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Lie Rootsystems R are introduced, with axioms which reflect properties of the
rootset of a Lie algebra L as structured by representations of compatible simple
restricted rank 1 subquotients of L. The rank 1 Lie rootsystems and the rank 2 Lie
rootsystems defined over Z, are classified up to isomorphism. Base, closure and
core are discussed. The rootsystems of collapse on passage from R to Core R are
shown to be of type S,,.

Given any Lie rootsystem R, its independent root pairs are shown to fall into
eleven classes. Where the eleventh (anomoly) pair T, never occurs, it is shown that
R is contained in Ry + S (not always equal), where R, is a Witt rootsystem and S is
a classical rootsystem. This result is of major importance to two papers (D. J. Win-
ter, Generalized classical-Albert-Zassenhaus Lie algebras, to appear; Rootsystems
of simple Lie algebras, to appear), since it implies that the rootsystems of the simple
nonclassical Lie algebras considered there are Witt rootsystems.

Toral Lie algebras and symmetric Lie algebras are introduced and studied as
generalizations of classical-Albert-Zassenhaus Lie algebras. It is shown that their
rootsystems are Lie rootsystems. The cores of toral Lie algebras are shown to be
classical-Albert-Zassenhaus Lie algebras.

These results form the basis for the abovementioned papers on rootsystems of
simple Lie algebras and the classification of the rootsystems of two larger classes of
Lie algebras, the generalized classical-Albert—Zassenhaus Lie algebras and the
classical-Albert-Zassenhaus—Kaplansky Lie algebras.

Symmetric Lie algebras are introduced as generalizations of classical-Albert—
Zassenhaus Lie algebras. [t is shown that their rootsets R are Lie rootsystems. Con-
sequently, symmetric Lie algebras can be studied locally using the classification of
rank 2 Lie rootsystems. This is done in detail for toral Lie algebras.  © 1985 Academic

Press, Inc.

INTRODUCTION

In Part I, Lie rootsystems R of characteristic p > 3 are introduced, with
axioms corresponding to properties of the set R of roots (with 0) of a Lie
algebra L. More specifically, axioms for R are chosen to reflect com-
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binatorial structure of R determined by representations of simple restricted
rank 1 subquotients of L compatible with R. Accordingly, Lie rootsystems
appear as the rootsets of the symmetric Lie algebras studied in Part I, Sec-
tions 7-12.

Since the simple restricted rank 1 Lie algebras are 4, (classical) and W,
(Witt), each nonzero root of a Lie rootsystem R is assumed to be either
classical, RnZa= {0, +a}, or Witt, Zac R. It is shown in Theorem 2.5
that all roots are classical if and only if R is isomorphic as groupoid to a
rootsystem in the sense of Bourbaki [17]. This theorem is proved for sym-
metrysets in Winter [7], except when the characteristic is 5 or 7, and the
cases p=>5 and p=7 are resolved by the development, given in Section 1,
of an extension to symmetrysets of teh Mills [27 theory of classical Lie
algebras of characterisics 5 and 7.

Rank 1 Lie rootsystems R are shown, in Theorem 2.6, to be either 4, or
a group, which corresponds to the classification, recently announced by
Georgia Benkart and J. Marschall Osborn, of rank one simple Lie algebras.

The irreducible rank 2 Lie rootsystems defined over Z, are classified in
Section 3. This classification leads to the determination of all possible pairs
of Z -independent roots a, b of any Lie rootsystem R, given in Table 3.1 for
a, b k-independent and by Theorem 2.6 for a, b k-dependent.

Base, closure and core are discussed for Lie rootsystem R, and it is
shown that any collapse in the passage R —» Core R=R_ is a Lie root-
system of type S,,. This result, given in Theorem 5.3, is used in the passage
from a Lie algebra L=3%,.r L, to Core L=L"/Nil L*=}%
(Core L), for the identification of toral Lie algebras.

Whenever R,(a)={b—ra,., b+qa} is bounded, the Cartan integer
a*(b)=r—q may be used in place of the axiomatically specified a®(b)e Z ,,
as in the case of h*(a) with b in the set R of classical roots, in all cases
except the anomaly, type T,.

In Section 6 we consider Lie rootsystems R excluding T,, that is, Lie
rootsystems which involve only the first 10 of the 11 possible classes of
roots. We then use the rank 2 classification of Lie rootsystems above and
the closure and homomorphism theory of Winter [16] to prove the follow-
ing theorem which reduces the problem of determining R to that of deter-
mining all Wirt rootsystems R° (only Witt roots occur) and all Witt-
classical amalgamations R< R°+ R' with R° R' Witt and classical root-
systems, respectively:

aeCore R

R= ) a+R,,
ae ROpe R!
a+beR

where R,={—b, 0, b} of type 4,.
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DECOMPOSITION THEOREM. Let R be a Lie rootsystem excluding T, and
let 4,,.,4, be a base for the classical Lie rootsystem R. Then R'=
{nya,+ - +n,a,|n ez, néa + - +na,eR} is a classical rootsystem
isomorphic to R, R® is a Witt rootsystem and R< R°+ R".

In Part II, Sections 7-12, Lie algebras L=3,_z L, of characteristic
p>13 are studied by studying their rootsystems and using the abstract
theory of rootsystems developed in Part I. Structural preliminaries are
given in Sections 7 and 8. Toral Lie algebras L =7, x L, are discussed in
Section 9. It is shown for p>5 “toral Lie algebras are classified by
classical-Albert-Zassenhaus Lie algebras up to isomorphism of root-
systems” by showing that the core Core L=L>*/Nil L* of a toral Lie
algebra L=3%,_r L, is a classical-Albert—Zassenhaus Lie algebra whose
rootsystem is isomorphic to the rootsystem R of L. The core Core R=
R—Nil Ru {0} is discussed in Section 10. In Section 11, symmetric Lie
algebras L=3Y, L, are introduced for p>3 as generalizations of
classical-Albert-Zassenhaus Lie algebras. It is shown in Theorem 11.6 that
the rootsystem R of a symmetric Lie algebra L is a Lie rootsystem in the
sense of Part I. Consequences of exclusion of certain rank 1 and 2 subtypes
are considered in Section 12.

The results form the basis for the papers [12, 15] on rootsystems of sim-
ple Lie algebras and classification of the roothsystems of two large classes
of Lie algebras, the generalized classical-Albert—Zassenhaus Lie algebras
and the classical-Albert—Zassenhaus—-Kaplansky Lie algebras.

I. ROOTSYSTEMS

1. SYMMETRYSETS

Let G be an abelian group with additively written product a + 4. For any
finite subset S of G, we regard S as groupoid: a+be S only for certain
a,beS. For beS, aeG, we let S,(a)={b—ra,., b+qga} be the
equivalence class of » in S determined by the equivalence relation
generated by the relation {(c, c+a)|c, c+a€ S}. We call S,(a) the a-orbit
of b and g+r the length L(S,(a)) of Sy(a). If b—(r—1) a¢S and
b+ (g+1)a¢s, we may say that S,(a) is a bounded a-orbit.

For a bounded a-orbit S,(a), we define the Cartan integer a*(b)=r—gq,
and the reflection r, reversing S,(a) by r.(b+ia)=b+(q—r—i)
a=(b+ia)—a*(b+ia) a(b+iae Sy(a)).

For any finite subset R of G, an automorphism of R (as groupoid) is a
bijection r: R — R such that a+ b e R if and only if r(a) + r(b) € R, in which
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case rla+b)=r(a)+rb), for all a beR The group of such
automorphisms of R is denoted Aut R. For ae R— {0}, a symmetry of R at
a is an automorphism s, of R which stabiizes all a-orbits R,(a) (b€ R) such
that s (a)= —a.

A symmetryset of G is a finite subset R of G containing 0 having a sym-
metry s, of R at a for each ae R— {0}. Since s, stabilizes R,(a), we have
s,(b)=b—a’(b) a; where a’(b) e Z,, (ring of integers modulo the order |a|
of a, set equal to O if ¢ has infinite order).

Henceforth, in this section, we assume that R is a symmetryset of G
which is reduced, that is, 2a¢ R for all ae R— {0}. Since Ry(a)=
{—ra,.,0,a} is s,stable, it is {—a,0,a}. Note that a’(b+c)=
a®(b)+ a’(c) for all b,c, b+ceR, ac R— {0}, and that s,(b)=r,(b) and
a®(b) a=a*(b) a if the a-orbit R,(a) is bounded.

For any abelian group A4, we let Hom(R, 4) be the set of
homomorphisms f from R to 4: f(a+b)=f(a)+ f(b) for all a, b, a+ be R.
Thus ¢° e Hom(R, Z,) for all ae R— {0}. In this section, we prove, in the
absence of certain torsion, that a* lifts 4° to a*eHom(R,Z) for
ae R—{0}.

We begin by stating the following generalization of a decisive result of
Seligman [8], proved along similar lines.

1.1. THEOREM (Winter [16]). If G has no 2 torsion, then L(Ry(a))<3
and |a*(b)| <3 for all ae R— {0}, be R. If G has no 2,3, 5,7 torsion, then
a* e Hom(R, Z) for all ae R— {0}.

Henceforth, we assume that G has no 2 torsion, so that all orbits in R
are bounded of length at most 3. It follows that (—a)*(b)=a*(—b)=
—a*(b) (ae R— {0}, be R). Note also that a*(a)=2, since R is reduced.
We now state generalizations of results of Mills [2], whose proofs carry
over withou difficulty, except for Lemma 1.5, which is reformulated and
proved in this paper (cf. Lemmas B, A, D, G of Mills [2] for 1.2, 1.3, 1.4,
1.5, below).

