaker action potentials
were observed (Figure 4B) with a slow diastolic depolar-
ization preceding the fast depolarization, which triggers
contraction. The two phases of depolarization can be fit-
ted by two exponentials, the slower one corresponding
to the so-called slow diastolic depolarization (insert in
Figure 4B). Several considerations ([27–29] and our
own observations) suggest that the fast phase of depo-
larization is mainly insured by a voltage-dependent L-
type calcium current. The shape of the recorded action
potential was very reminiscent to that recovered in the
sino-atrial node of the mammalian heart. Same types
of action potentials, including the slow diastolic depo-
larization phase, were recorded all along the heart.
Therefore, unlike in mammals, the Drosophila myocar-
dium seems to be constituted by an electrophysiologi-
cally homogeneous population of cardiomyocytes
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Figure 4. Role of ORK1 in Intracellular Action Potentials

(A) Intracellular recording of the electrical activity of a hemidissected heart of a control larva bathed in Schneider medium (25 mM KCl). The

microelectrode was implanted in the posterior heart as indicated in Figure 1C.

(B) Top: Intracellular action potentials recorded in control larval heart in schneider medium are characterized by slow diastolic depolarization

preceding fast depolarization. Insert: Fitted curves for the depolarization and repolarization phases are drawn for the indicated action potential.

Middle: Ork1 mutant shows accelerated action potentials characterized by a reduced slow diastolic depolarization phase. Bottom: Ork1 loss of

function leads to accelerated action potentials characterized by a monoexponential depolarization phase due to the absence of slow diastolic

depolarization phase.

(C) Top: In the UAS>Ork1, no action potential was recorded. The membrane potential was stabilized to a negative value following the drop, from

the zero potential reference, due to the impalement of the cell. The overexpression of Ork1 drives the resting potential to 218, 231, and 276 mV

in 5, 25, or 49 mM KCl solutions described in Experimental Procedures. Bottom: Linear regression gives a shift of 57 mV per 10-fold change in KCl

concentration.
fulfilling the functions both of the mammalian working
cardiomyocytes and of the cardiomyocytes with auto-
matic activity.

Noteworthy, the value (around –18 mV) for the maxi-
mal diastolic potential was significantly higher than in
mammalian sino-atrial node pacemaker, raising the
question of how automatic reactivation of the action
potential is induced. This high value of membrane po-
tential, directly resulting from the physiological concen-
trations of K+ in Drosophila, lies in fact within the window
for L-type Ca2+ current, defined by the overlapping of
activation and inactivation curves. This window current
leads to permanent inward calcium influx, which would
in turn be responsible for the automatic reactivation of
the action potentials.

The two phases of depolarization can be fitted by two
exponentials, the slower one corresponding to the so-
called slow diastolic depolarization (insert in Figure 4B).
In larvae where Ork1 was inactivated, there was no sta-
tistically significant change in amplitude, maximal dia-
stolic potential, and fast depolarization/repolarization
phases (Figure 4B and Table 1). By contrast, the slow
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Table 1. Averaged Characteristics of the Intracellular Action Potentials

Amplitude (mV) Duration (ms) MDP (mV) t Depol (ms) t Repol (ms)

n Mean SE Mean SE Mean SE Mean SE Mean SE

1029-Gal4 3 y,w; CS 13 216.4 1.5 378 18.8 217.4 2.1 227.9; 31.8 27.9; 6.3 60.3 16.2

UAS-dsRNA 4.1 6 213.6 2.2 269a 25.5 218.4 1.3 32.9 5.3 37.6 5.8

UAS-dsRNA 6.3 8 216.6 1.6 249b 12.9 220.3 1.8 44.8 4.8 31.6 3.2

UAS>Ork1 6 0 0 0 0 230.3a 3.8 0 0 0 0

d01340 9 215.1 1.4 328c 7.1 218.7 1.3 95.1d; 20.7 14.9; 3.8 37.0 7.9

Amplitude, duration, maximal diastolic potential (MDP), and t are expressed as mean 6 SEM and were calculated by averaging 10 individual

action potentials for each experiment in schneider medium. There are no significant differences between yw;CS and 1029-Gal4 3 yw;CS, which

have been taken as control (results not shown). The number of experiments is indicated in the table.
a p < 0.001.
b p < 0.0001.
c p < 0.04.
d p < 0.002.
diastolic depolarization phase was significantly dimin-
ished, in d01340 mutant line, or even totally abolished
in RNAi-inactivated Ork1 (Figure 4B and Table 1). As a
consequence, the increased frequency of the automatic
action potential observed after Ork1 loss of function re-
sults from a shortening of the slow diastolic depolariza-
tion phase.

Conversely, measuring the potential after ORK1 over-
expression revealed a hyperpolarization of the cardio-
myocytes membrane (Figure 4C), which would explain
the loss of automatic cardiac activity observed. In sup-
port of this, depolarization of cardiomyocytes induced
by electrical stimulation restored cardiac beating (Movie
S3), indicating also that cardiomyocyte contractility was
not affected. Finally, Figure 4C shows that the value of
the resting membrane potential of ORK1-overexpress-
ing cardiomyocytes varies with the external K+ concen-
tration according to the Nernst equation, implying that
the measured membrane potential is governed by K+

currents, most likely mediated by ORK1.

Conclusions

These results suggest that, in the Drosophila cardiac
pacemaker, the outward K+ current mediated by ORK1
might directly control the onset of depolarization by
opposing the entry of depolarizing positive charges.
However, it cannot be completely excluded that com-
plex developmental effects that are secondary to the
genetic manipulations of Ork1 contribute to the ob-
served phenotype.