1.2. LEMMA (Seligman [21]). Let a, be R— {0} with a# +b. Then 0<
a*(b) b*(a) < 3.

1.3. Lemma (Mills [2]). Let a, be R— {0}. Then a*(b)22=>a+b¢R
and a*(b)< —2=a—b¢R.

1.4. THEOREM (Mills [2]). Suppose that G has no torsion other than 1
torsion. Let a,b,ce R and a+ b+ ¢=0. Then d*(a) + d*(b)+ d*(c)=0 for
de R—{0}.
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Finally, we turn to results of Mills [2] for characteristic 5. These results
are proved using elements 4, in a Lie algebra L. We bypass use of the Lie
algebra, in order to generalize and simplify the Mills [2] theory, by defin-
ing counterparts k,, h,, etc., in terms of R alone, namely: h,=a°,
hy= —bo/z, havs=hothy, hoyoy=h,+2hy, hypsy=h,+3hy, hy 3=
2h,+ 3h, in Hom(R, Z5).

1.5. LEMMA. Suppose that G is a vector space over Zs. Let a, be R— {0}
such that b*(a)= —3. Then

(1Y a+b, a+2b, a+3b, 2a+ 3b are nonzero roots,

(2) the hy, hyy hyyriy Nusons Pyysses Pauss defined above have the
Sfollowing properties: h,(a)=2, h(b)=h(a)=h,(b)= —1, h, (a+b)=
hoyola+2b)= —1, h, spla+3b)=hy, . 3,(2a+3b)=2.

Proof. (1) is proved as in Mills [2]. For (2), we have A, (a) = a°(a)

2, hy(b) = —1b°(b) = —1, hyla) = —3b%a) = —3b*(a) = —4(—3)
C12) = a®(b) = —1, h(b) = —1by Lemma 1.2, h, , Jla+b) = (hy+hy)
(a+b) = hfa)+h,(b)+h(a)+h(b) = 2~1—-1-1 = -1,
Byop(@a+2b) = (hy+2h,)a+2b) = hy(a)+2h(b)+2hy(a)+4hy(b) =
2-2-2-4 = —6 = —1, h,,ya+3b) = (h,+3h)a+3b) =
h(a)+ 3h,(b)+ 3h,(a) + h(b) = 2-3-3-9=2and h,,, 5(2a+3b) =
(2h,+3h,)(2a+3b) = 4h,(a)+6h,(b)+6h,(a)+9h,b) = 8—6—
6-9=2. |

Using the above result, the following theorem can now be proved along
the same lines as its counterpart in Mills [2].

1.6. THEOREM. Suppose that G is a vector space over Zs. Let a, b, ce R
and a+ b+ c=0. Then d*(a)+ d*(b)+ d*(c)=0 for de R— {0}.

Finally, we need the following Theorem 2.3 of Winter [10].

1.7. THEOREM (Winter [10]). Let R be a symmetryset whose a-orbits

R,(a) (be R) are bounded and whose Cartan functions a* are in Hom(R, Z)
(ae R—{0}). Then {a*lac R—{0}} separates R and R is a Z-rootsystem,
that is, R isomorphic (as groupoid) to a rootsystem in the sense of Bourbaki
[1] with 0 added.

We now can prove the following theorem needed for this paper.
1.8. THEOREM. Let R be a reduced symmetryset of G and suppose that G

has no 2, 3, 5, 7 torsion, or that G is a vector space over Zs or Z,. Then R is
a rootsystem.
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Proof. This follows from the above theorem, since a* € Hom(R, Z) for
all ae R— {0} by Theorems 1.1, 1.4,1.6. |

The following corollary to Theorem 1.1 is also needed.

1.9. CorROLLARY. Let R be a reduced symmetryset in Z, whose sym-
metries are the reversals r,(b)= —b(ae R— {0}, be R). Then R= {0} or
R={-a,0,a}.

Proof. Suppose that aeR— {0} and choose k minimal with
2<k<p—1and kaeR If k=p—1, then R={—a,0, a}. Otherwise, R
has exactly two a-orbits R={—a,0,a} v {ka,., (p—k)a}, since R, (a)
= {ka,.., (p—k) a} and, consequently R, (a) contains every a-orbit except
{—a, 0, a} by the minimality of k. Repeat the above argument, replacing a
by ka, and observe that R={—ka,0,ka} U {k(ka),.., (p—k)ka}, by
counting. By Theorem 1.1, the length m of the second orbit is 0, 1, 2 or 3.
Hence, its cardinality is 1,2, 3 or 4 with 1, 3 eliminated since 0 does not
occur. Thus, m=2 or 4. It follows that k= (p—1)/2 or k ={(p— 3)/2. Con-
sequently, ((p+1)/2) a¢ R. But then a=2((p+1)/2) a)¢ R, which is not
possible since R is reduced. We conclude that R has only one ag-orbit,
namely {—a,0,a}. 1

2. ROOTSYSTEMS

2.1. DEFINITION. A rootsystem is a pair (V, R), where V is a vectorspace
and R is a finite subset of V' containing 0 which has a symmetry r (v)=
v—a’(v)a (ve V) for each ae R— {0}:

(1) a®eHomy(V, k) and a°(a)=2;
(2) rRy(a))=R,(a) for every bounded a-orbit R,(a) (e R).
We also assume that R spans V.

The rank of (V, R) is the dimension of the span V' =kR of R. The Z-rank
of R is the rank of the groupoid dual Hom(R, Z).

We let Ra=RnZa and define the set R ={aeR-—{0}|Ra=
{—a,0,a}} of classical roots, and the set R®= {ae R|Ra>Za} of Witt
roots.

2.2. DEFINITION. A Lie rootsystem is a rootsystem (¥, R) such that R=
R°U R and R,(a) has 1 or p—1 or p clements for every ae R®— {0}, be R.

We call the orbits R,(a) (ae R be R) classical orbits, and the orbits
R,(a) (ae R°— {0}, be R) Witt orbits. Accordingly, a rootsystem is a Lie
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rootsystem if all roots are either classical or Witt and every Witt orbit has
1 or p—1 or p elements.

In Winter [16, Sect. 4], it is noted that if 2a, 2(b + a), 2(b + 3a) ¢ R, then
R,(a) does not contain a, b+a, b+2a, b+ 3a, b+4a and therefore, is
bounded of length at most 3. Thus, orbits R,(a) of length greater than
three exist only when R° contains one of a, b+ a, b+ 3a. It follows that if
R° is a group, that is, R®+ R%=R", then R,(a) with be R° has length
greater than three only for ae R°.

2.3. PROPOSITION. Let R° be a group, be R® and R,(a)# {b}. Then:

(1) for p>5, ae R® if and only if R,(a) has p—1 or p elements;,
(2) forp=S5,aeR’if R(a)=Za+b.

By the same argument, it follos that R= R U {0} if and only if every
orbit R,(a) (ae R— {0}, be R) is bounded, in which case the Lie root-
system R is a reduced symmetryset.

2.4, DEFINITION. A classical rootsystem is a Lie rootsystem all of whose
nonzero roots aere classical, that is, R=R U {0}.

We can now restate Theorem 1.8 as follows.

2.5. THEOREM. A rootsystem (V, R) is classical if and only if R is
isomorphic as groupoid to a reduced rootsystem in the sense of Bourbaki with
0 added.

In the next section, we classify the rank two Lie rootsystems Rab= RN
(Za + Zb) up to isomorphism. All turn out to be symmetry sets. At the same
time, only two rank 1 Lie rootsystem are symmetrysets, namely 4, and
W,. Accordingly, we refer to 4, and W, as the Lie rootsystems of rank 1
defined over Z,. The general situation for rank one is as follows.

2.6. THEOREM. Let R be a rank one Lie rootsystem. Then either R= R°
and R is a group, or R={—a,0,a}.

Proof. Let aeR°— {0}, be R— {0} and write b=ma, where mek
(which is possible since R is of rank 1). If R,(a) is bounded, then
a®(b)=2m is in the prime field Z ,=7Z1, so that b=ma is in Za= Ro(a).
But then R,(a)= Ry(a)=7Za and R,(a) is not bounded, a contradiction.
Thus, R,(a)=Za+ b. Iterating, we have R°+ Rc R, R°+ R°+ RcR,..,
G=R°+ -+ + R® (ntimes) < R. Since R is finite, G is a group for some n.
Since every subgroup of R is in R°, G=R® and R® is a group. Next, let
aeR°— {0}, be R— {0} and consider R,(b). If it is unbonded, we have
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be R by Proposition 2.3. Suppose that it is bounded: R, (b)= {a—rb,...,
a+gb}=R.(b)={c,., c+(r+q)b}. Then b%c)= —(r+q)eZ,. We may
write ¢ =sb with se k, by invoking “rank 1,” so that 2s=r+q and se Z,,.
Then we have be R®: c=shbeZ,b=>a=c+rbeZ,b=>7,b=7,acR°=
be R Thus, an element be R— {0} is in RC in all cases, so that R= R if
and only if R® is nonzero. Suppose, finally, that R°= {0}, so that
R=R u{0}. By the remarks preceding Definition 2.4, each orbit R,(a) is
bounded: R,(a)={b—ra,. b+ga} (aeR=R—{0}, beR). Then
b+ga=r, (b—ra), a®(b)=r—q and 2s=a"(sa)=a’(h)=r—gq, where
b=sa (sek), so that seZp and be RnZa=ra={—a,0,a}. It follows
that R={—a,0,a}. |

We construct Lie rootsystems of rank 1 and 2 as follows. Any finite sub-
group G of k* determines the Lie rootsystem (k, G). For the others, define
SVT={(s,1)eSxT|s=0o0rt=0} and S®T={(s, t)|se S, te T}, where
S and T are sets with a distinguished element: 0e S, 0e 7. Identify
s=(s5,0), 1=(0,¢) and write s+1=(s,¢). Let A={—a,0,a} cka and
W={-a,0,., p—2}<ka, the rank 1 Lie rootsystems defined over Z .
Next construct A\ A, AW, W\/W, the reducible rank 2 Lie rootsystems
defined over Z,.

Let A,={(0, 0), +(1, 0), £(0, 1), £(1, 1)}, B,={(0,0), +(1,0),
i(o’ 1)) i(l’ 1)’ i(l’ _1)}’ G2= {(0’ 0)’ i(l,O), i(oa 1)’ i(la l)a
+(1,2), £(2,1), £(1, —1)}, which are symmetrysets in Z2 whose
groupoid reflections r (o) = b — a*(b) a determine a* € Hom(R, Z) and a° ¢
Hom(Z3, Z,) (a* reduced modulo p) for ae R— {0} and R=4,, B,, G,.
These are the irreducible rank 2 classical rootsystems. Note that the
irveducible nonreduced classical symmetrysets 24 = {0, +a, +2a}, BC,=
{(0,0), +(1,0), £(0, 1), £(1, 1), +(1, —1), +(0,2), +(2,0)} are not Lie
rootsystems, due to the occurence of a, 2a€ R, 3a¢ R.

Finally, construct W,=W@ W, W®A, S,={(i,j)eZi|i+j#0}u
{(0,0)}, T=Ty(n)=S,u{t(n, —n)} = S,ud = S,+ A, where A=
{(0,0), £(n, —n)} (1<n< p—1), the irreducible rank 2 nonclassical Lie
rootsystems defined over Z,. To see that W@ A = Za—buZa+0u
Za+b, S, and T,(n) are Lie rootsystems, we define the symmetries r_(b) =
b —c®(b) c in the three cases W@® A. S,, T»(n) by specifying the appropriate
Cartan functions ¢® € Hom(Z2, Z ,):

(ia)°(ia) = 2, (ia)°(h)=0
(£b+ja)’(+b+ jay=2, (£b+ ja)°(a)=0

(z;j)"(r,s)=2%; (i, /)€ Sy, (1, 5) € Z2)

(n, —n)°(n, —n)=2, (n, —n)°(1, 0) = anything.
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2.7. DEFINITION. A rootsystem (V, R) is defined over Z, if R is con-
tained in some Z form ¥V, of V: any Z,-basis for V, is a k-basis for V.

The following propositions are straightforward. In the first proposition,
Ra,,.,a,=Rn (Za,+ - Za,).

2.8. PROPOSITION. A Lie rootsystem R of rank n is defined over Z , if and
only if R=Ra," - a, for some a,,.., a,€R.

2.9. PROPOSTION. For a, be R and R,(a) bounded, a"(b) is inZ ,.

3. CLASSIFICATION OF LIE ROOTSYSTEMS OF RANK 2

We now determine Recognition Properties for all possible k-independent
pairs a, b of roots in a Lie rootsystem R, and classify all corresponding Lie
rootsystems Rab of rank 2 up to isomorphism. The results are given in
Table I, the irreducible rootsystems of rank 2 defined over Z, being 4,, B,,

TABLE 1

Possibilities for Pairs of Independent Roots a, b, Up to Change of Signs

No. Diagram Recognition conditions on g and b Type of Rab  a®(b) b(a)
. @ @ a,be R, Ry(a)={b} AV A 00
a b
2 eo—e a,be R, a*(b)b*(a)=1 A, -1 —1
a b
*
3 exe a,beR, a*(b) bHa) =)y B, 2 -1
a b b*(a)
. a*(b)
4 o=t a,be R, a*(b) b*(a) = =3 G, _3 1
a b b*(a)
5. 0 e ac R’ beR, Rya)={b} W\/ A 00
a b
6 0 o a,be R, Rya)={b} Wy w 00
7 o—’-“lcb) a,be R, R(a)y=Za+b w, —m —n
a
8 O->-: acR, beR, a+be R WeA -m 0
L 3
9. e==e 4, be R, a*(b) b*(a) =4, L) _ 4 WA 2 -2
a b b*(a)
10. Qgi a,be R% a%b) b%a)=4 S, —m —4/m
1. 0<0 acR° beR,a+beR° T, 0 —m
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G,, W,, W® A, S,, T,. In this table, diagrams are introduced to represent
each of the 11 classes of k-independent rootpairs g, b. Classical and Witt
roots are denoted by black and white nodes, respectively. The number of
solid lines is the product a°(b) b%(a). No lines indicates that g and b are
orthogonal: a+ b are not roots and a°(h) b°(a) =0. A dotted line indicates
that a and b are not orthogonal and a°(h) °(a) =0, which occurs for types
S5, T,, and for type W, f m=0 or n=0.

Orientation indicates which root is shorter, for types B,, B,. Orientation
indicates that a + & is classical or Witt, for types W@ 4 and T,, depending
on whether the black or white node is “less” (which suffices to distinguish
between types W@ A and T,). Actual values for m,n in 7, 8, 10, 11 are
suppressed in the diagrams. Adjustments in @, & would lead to default
values —1, —1in7, —1,0 (or —p)in 8, —2, —2in 10 and O {(or — p), —1
in 11, which bring the use of orientation (or lack thereof) in these diagrams
in line with its conventional use in the diagrams of the classical rootsystems
1,2,3, 4.

Here and in the sequel, we decompose a rootsystem into its irreducible
components as follows. We say that Sc R is closed if 0e S, S= —S and
a+be S whenever a, be S and a+be R If (R—S)u {0} is closed, we say
that S < R is open. Then {S~ {0}|S is open and closed in R} is a topology
for R— {0}, whose connected components R, — {0},.., R, — {0} determine
the irreducible components R,,..., R, of R:

(1) R=R;u -+ UR, with R,nR;= {0} for i=j;
(2) a=a,+ - +a,e Rwith a,e R, (1 <i<n) implies a=a,€ R, for
some 7.

We use the notation R=S& R=SuUT, SNT={0}, where S, T are
open and closed in R. Then R is irreducible if and only if R= R, if and only
if R={0} is connect if and only if R=S v implies R=S or R=T.

3.1. PROPOSITION.  The irreducible components R, of a Lie rootsystem are
Lie rootsystems.

We begin with the following theorem, which establishes Recognition
Conditions 1, 5, 6. It is proved in the cases of ae R°, e R needed for the
ensuing rank 2 classification. The case ae R then follows from the
classification.

3.2. THEOREM. Let R be a Lie rootsysiem and let a,be R— {0}. Then
Rab = Rau Rb with Ran Rb= {0} if and only if R,(a)={b}.

Proof. For one direction, note that a+be R, (a)c= RacZa, say,
implies that Rab={—a, 0, a} or Za and R,(a)= Rab.
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For the other direction, suppose first that ae R°, be R and R,(a)= {b}.
Thus, we know that a+ b¢ R. We claim that R= Rau Rb, Ran Rb= {0}.
Suppose, otherwise, that there exist b’ =ra + sb € R with r, s # 0. We claim
that se {(p—1)/2, (p+1)/2}, and that R=s((Ra+ Rb)— Rb)U Rb=
s(W+A4)—A)u A, where Ra=W="7Za, Rb=A4A={—5b,0,b}. For this,
note first that r(b)=» and a®(h)=0, so a®(b')#0 and r (b')#b". It
follows that R,(a)# {b’} and, therefore, has p or p—1 elements, by
Definition 2.2, since a € R°. We refer to Table I in what follows.

Note that R, (a) is contained in Column C,, among the columns C, =
Column0,..., C_, =C, ;= Column p—1 of Table II, each of which has at
most p-elements. Since RN C, | exclude +(b—a), +(b+ a), we must have
s# +1. Thus, since b€ R', we have sb¢ R and sb¢ R,(a). These constraints
force R,(a)=2Z(a)+shb— {sb}. Moreover, the constraint s# +1 forces
R,(b) to have fewer than p-elements, so that b” =, r,(b') = ra—sbe R
Repeating the above argument, we have R,.(a)=Za—shb~— {—sb}. Thus,
R>((Za+s{—b,0,b})—5s{—5b,0,b}) U {—b,0,b} = ((W+s4)—sA)
UA=3s(W+A4)—A)u A. It follows that s(b—a)e R. Since (h—a)¢ R, s
can take on only two values, by Proposition 2.3. It follows that R=
s((W+ A)— A)u A. Interchanging signs, if necessary, we have 2 <s< - <
(p—1)y s< - <p—2. It follows that R, (b)={sb+a, (s+1) b+a}
and, therefore, that s+ 1= —s and s= —1, as asserted. Now compute
Rysb+a) = {b,ib+a, 0+2a, —ib+3a}. Then (sb+a)’(h)= —3 and
(sb+a)’(sh)=3. Thus, (sb+a)(a) = (sh+a)’(sb+a)— (sb+a)’(sh) =
2—3=1 But R,(sh+a) = {a, sb+2a} implies, to the contrary, that
(sb + a)®(a)= —1. We must therefore, conclude that R=Ra & R, for be R’
and R,(a)={b}.