These results point out that the level of activity of a
K2P channel in cardiac pacemaker can determine heart
rhythm. We favor an effect on the pacemaker frequency
rather than on the cardiomyocytes contractile activity.
Indeed, the main modification in the course of the action
potential after ORK1 activity changes lies during the
early depolarization phase and not in the fast depolar-
ization induced by L-type Ca2+ current. In the same
line, the action potential frequency by itself shows a def-
inite dependence on ORK1 activity, making unlikely a
significant contribution of ORK1 on excitation-contrac-
tion coupling.

Strikingly, the level of ORK1 activity determines the
duration of the slow diastolic depolarization without
having any significant action upon the automatic activity.
ORK1 appears therefore to behave as a pure regulator
of the pacemaker frequency and, because of the well-
known ability of K2P channels to be highly regulated by
a plethora of stimuli, it might constitute a direct target
for some of the known regulators of cardiac activity,
such as neurotransmitters and hormones [20]. It will
be particularly important to test this hypothesis and to
investigate whether similar mechanisms operate in the
sino-atrial node of mammalian hearts, in which the ex-
pression of different K2P channels has recently been
reported [30, 31].

Experimental Procedures

Drosophila strains

UAS-mCD8-GFP, UAS-nls-DsRed, UAS>Ork1DeltaC, P{XP}d09258

were obtained from the Bloomington Drosophila Stock Centre;

P{XP}d01340, P{XP}d07318, and PBac{RB}e02481 [32] from the Ex-

elixis collection at Harvard Medical School. Gal4 driver is NP1029-

Gal4 [8]. The y,w; CS strain, issued from a yellow, white strain, out-

crossed with Canton S for 10 generations, was used as control.

Transgenic flies were generated as previously described [33] with

the y,w; CS strain as a recipient stock.

UAS-dsRNA>Ork1 Constructs

A 871 bp fragment from the coding sequence (exon 7, genomic co-

ordinates: 10622133-10621262) of the Ork1 gene (CG1615) was PCR

amplified from genomic DNA (sequence available upon request) and

cloned in the pWIZ vector [22] digested by Avr II (pWIZ/Ork1{1}). A

pWIZ/Ork1{1} clone was then digested by Nhe I and the 872 bp am-

plified product was cloned in an inverted orientation to yield to the

pWIZ/Ork1{1,2}.

UAS>Ork1FL Constructs

The full-length Ork1 cDNA [10] was excised from pRS by EcoRI di-

gestion and inserted into EcoRI-cut pUAST transformation vector

[21].

RT-PCR Experiments

Total RNA from third instar larvae was purified with Trizol (Invitrogen)

according to standard procedures and reverse transcribed with the

ThermoScript RT-PCR system (Invitrogen). The expression of Ork1

and Actin5C (control) were analyzed with specific primers in semi-

quantitative RT-PCR experiments (sequence available upon re-

quest) with Hybripol DNA polymerase (Bioline).

In Situ Hybridizations

In situ hybridizations on dissected larval individuals were performed

as previously described [8].

Heart Rate Measurements

Detailed methods are available in the Supplemental Experimental

Procedures online.
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Electric Stimulation

In nonbeating hearts of larvae overexpressing Ork1, electric stimula-

tion was applied between a platinum extracellular stimulation elec-

trode and placed in posterior heart, and a tungsten reference elec-

trode was located in aorta. Pacing at 2 Hz in Schneider medium

was performed with a stimulator S900 and a stimulus isolation unit

S910 (Dagan Corporation).

Action Potential Recordings

Larvae were carefully dissected in Schneider medium (GIBCO, Invi-

trogen) to preserve the integrity of the cardiac tube. Action poten-

tials were recorded with a binocular microscope (MZ12, Leica)

from the posterior part of the hemidissected heart larvae, with a stan-

dard microelectrode recording technique at 21�C. Conventional mi-

croelectrodes, with tip resistances between 20 and 40 MU and filled

with 3 M KCl, were mounted on a 50 mm silver spiral wire to allow the

microelectrode to follow cardiac motion. Action potentials were re-

corded as the difference in voltage between the intracellular micro-

electrode and the extracellular Ag-AgCl reference electrode. The

signal was passed through a high-impedance amplifier (VF-180,

BioLogic SA) and sampled at 2 kHz. Data acquisition and analyses

were performed with Chart software (version 5.0.2, AD Instruments)

and Clampfit (version 9, Axon Instruments), respectively. Heart rates

recorded on dissected larvae were similar to those recorded in vivo,

suggesting that Schneider medium is close to physiological condi-

tions. KCl solutions used for resting membrane potentials analysis

after ORK1 overexpression were: 5.4 mM CaCl2, 15 mM MgCl2,

4.8 mM NaHCO3, 11 mM glucose, 5 mM tréhalose, 5 mM L-gluta-

mine, 10 mM HEPES, and 5 mM, 25 mM, or 49 mM KCl and

66 mM, 46 mM, or 22 mM NaCl.

Statistical Analysis

Single- and two-exponential equations were fitted with Clampfit

software (Axon Instruments). Data are reported as mean 6 SEM.

The significance between groups of data was assessed by Student’s

t test (for unpaired samples) and one-way analysis of variance

(ANOVA test) when three or more groups were compared. Results

were considered significant with p less than 0.05 (*p < 0.05,

**p < 0.01, ***p < 0.001).

Supplemental Data

Three movies and Supplemental Experimental Procedures can be

found with this article online at http://www.current-biology.com/

cgi/content/full/16/15/1502/DC1/.
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