Next, suppose that b€ R® and R,(a)= {b}. We again claim that Rab =
Rau Rb, Rarn Rb={0}. Note that C, n R excludes b + a and, therefore no

TABLE 11

The Roots of W,>T,(n)> .S, as Successively Generated
in a-orbits from the Nonroots m(b—a) of S,

0 1 2 3 p—1

0 0 b—a 2b—2a 3p—3a_ _ _ _ _ _ ((p—1)b+a
1 a b 2b—a b—-2a- — - — — — (p—1)b+2a
2 2a b+a 2b 3b—-a — — - — — — (p—1)b+3a
3 3a b+2a 2b+a 3 (p—1)b+4a
4 4a b+ 3a 2b+2a 3b+a~ (p—1)b+5a
5 5a b+4a 2b+3a 3b+ 2a \\\ (p—1)b+6a
6

6a b+ 5a 2b + 4a 3b+ 3a ~ (p—1)b+Ta

~ .

p—1(p—1)a b+(p—2)a 2b+(p—3a) 3b+(p—4)a_ — _ _ (p—1)b
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b'=b+ra (r=0)is in R: beR=>R,(a) = {b'}=>a*(') = 0=0 =
a*(ra) = 2r=r=0. Similarly, no @’ =a+sb (s #0) is in R. But then every
column C, excludes sb +a, so that each R,(a) is {b'} for b'e C,— {sb},
which is impossible since 0=a*(b') = a*(sb+ ra)=2r implies r =0. Thus,
Rab= Ra @ Rb.

The remaining case a, be R is not needed for the rank 2 classification
given below. Applying this classification, we need only observe that one of
the conditions R,(a)= {b} or a*(b}=0 is not met for each pair 2, 3, 4, 9,
to complete the proof. ||

3.3. THEOREM. Let R be a Lie rootsystem and let ae R°, be R with Rab
irreducible. Then b—ae R and Rabo> Ra+ Rb= W @ A.

Proof. Suppose that b—a¢ R. Since Rab is irreducible, b+ ae R, by
Theorem 3.2. Thus, R,(a)=b,.., b+ (p —2) a}, by Definition 2.2. It follows
that @°(b)=2=a"a) and a°(b—a)=0. Thus, o’2b—4a) =
2a8°(b—a)—2a°(a)= -4 and r,2b—4a) = 2b—4a—a’(2b—4a)
a=2b¢ R. It follows that 2b—4a¢ R. Since 2b, 2b—4a¢ R and —2b,
—2b+4a¢ R, R contains no root +(2b+ ra); otherwise R,,,,.(a), say,
has fewer than p — 1 elements, so R, , ,,(a) = {2b+ ra}, which contradicts
the irreducibility of Rab. It follows that R (b)= {a, a+ b}, whereas R,,(b)
= {—b+2a, 2a, b+2a}. Thus, —1=5%a) and —2=p%—h+2a) =
—2+42b%a)= —4 and 2 =0, a contradiction.

We conclude that b—aeR for all be R. If Za+ b = Rab, we are done.
Otherwise, choose r such that #’=b—~rae R and b’ —a ¢ R. From our dis-
cussion above, we conclude that 5’ € R°. But then the classification below,
which does not depend on this case, implies that Rab' is W,, S, or T,:
Nos. 7, 10, 11 of Table I. But then Rab'= T, since R’ is empty for R= W,
or S,, in which case heT; and T,=R>Ra+ Rb=W@® A4 as asserted. |}

3.4. THEOREM. Every nonclassical irreducible rank 1 or 2 Lie rootsystem
defined over 7 , R is one of W, WD A, W,, §,, T,.

Proof. Let R be nonclassical, irreducible and not one of W, W® A4,
W,. We claim that R is S, or T, as asserted. Since R is not classical it is
not reduced, by Theorem 1.8, so that there exists ae R by Definition 2.2.
We know that R is an irreducible rank 2 rootsystem defined over Z,.
Letting V be the Z,span of R, we have RcZa+Zb=V for any
beV—Za

Suppose first that (b+Za)nR=(F for some beV—Za Then
c€ R— Za implies that c¢ R° so that ce R. But then it follows from the
proven part of Theorem 3.3 that ¢+ Za < R, so that R2Za+ {—c¢,0,¢} =
W@ A. Moreover, any element de R — Za has the form d=r(c + ta) with
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c+tae R (just as in the above case r=1, t=0), so that r= +1 and
de +c+ Za. It follows that R= W@ A.

Suppose next that (b+Za)nR+# for every beV—Za Then
(b+Za)nR has more than one element for every beV —Za, by
Theorem 3.2 and the irreducibility of R. But then (b + Za) N R has at least
p—1 elements for every be V — Za, by Definition 2.2. Take ce V — Za with
Zcn R as small as possible. Then R < Za+ Z¢ and Zc ~ R has one or three
or p elements. If Zc~ R has p elements, then R=W,. If Zc R has only
one element, namely 0, then each set (Za + jc)~ R (j# 0) has exactly p — 1
elements in it and R= ((Za+ Zc)— Zc)u {0} = S,. In the remaining case,
Zcn R has three elements, which we may take to be {—¢, 0, ¢} with no
loss in generality. Then R contains i + jc when i 0 and j# +1. It follows
that R contains four or more, hence all p, mulitples of every be V—Zc.
Thus, R=(Za+Zc—Zc)u {—¢,0,¢}=T,.

4. BASE AND CLOSURE

Let (V, R), (W, S) be rootsystems and consider R®S = {a®blaecR,
beS}c V@ W. Introduce r,g,(c®d) = c®d—(a@b)°(c®d)(a®b) by
specifying (a@®b)°e Hom(V @ W, Z,,) as follows:

(a®0)(c®d)=a"(c)
@®b)(c®d)=b"d)  (b#0).

Note that R+S,5(a®0) = R(a)Pd and r,g4(cDd) = c®d—a’(c)
(a®0) = r,(c)®d Next, suppose that R is a group, that is, R+ R =R,
and note that R+ S, 5 (a®b) = {c®d—r(a®b),., c®d+qla®b)},
where Sy (b) = {d—rb,., d+qb}, so that d+gb = r,(d—rb) =
(d—rb)—b°(d—rb) b implies c®d+gla®b) = Fegslc®d—r(a®b)). It
follows that V@ W, R®S) is a rootsystem, provided that R is a group
(Table III).

Next, let V'= 7" with basis a,,.., a,. Consider S,={0}u {rja, + - +
raaylri+ - +r,#0} and note that S, = {ve V| f(v, v) #0}, where fis the
symmetric bilinear form f(a;, a;) =1 for all ;, j. Then S, is a Lie rootsystem

TABLE III

Rootsystems Constructed from a Given Rootsystem R

GO®R (G finite subgroup of k 7}
W,®R (W,=1)
S,+R=S,uR=S,(R)c=Z, (n>rank R)
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with the symmetries r(b) = b—2(f(a, b)/f(a, a)) a=b—2(Ts/2r,;) a for
a=Yr.a,, b=Ys,a,. The condition 0= f(a, a)=(3r,)* defines the hyper-
plane ¥V — S, = W of dimension n— 1. Let (W, R) be any Lie rootsystem in
W. Then S, + R=S,UR is a Lie rootsystem:

(1) (S,+R),(a)=Za+b and a*(h)=0 for aec S,— {0}, beR;

(2) (S,+R)(b) = a+ZbforaeS,— {0}, be R—{0};
(3) (S,+R).(b) = R(b)forceR, beR—{0};
(4) (S,+R),(a) = (S,),(a)or b+ Zafora, beS,— {0} (use the lat-

ter if b+ iae R for some i).

4.1. DEFINITION. We define base for a Lie rootsystem (¥, R) to be a
basis # = {a,..., a,} for V contained in R such that

(1) if Raa, is type 4,, B,, or G,, then the diagram for a;, a; is

o—0 00 o &9 (1#));

(2) R=R (n)u{0}uUR™(n), where R (n)= —R"(n) and R"(n)
is the set of those aeR for which there exist a,,..., a; € m such that 3'7_,
a;eRforl<r<sanda=3;_ ,a

In characteristic 0, this is the usual concept of base, since condition (1)
implies that (a;, a;) <0 for all i # j and condition (1) implies condition (2).

If R has base ay,.., a,, then W,,® R has base b,,.., b,,, a,,.., a,, where
byy b,, is a basis for W, as a group. And S, + R (m>n) has base
Ay gy Uy Ay 15 4, Obtained by taking any ae S,,, forming the indepen-
dent set a+a,.., a+a,, a, showing that it is part of a base a+a,,..,
ata,, a=a,, ., 4a, for S, and then returning to a,,.., a,, d, .., Q.

4.2. DEFINITION. A Lie rootsystem (¥, R) which has a base is said to be
regular.

A Lie rootsystem (¥, R) need not be regular. In fact, a classical root-
system (V, R) of type A,, where p|(r+ 1) need not be regular, since it is
possible that dim V' <r. We illustrate this by describing two rootsystems
(V,R), (V', R') of type A, (p|(r+ 1)) with (¥, R) regular and (}V’, R’) not
regular. For this, let k be a field of characteristic p >0, let ey,..., e, be the
basis of k"*! with coordinate conditions (¢,);=4,, let R={e,—e;[i#,
0<i,j<r}, letn={a;|l1 <i<r} witha;=e, ,—1;and let V' be the k- -span
of R. Then (¥, R) is a rootsystem of type A,, 7 is a basis for (¥, R) in the
sense of Definition 4.1 and (V, R) is regular. Next, assuming that p|r + 1,
note that V contains e,+ - +e, and pass to quotients of ¥ modulo
k(eo+ -~ +e,). Let f(v)=v+k(eo+ '~ +e,) be the quotient map and

481:97:1-10
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define v'=f(v), V'={v'|lveV}, R'={d’lae R}. Then (V',R’) is a root-
system of type A, and f: R — R’ is an isomorphism of groupoids. Since a
dimension is lost in passing from V to V', n’ is not a basis for }J’ and
(V’, R’) is not regular.

To bypass this pathology for classical rootsystems (¥, R), we pass to
their k-closures (H*, R), described below. This passage corresponds, for
certain Lie algebras L, to passage to certain Lie algebras H* +ad L™ of
derivations, H* = Hom(R, k), where [h*, x]=h*(a)x for aeR, xeL,,
h* e H*. When L is classical, this Lie algebra is Der L = H* + ad L, which,
since L is centerless and idempotent, is complete by Schenkman [7].

4.3. DerINITION. H=Hom(R, k) = {f: R—>K|f(a+b) = fla)+ f(b)
for all a, b, a+ be R} is called the Cartan space of (V, R) and H_, denotes
the k-span of its subset {a°|; | ae R— {0} }. The groupoid homomorphism
R - H*=Hom,(H, k) which sends ae R to ae H* defined by a(f) = f(a)
is called the k-closure homomorphism, and R = dlae R} is the set of roots of
the Cartan space H.

We identify a° and 4°/R. Then the k-closure (H*, R) of (V, R) is a root-
system with Cartan functions a°(#)=a°(h) and symmetries r,(h)=r,(b)
(a, be R, a+#0).

Using k-closures and regular functions, we show in Theorem 4.6 that we
can pass from a classical rootsystem (V, R) that may not be regular to an
isomorphic rootsystem (H*, R) which is regular.

If the k-closure homomorphism R — k is an isomorphism of groupoids,
and if it can be extended to an isomorphism of vector-spaces from V to H*,

then we say that (V, R) coincides, up to identification, with its k-closure.

4.4, DeErFINITION. (V, R) is k-closed if (V, R) coincides, up to iden-
tifications, with its k-closure.

It is convenient to have passed from a rootsystem (V, R) to its k-closure
(H*, R), in order to have realized all latent independence among roots, as
in the case of passage from A4,(k) (p|r+ 1) covered by Theorem 4.6 below.
Moreover, R is isomorphic to R in the absence of the rootsystem S,, in
which case we may simplify notation and work with the closed rootsystem
(H*, R) with Rc H* a° =4y h,eH, and a°b)=b(h,)ek for all
ae R— {0}. This is proved in Theorem 5.4.

We recall from Winter [16] and Theorem 1.8 the Z-closure
homomorphism R —» R= {4|lae R} from R into H,=Hom(R, Z)c H, =
Hom(R, Q)cHg = Hom(R,R), defined by d(f)=f(a), is an
isomorphism of groupoids to a Z-rootsystem, provided that R is reduced.
Thus, there exists a regular function on R, that is, a function f e Hg such
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that f(a)#0 for all ae R—{0}; and we then define R* =R*(f) =
{aeRl+£f(a)>0} and n* =7n*(f)={ae R*(f)| a is not contained in
R*(f)+ R*(f)}. Conversely, let there exist a regular function /'€ Hy for
R. Then f| g, is a regular function on the rank 2 rootsystem Rab. A look at
the possibilities for Rab, given in Section 3, show that Rab is classical. It
follows that R is a classical rootsystem.

4.5. THEOREM. A rootsystem (V, R) is classical if and only if there is a
regular function € Hg on R. For any regular functon Fe Hy, n*(f) is base
for R if and only if n(f) is linearly independent.

We observe that the closure (H*, R) of a classical rootsystem R is a
regular rootsystem R isomorphic to R as groupoid such that n¥(f)=
{a,..a,} is a base for R for any regular function fe€ Hy on R. For this,
define d,e Hom(R, Z) such that 3,-(5,-)=5,-j (1<i,j<r). This is possible
since 7 *(f)= {4,,.., 4,} is a base for R, where fe Hom(R, Z) is defined by
f(@&)=f(a) (aeR). Then define d,: R— K by taking d{a) to be d(a)
reduced modulo p. Then d(a,) =9, so that n* (f) is a basis for R and R is
a regular rootsystem isomorphic to R.

4.6. THEOREM. The closure {H*, R) of a classical rootsystem (V, R) is a
regular rootsystem with R isomorphic to R as groupoid and base 7 =n " (f).

S. RIGIDITY AND COLLAPSE UNDER CORE

In studying a rootsystem R of Lie algebra L, it is important to under-
stand the passage from R to Core R and from L to Core L= L>*/Nil L™,
For this, we further develop concepts introduced in Definition 4.3.

5.1. DEFINITION. The core of a rootsystem (V, R) is (H*, R_), where
Core R=R, = {a,lae R} and a, =al,, . Here, ar>a is the closure map
and H_, is the k-span of {a°lae R— {0}}. We call R— R, sending a to
a,, (ae R), the core map. If the core map is bijective, we say that R is rigid.

The following proposition is evident.

5.2. PROPOSITION. If R is rigid, the closure mapping is an isomorphism.

We say that a set {a,,.,a,} (n=2) of n distinct roots collapse if
a,,= """ =d,,- The following theorem on collapse shows that R is rigid
(has no collapse) if R has no rootsystem Rab of type S,.

5.3. THEOREM. Let {ay,.., a,} collapse. Then Ra,---a, = RN
(Za,+ -+ + Za,) is a rootsystem of type S, for some m.
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Proof. Without loss of generality, take a,,.., a, linearly independent.
First, take distinct elements a, b€ {a,,.., a,}.

Note that b—a¢ R for otherwise 2=(b—a)’(b—a)=(b—a)’
(bm— »)=0. Thus Ry(a) = {b,.,b+qa}, where —g=a’(b) = a%®b..)
= a%a,) = a%@a)= 2 and Ry(a)={b,..,b—2a}. Similarly, R,(b)=
{a,..,a—2b}. As in Section 3, we now proceed to cogenerate roots and 7on-
roots of S, as in Table II. Note that no difference mb —ma=m(b—a)is a
root. For this, observe that 2b—a, ae R with 2b—2a¢ R: for otherwise
(2b—2a)°(2b—2a) = (2b~2a)°*(2b, —2a,)=0. Similarly, 2a—b, beR
with 2a—2b¢ R. This generalizes easily to mb—{(m—1)a, ac R, with
m(b—a)¢ R. Therefore, this cogeneration leads to Rab= {ra+ sb|
r+s5s#0} =5,. Next, suppose that we have m >2 such that a=Y"r,a;e R
for 3 7'r;#0. For any such a, consider b= (>7r,) a,,,, and note that
b—a¢R; otherwisc 2=(—-a)’b—a)=(b—-a)(b, —a,) = Y7r(b—a)°
(a,,,+lOC —a,,,)=0. Thus, R,(a)= {b,..,b+qga}, where —q=a’(h)=etc. =

a’(a)=2, and Ry(a)={b,..,b—2a}. Similarly, R, (b)={a,..,a—2b}. Tt
follows that a—Z"’*'r a;e R, provided that >7+'r,%0. By induction,
therefore, R contains S,. Finally, let a=Y"r,a,e R and suppose that

"r,=0. Then a, =0, which is impossible: 2=a"%a)=a"%a,)=0. It
follows that Ra,--a,=S,. |

6. Lie RoOTSYSTEMS EXCLUDING T,

Following Sections 1-5 and Winter [10], a Lie rootsystem R has a
closure R={alae R} over the field R of real numbers, and a closure
homomorphism R — R sending ae R to de H* = Homg(H, R), where 4 is
d/ei@ed by a(f)=f(a) for fe H=Homg ppealR RT), RT¥ =(R, +):
a+b=a+bfor a,b,a+be R We let RR denote the R-span of R in H*.
The closure (RR, R) of (V, R) is a rootsystem over R in the sense of Win-
ter [10]:

(1) each @de R— {0} has an associated 4°c Homy(RR, R), with
4°(a) = 2 defined by the condition r,(b) = b — a°(5) 4, where r, is defined as
in (2) below;

(2) each aeR—{0) has an associated symmetry r,eAutg(RR)
defined as r,=7,, where §€ AutzRR is as defined below for s € Aut R.

Here, we define § =s**| 5, where s* € Aut H and s** € Aut, H* are the
adjoints of s, s*: s*(f)=fos(feh), s**(g)=gos*(ge H*), §(4) = s**(a)
= dos*, S(a)f) = dos™(f) = (*(f))(a) (fosia) = flsla)) =
s@z)(f) (aeR, feH). Thus, s‘(d)—s(a) and rd(ﬁ)—r(b) Note that
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de R— {0} implies that Ry(4) is bounded, thus that R,(a) is bounded and
a®(b) = a*(h) mod p, where a*(b) is the Cartan integer in the sense of Win-
ter [6, 8].

By Sections 1-5 and Winter [16], (RR, R) is a rootsystem in the sense
of Bourbaki [1] with 0 added.

The following theorem is needed for the proof of the Main Theorem. It is
a variation of Theorem 2.4 of Winter [16] and is proved in the same way.

6.1. THEOREM. Let R be a Lie rootsystem. Then

(1) R (b) is bounded and a*(b) = a*(b) for all a,be R, 4 #0;

(2) forany a, be R, a=0, there exists c € R such that the closure map-
ping maps R (a) bijectively onto Rg(4);

(3) the closure mapping R — R is an isomorphism (of groupoids) if and
only if it is bijective.

In Theorem 6.1, R,(b) is bounded for 4+#0, as noted above, so that r,
can be written in terms of the Cartan integers a*(b)=r (b)=b—a*(b)a

Henceforth, we assume that no pair of type T, occurs in R. We then
proceed to prove the Decomposition Theorem announced in the Introduc-
tion.

6.2. THEOREM. Ler R be a Lie rootsystem excluding T2 and let a,,..., 4
be a base for the classical rootsystem R. Then S= {n,a,+ - +n,a |n elZ,
na,+ - +na,eR} is a classical rootsystem zsomorphzc to R and
Rc Ry + S, where R, is a Witt rooisystem given by Ry= {ae R|a= O}

Proof. From Table I, 6*(a) = 0, —1, —1, —1, =2, —3,0,0, =2 in
types AV A, A,, B, long, G, long, B, short, B, short, W\/4, W@® A4 mixed,
W ® A classical, since R excludes T,. These are the Cartan integers, up to
sign, for all classical » and all classical or Witta. Since bo(c+d)=
b°(c) + b°(d) (c, de kR), it follows that b*(c + d) = b*(c) + b*(d) (c,de kR)
for he R. This is verified for p>7 by considering the integers b*(c)
modulo p: b*(c +d)=b*(c)+ b*(d) modulo p with —3<b*(c), b*(d),
b*(c + d) < 3 implies b*(c+ d)=b*(c) + b*(d). For p=5 and 7, it follows
from the characteristic 5 and 7 theory developed in Section 1 of this paper.
Consequently, the groupoid dual H=Hom(R, R) of R over R contains b*
(beR).

Consider the Z-closure mapping R — R= {dlac R} described in Sec-
tion 4, which is a groupoid homomorphism from R to the classical root-
system R. Note that 4=b5< fa)=f(b) for all fe H=Hom(R, R). We
claim that R°={ae Rla is a Witt root} is the kernel {aeRla= 0> of
R — R. Since 4, 24,.., (p—1) ae R for ae R°, and since R is classical, we
have 4=0 for ae R° Next, let be R. Then b*e H=Hom(R, R), as

r
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observed above, so that H(b*)=b*(b)=2. It follows that 5#0. Thus,
R°=R— R is the kernel {ae R|@¢=0} as asserted.

Since R° consists of Witt roots, and since {ae R|@=0} is a Lie root-
system, R® is a Witt Lie rootsystem.

We now construct a copy S of the classical rootsystem R in R such that
Rc< R°+ 8. A part of this construction was done in collaboration with M.
Haileh. Let fe Homg(RR, R) be regular on the rootsystem R, that is,
f(a)#0 for e R— {0}. Define f: R > R by f(a)=f(a). Let (& 5> be a
positive definite symmetric bilinear form on RR such that 4*(5)=
2(<a,6%/<a,a) (a4, be R—{0)}), define {a, b> =<4, b> (ae R, be R) and
note that a*(b)=a*(b)=<(a,b>=<a,b> (ac R, beR), by Theorem I.1.
Observe, accordingly that if {(a, b)> >0, then b—ae R(ae R, be R). Let
R+ = {aeR|f 4)>0} and R* = {aeR|f(a >0}

Let a,,.., a, be any elements of R such that #={4,,.., 4,} is the set of
simple roots ﬁ* in the classical rootsystem R. We claim first that S* =
{na,+ - +n.alneZ na, + - +na,eR*} is contained in R* and
that @)—Rg( ;) for b=n,4,€S* and b=3n,4,€ R*. We proceed by
induction on the helght h(b)= Zn, of 5. If h(bh)=1, b= 4, and a,e S* for
some i Moreover, a,—a,¢ R, since a,—d;¢ R: a,—a_,-eR=>a*,-—&_,- =
a,+(<a) = d—aeR. Since a*(a,)=a*(a,), by Theorem 11, it follows
that R, (a)={a,... a,—aq (a Ja;} maps onto R,(4,)={d,..,
d,—ara,)a,)}, which estabhshes over assertion for =4, and h(b)=1.
Next, let h(é > 1 and suppose that our assertion has been established for
h—1. Since al, ,/:, b are linearly dependent elements of R™* and
(@, @y <0 for all i# j, we have (b, 2> >0 for some i. But then 5—

2 Jé,—a; e R*, with h(/B\a) /z(E)—l By 1nduct10n therefore, ¢ =
Yna,—a,is in R and R.(a;)=R.(a )—R5 a,(a)zRg(a)9b=c+a

We do not yet know that 3>n;a;e R. However, we know that some
element of R (a;) maps to ¢+ d;, and this element, by virtue of its f-value,
must be c¢+a;=3na, =4,b. This said, we may conclude that b =

P e N
J>na,e RT and, moreover, that R,(a)=R,_,(a;)=R.(a;)=R44;), b
what was shown above. It remains to show that R,(a;) = R4(4;) for j# i If
b— 4; e R*, we argue by induction, just as in the case j=1i above. If

5 a; ¢ R*, then b—a;¢ R, in which case R(q, )—Rg(a) since a; *(h) =
(5) with details as in the similar case encountered above. We conclude

by induction that S* < R* and R/,,(E)=R5(a,-): Ry(a;) for beS™, as
asserted.

Implicitly derived in the above considerations is the decisive identity 6 =
En, a,, valid for any Y'n,a,€ R* and b=Zn,-fz7€ S*. This is based on the
implicit iterative construct1on/reconstruction of elements be S*/he R* as
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b=a,+ - +a, and b= d; + -+ +a,, where all partial sums are roots in
S+, respectively in R™.

We claim next that R < R® + S. Suppose not, and take be R* — (R°+ S)
with f() minimal, noting that 5¢ R*. We claim, firstly, that b—a,€ R for
some 1 <i<r. For this, note that 4,,.., 4,, be R* are linearly dependent
and <a,a> <0forall 1<i#j<r, so that (b, Zzt) > 0 for some /. But then
(b, a;y >0 for some i, so that b—a,e R. Next, we observe that be R® + S,
contrary to assumption. In the case /= 4,, we have b —a,e R (see above)
and H—a,=0, so that b—a,e R® and b= (b~ a,) +a,e R°+ S. In the case
b#a, b—a,eR, we have b—a,eR (as above), 5—a,e R*. But then
b—a,e R* with f(b—a,) < f(b). By minimality of f(b), b—a,e R®+ S. But
then he R°+S. To see this, writt b—a,=a+ ¥n,a;, where ae R® and
Yna;e R*. Then b—a,=YnaeR* and b=n,a,+ - +n, 4,  +
(n,+1)y a,+n, 4,+ - +nd, Thus, b=a+na + < +n,_,a, ;+
(n;+1)a;,+n,,a;+ - +n,a, and be R°+ S, by the definition of S, con-
trary to assumption. Thus, R< R°+ S, as asserted.

Finally, S has at most as many elements as R, by its constructional
definition, and Rc R°+ S= S, so that S— § is surjective from S to R. It
follows that S— S is bijective from S to R, so that S— R is an
isomorphism, by Theorem 6.1, which completes the proof of Theorem 6.2,
since the rootsystem R is classical. [

Finally, we briefly consider subsystems.

Consider a subset ¢ of n = {a,,.., a,}, where # = {d,,.., 4,} is a simple
system of R, say o= {a,., a,}. Construct R,=R, ., ={na + -+
mealn d, + - +n.d,eR). Then R, =Rn(Za,+ -~ +Za,)=Ra, - 4,
is a classical rootsystem and R, ' = ., {aeRlaeR,} is a rootsystem R°.
Relative to the global closure maps R — R, the same arguments as above
show that R°<c R” + R,, where R,, as defined above, is a classical sub-
system of R°. Both the global closure map and the closure map defined
relative to R map R, isomorphically to the image (closure in either sense)
of R°.

Taking =7, U -+ Uf, to be the decomposition of # into connected
components, and letting R'= R™ and R, = R,, one now easily sees that:

(1) R=R'"u- -~ UR"
(2) a, beR,a+beR=a+beR}
(3) R'c R®+ R, with R, irreducible and classical and R Witt.
Next, take any be R— R®, so that 5#0, and take a simple system &=
{a,,.., a,} for R such that b= a,. This is possible, since R is reduced, and a

classical rootsystem. In this case, R, as defined above is R,={—5,0,b}.
We write R°=R" =R, '={aeR|aeR,}. Then R’ cR™+R,. Let
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acR® If a+beR, then Rab=Rn (Za+7b) is type W@ A, by the
exclusion of T, and, consequently, a—b is in R” as well. It follows that
a+R,c R if a+beR, so that R®={J, g4 scr a+ R,. In particular,
we have R=),cp0pcrusver @+ R,, where R'=R, and a+R,=
a+{~—b,0b}, by the above arguments and the inclusion R< R®+ R'
established in Theorem 6.2.

II. LIE ALGEBRAS

7. PRELIMINARIES

Throughout Part II of this paper, k denotes a field of characteristic p > 3.
The following results of Partl on Lie rootsystems (V, R) and Cartan
functions a® e Hom,(V, k) play key roles in Part II.

7.1. PROPOSITION. A reduced nonzero symmetryset in Z, whose sym-
metries are the reversals r,(b) = —b must be { —a,0, a} for some acZ,.

7.2. THEOREM. Let R be a classical Lie rootsystem or reduced sym-
meltryset. Then R is isomorphic as groupoid to a rootsystem in the sense of
Bourbaki.

7.3. THEOREM. Let R have rank 1. Then R={—a, 0, a} or R is a sub-
group of k™.

7.4. THEOREM. Let ¢, de R be k-linearly independent. Then Rc D is
classical or one of W (irreducible rank 1), W o A, W o W (reducible
rank2), W@ A, WeW, S,, T, (irreducible rank?2), where W=
{0,a,., (p—1)a}=Za, A={—b,0,b}, W®A={ia+jblj= +1 orC},
WeW=12%, 8,={(i,))li+j#0}, T,=S,u {(m, —m), (0,0), (—m, m)}.

7.5. THEOREM. Let R— R|, =R, be the core map and let a,.., a,
(n=2) be k-independent elements of R such that a,,,= ' =a,,. Then
Ra,---a,=Rn(Za,+ --- +Za,) is of type S,,.

We need the following theorems on representations of 3 dimensional Lie
algebras. Theorem 1.6 is Lemma I1.2.2 of Seligman [8].

7.6. THEOREM (Seligman). Let V be a module for the three dimensional
Lie algebra L=ke+kh+kf with [e, f1=h, [h,e]l=e, [h, f1= —f Sup-
pose that the set of characteristic roots is {b, b+ 1,..., b+ j}. Then j=p—1
or2b= —j.
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In any L-module V, L a Lie algebra over k, we define (x —a) v=xv—av
and (x —a)'"'v=(x—a)(x —a)’v recursively for xe L, ack, ve V; and we
let Vi(x)={xeV|(x—a) v=0}.

7.7. THEOREM. Let L=ke+kh+kf, where [e, f1=h and [h, L]=0.
Let V be an L-module such that e? ="'V =0. Then h"V =0 for some n.

Proof. Let bek be an eigenvalue for 4 on V. Choose ve V- {0}
satisfying Av = b, subject to the constraint that the corresponding integer n
such that e"v #0 and " *'v =0 is maximal. Note that n+ 1 < p— 1. Define
Le”, f] v=¢"(fv)— f(e"v), and note that [e"*', /] v=0, since h(fv)=bhv
and, consequently, e"*!(fv) =0 by the constraint on v. One can show, by
induction, that 0= [e¢"*', f] v=(n+1) be"v. Thus 0= (n+ 1) b and b=0.
Consequently, 4 is nilpotent on V. ||

8. REDUCTIVE LiE ALGEBRAS

Let L be a Lie algebra. Let L=L, 2L, 2 % L,,, =0 be a
maximally refined chain of ideals of L and L, ® --- ®L, where L,=
LyL;,, (1<i<n). Then theideal Nil L= {xe L|[x,L,]cL,. (1<i<n)}
consists of nilpotent elements and is called the nil radical of L. Note that
L/Nil L has the faithful completely reducible module L=L,® --- ®L,. It
follows, as in the proof of Theorem 8.2 below, that Nil L contains every
other ideal / of L such that ad, I consists of nilpotent elements: IL = {0}
and, therefore, 7< Nil L. That is, Nil L is the unique maximal ideal such
that ad Nil L consists of nilpotent elements.

8.1. DEFINITION. L is reductive if Nil L is central in L.

8.2. THEOREM. L is reductive if and only if ad L has a faithful completely
reducible representation which preserves nilpotency of elements of ad L.

Proof. 1f L is reductive, the representation afforded to ad L by the L-
module L=L,® --- @ L, is such a faithful compietely reducible represen-
tation. Conversely, let V=N, ® --- @V, be a representation for ad L with
nonzero irreducible submodules V..., V,. Let ad N be an ideal of ad L
consisting of nilpotent elements, and assume that ad NV acts by nilpotent
transformations on V. Since ad N is an ideal of ad L, V,,= {ve V;Jad N)
v=0} is a nonzero ad L-submodule of V;, so that V,=V,, for 1<i<n.
Thus (ad N) V'=0. It follows that ad N= {0} and N is central in L if V' is
faithful. Thus, L is reductive. |
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8.3. THEOREM. L is reductive if and only if every solvable ideal is central
inL.

Proof. One direction is trivial, since Nil L is nilpotent and therefore
solvable. For the other, suppose that L is reductive and let 7 be a solvable
ideal of L. We show by induction on the dimension of I that 7 is central.
Suppose first that [ is nilpotent. Then ad 7 is an ideal consisting of
nilpotent elements since [I,.., [I, L]..]<=I"={0}. Thus, I is central, by
Definition 8.1. Next, suppose that the assertion is true for solvable ideals of
lower dimension than that of 7 and let J be the ideal J= [/, I']. By induc-
tion, J is central in L. Thus, 7 is nilpotent. But then / is central, as shown
above. |

8.4. DEFINITION. L is semisimple if every solvable ideal of L is 0.

8.5. COROLLARY. L is semisimple if and only if L is reductive with center
0 if and only if Nil L =0.

Proof. One direction of the first implication is clear. For the other, sup-
pose that L is reductive with center 0, and let 7 be a solvable ideal of L.
Then 7 is central, by Theorem 8.3. Thus /= {0}. The remaining implication
follows easily. |

8.6. DeFmNiTION.  Core L= L™/Nil L™, where L™=\, L.

Since Center L is the kernel of ad: L — Der L, and since [d,ad x] =
ad d(x) for de Der L, xe L, C = Center L is stabilized by Der L. It follows
that Der(L, C)= {deDer L|d(L)= C} = Hom(L/L'", C} is an ideal in
Der L: de Der(L, C), ecDer L=[d,e] = de—ed maps L to C and L'V
to 0. Note that Der(L, C)nad L=Centerad L: ad x(L)cC <« [x, L] =C
<> [ad x, ad L] =0. We can now easily prove the following theorem.

8.7. THEOREM. Let L be reductive. Then the solvable radical of Der L is
contained in Der(L, C).

Proof. Let I be a solvable ideal of Der L, so that {/,ad L]=ad I(L)c
Inad L is solvable ideal of ad L. Then I(L)+ C is central in L, since L is
reductive, so that [(L)= C and /< Der(L, C). }

8.8. COROLLARY. Suppose that L is semisimple or that L is reductive and
idempotent in the sense that L= L*. Then Der L is semisimple.
Proof. In either case, Der(L, C) = Hom(L/L'"", C=0. |

We now consider Cartan decomposition L=73",_, L, of L with Cartan
subalgebra H=L,. Note that H, =HnL"=3 ., o, [L_,,L,] is 2
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Cartan sub-algebra of L™ if and only if [H, L,]=L, for all be R— {0},
in which case ad, H_, contains Center ad ; L™.

8.9. THEOREM. Let Der(L®, C) denote the set of derivations of L mapp-
ing L= into C. Then Der(L™, C) is ideal of DerL and Der(L”, C)n
ad L* = Center ad L*.

Proof. We have Der L=Dr-ad L>ad H with [D,ad Hjcad L, so
that D= D, +ad L*, where D= Dy(ad ad H). We then have D=Der L =
Y,cr D, with D,=ad L, (be R—{0}). It suffices to show that
[D,, Der(L*, C)] = Der(L*, C), since [ad L™, Der(L™, C)]=0. Thus,
take dye Dy, de Der(L™, C) and observe that [d,, d] =dyd — dd, maps L,
(ae R—{0}) to C: dyd(L,)cdy(C)c C and ddy(L,)cd(L,)c C. Thus,
[d,, d] maps L= to C and [d,, d]eDer(L*, C). |

A Lie algebra L is complete if L has center 0 and Der L =ad L.

8.10. THEOREM (Schenkman [7]). Let L be a Lie algebra over any field
such that L= L* and Center L =0. Then Der L is complete.

8.11. COROLLARY. Let L be semisimple with L? = L. Then Der L is com-
plete semisimple.

8.12. CorROLLARY. Let L be simple. Then Der L is complete semisimple.

Block [37] defines Socle L as the sum of the minimal ideals of L and
shows, for L semisimple, that L —ad L{g., is injective. Up to “adjoint
identifications,” this shows that Der Socle L = L = Socle L. For L semisim-
ple, Socle L is idempotent and semisimple. Thus, Der Socle L is complete,
by Theorem 8.10. Block [3] determines Der Socle L in terms of the simple
Lie algebras of Socle L.

8.13. THEOREM. Let L be semisimple. Then Der I is complete semisimple
and Der I > L > I (up to identifications) for 1= L', in fact, for any idem-
potent ideal I of L containing Socle L. If I is Der L-stable, then Der L is the
normalizer of L in Der I.

9. REFLECTIVE AND TORAL LIE ALGEBRAS

The contents of this section generalize the theory of Seligman [8,
Chap. II, Sects. 1-4], and set the stage for the remainder of the paper.

Let L be a finite dimensional Lie algebra over k with split Cartan sub-
algebra H =L, and rootspace decomposition L=3, L, Thus, L,=
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{xeLf(ad h—a(h))*™*x =0 for all he H} for a in the additive group H*
of functions from H to K, and R=R(L, H) = {ae H*|L,# {0}} is the set
of roots of H on L.

Let V be an L-module, V,= {ve V|(h—b(h))*™" v=0 for all he H}
and S(V, H) = {be H*|V,={0}}, the set of weights of H in V.

The following representation theorem is equivalent to the two represen-
tation theorems 7.6 and 7.7 for three dimensional algebras, as shown in the
proof.

9.1. THEOREM. Let a€ R and let S,(a) = {b—ra,.., b+ qa} be a boun-
ded a-orbit in S=S(V,H). Suppose that h=1[e, f], [h e]l=a(h) e,
Uh, f1= —alh)fwitheelL, feL Then

(1) 2b(h)=(r—gq) alh);
(2) ifa(h)#0, then the reflection ¥, reversing S,(a) is given by r (¢) =
¢ —2(c(h)/a(h)) alce Sy(a)).

Proof. For (1), suppose first that a(h)#0 and let &’ =a(h) ~'h. Then
2(b(h"Y—r= —{(g+r), by Theorem 7.6, so that 2b(h'}=r—q and 2b(h) =
(r—q) a(h). Suppose next that a(h)=0. Then [e, f1=4h, [he]=0,
[Af1=0and W=3 .5 V.is a module for N=ke + kh+ kf such that
e? 'W=0. It follows from Theorem 7.7 that #"W =0 for some #, so that
b(h)=0. This proves (1) for a(h)=0.

For (2), let ¢=b+1ia and observe that ¢—2(c(h)/a(h)) a=(b+ia)—
2((b(h)/a(h))+ i) a. Since 2(b(h)/a(h))=r—q by (1), it follows that
c—=2(c(h)alh)) a=b+(g—r—i)a=r(b+ia). |

We let R, be the set of those ae R such that R,(a) is bounded for all
be R We also define L) = {xe L [[h x]=a(h)x for all he H}.

—ur

9.2. THEOREM. Let a€ R, and suppose that h=[e, f] with ec L),
felL' . Then

(1) if a(h)=0, ad h is nilpotent;
(2) ifa(h)#0, then r (c)=c—2(c(h)/a(h)) a is a symmetry of R at a;
(3) if a(h)#0, then 2a¢ R.

Proof. For (1), suppose that a(kh)=0. Since the R,{(a) are bounded
(beR), k has characteristic P#2. Since 2b(h)=(r—gq) a(h)=0, by
Theorem 9.1, b(h) =0 for all be R. Thus, ad / is nilpotent. Note that (2)
follows directly from Theorem9.1. For (3), consider V=kf+ H+
L,+-L,, where a,.,qae R and (¢+1) a¢ R. Let S=S(V, H), so that
So(a)={—a,0,q,.,q9a}. Then ga=r,(—a)=a, by (2). Thus, Sy(a)=
{—a,0,a} and 2a¢ R. |
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We recall the definition of classical Lie algebra.

9.3. DEFINITION (Seligman [8]). A Lie algebra L with split Cartan
subalgebra H is classical if L has center 0, L' = L, ad H is diagonalizable
on L, [L,L _,] is one dimensional and R,(a) (be R) is bounded for all
aeR—{0}.

We now introduce the reflective Lie algebras as generalizations of
classical Lie algebras. In our definition, [L., L!] denotes the span of
{le, f1leeLl, feL"' ,}. This theory generalizes part of Winter [10].

9.4. DEFINITION. A Lie algebra L with split Cartan subalgebra H is
reflective if ad[ L}, L' ,] has some nonnilpotent element and R,(a) (be R)
is bounded for all ae R— {0}.

Note that there are no reflective Lie algebras in characteristics 2 and 3,
by the boundedness condition.

We let L* =\, L' and Core L=L*/Nil L*. If L=L" = L*, Recall
that L is idempotent. For any Cartan subalgebra H of L, we let H_ =
HAL® Then L=H+L* and H, =Y ,cr 10y [Lao L_,], where L=
Yacr— (o} L, is the Cartan decomposition of L with L, = H.

The following theorem shows that reflective Lie algebras (L, H) are
roughly classified by corresponding classical rootsystems R(L, H), defined
and described in Section 1. For classical Lie algebras (L, H, this
classification (L, H) — R(L, H) is “up to isomorphism,” e.g., by a version of
Theorem 3.7.49 of Winter [9]: (L,, H,)=(L,, H,) if and only if
R(L,,H))=R(L,, H,) for (L, H,), (L,, H,) classical.

9.5. THEOREM. Let L be a reflective Lie algebra with split Cartan sub-
algebra L,= H and Cartan decomposition L=3,.z L,. Then

(1) R is a classical rootsystem;

(2) dim L,=dim [L,, L_,]=1 for all acR—{0} and [L,,L,] =
L,,,foralla b a+beR—-{0};

Proof. Consider the set {[e, f]lee L), feL"' ,} and note that W is
commutative: [[X, y]’ [E’, f]] = [[[X7 y]y e]’ f] + [e, [[X, y]’ f] =
a([x, yDle, f1—a([x, y1)[e, f1=0. Since the span ad[L}, L' ;] of ad W
has dome nonnilpotent element, ad W must therefore contain a non-
nilpotent element ad 4,. Let h,=[e,, f,] with e,e L, f,e L' ;. When the
context is clear, we abbreviate h=h,, e=e,, f=f,. Note that a(h)#0, by
Theorem 9.2, so that r(c)=c—2(c(h)/a(h)) a is a symmetry of R at a by
the same Theorem 9.2. Note that [H, f]=kf, since fe L' , and [h, f]=
a(h) f #0. It follows that 2a ¢ R, by Theorem 9.2. Thus, R is a reduced sym-
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metryset in the sense of Theorem 1.2. Since R is reduced with bounded
orbits, the characteristic of k is not 2 or 3. Thus, R is a reduced rootsystem
by Theorem 7.2.

Consider L”=H,+¥,.x 10y L, and H,=HNL*=Y, ,_ (0
[L,, L_,]. Note that [L,, L,]= {0}, since 2a¢ R. Take h,=h=[e, f] e
[L;, L' ] as above, with a(h) #0. Forue L}, note that —a(h) u=[u, h]=
[u, e, f11=1e [ f11+0= —a([u, f]) e and u=(a([u f])/a(h)) e € ke.
Thus, L,=ke. We claim that L,=ke. Suppose that L, 2 ke. Since
(ad h—a(h))*™LL,=0, there exists ueL,—ke such that (ad h— a(h))
u=ce and [h,u]—a(h) u=ce for some cek. But then —a(h) u—ce=
(u, h]=T[u, [e, f11=Te, [u, f11+0= —a([u, f]1) e and u=(a([u, f]) -
c/a(h)) e€ ke, a contradiction. Thus, L, = ke. This establishes that L, and
[L,, L _,] are one dimensional for all ae R— {0}.

Now let a, b, a+beR-{0}, S, a)={b—ra,.. b+gqa}, T=
{b=ra,..b}, V=Y, .+L.U[L, L,]1=0,then Vis a module for ke + kh
+kf=L,+[L,, L_,]+L_,, sothatr,(b—ra)=b. But this is impossible,
since r (b —ra)=b+qa with g> 1. Thus [L,, L,]+#0, so that [L,, L,] =
La+b' I

Next, we introduce toral Lie algebras as generalizations of reflective Lie
algebras.

9.6. DEFINITION. A Lie algebra L with split Cartan subalgebra H is
toral if dim L, =1 and a([L,, L _,])#0 for all ae R— {0}.

The algebras of Block are those toral Lie algebras (L, H) which are
idempotent, have center 0 and have ad H diagonalizable. The algebras of
Block are classified in Block [4] for p > 5.

9.7. PROPOSITION. Let L be toral. Then L* ~Center L= Center
L*nCenter H, and H, is a Cartan subalgebra of L. Moreover, ad, H_, is
diagonalizable.

Proof. Each ad head H is diagonalizable on the L, (ae R—{0}),
therefore on the algebra L™ generated by them. Thus, [H, H_.]=0. But
then ad H, is diagonalizable on L* and O on H. |

We now determine Nil L. For this, observe that Kern R=
{he Hla(h)=0 for all ae R} is contained in the centralizer C,(L*)=
{xeL|[x,L*]=0}. For KernR centralizes the generators L,
(ae R—{0}) for L™, so that Kern RcC,(L*). Conversely, any
xeC, (L") centralizes the L, (ae R— {0}). Writing x=3,_r x, with
x,€Ll,, 0={x,e,]=%4crlxp,e,], which implies that 0=[x,, L,] for
L,=ke,(aec R— {0}, be R). Thus, [x,, L_,]=0, which implies that x, =
O(be R—{0}) and, therefore, that x=x,e H. Thus, C,(L*)=H and,
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therefore, C,;(L™)<Kern R. Thus, Kern R= C,(L*) is an ideal of L con-
tained in H centralizing L*. As such, Kern R < Nil L. Conversely, Nil L is
ad H-stable and is, therefore, a sum of (Nil L) H and certain of the one
dimensional spaces L,. But {L,, L_,] ¢ Nil L, since a ([L,,L _,1)#0,
whereas [(Nil L), L_,J<Nil L for ae R— {0}. It follows that Nil L= H
and, therefore, that Nil L = Kern R. This establishes the following theorem.

9.8. THEOREM. Let L be toral. Then Nil L =Kern R=C,(L%), where
Kern R= {He H|a(h)=0 for all ae R} and C, (L™} is the centralizer in L
of L™.

9.9. CoROLLARY. Let L be toral and idempotent. Then L is reductive.
9.10. CorOLLARY. Let L be toral and H abelian. Then L is reductive.

9.11. ProOPOSITION. Let L be toral with center 0. Then H is abelian, L is
reductive and Core L =LY, that is, L' = L™ and LY has center 0.

Proof. Suppose that H is not abelian, and choose a nonzero eiement
he HY ~nCenter H. Then [h,L,]=0 for all ac R and heCenter L, so
Center L # {0} in contradiction to the hypothesis. Thus, H is abelian. It
follows that L is reductive, by Corollary 9.10. Finally L*™ has center 0,
since L=H+L>* has center 0 and H is abelian. Thus, LY =
HY+L*=L" |

9.12. PROPOSITION. Let L be toral and reductive. Then Coread L=
(ad L),

Proof. Since H") = Kern R=Nil L and Nil L is central, 0 =ad H"' =
[ad H,ad H]. Thus, ad H is abelian and (ad L}V =ad H"V 4+ad L* =
ad L™. Since ad L™ is idempotent, it suffices to show that it had center 0.
Let ad 4 be central in ad L*™, so that he Kern R = Nil L = Center L. Then
adh=0. |

The following theorem shows that the rough classification of reflective
Lie algebras (L, H) by their rootsystems, discussed in the paragraph
preceding Theorem 9.5, is equivalent to a rough classification of reflective
Lie algebras L by their (classical) cores. The latter classification is indepen-
dent of a split Cartan subalgebra H of L.

9.13. THEOREM. Lei L be reflective. Then Core L=L>/Nil L™ is
classical and isomorphic to (L/Nil L)"') and the root systems of L and
Core L are canonically isomorphic.

Proof. Let L=L/Nil L, H=(H+ Nil L)/Nil L. Then # is a split Car-
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tan subalgebra of L, dim L,=1and a([L,, L _,]) #0 for all nonzero roots
a of L and L is toral, by Theorem 9.5 and Definition 9.6. By Theorem 9.8,
L has center 0, since any central element x would lie in {%e H|a(x) =0 for
all roots a} = Nil L/Nil L= {0}. Thus, Core L =L", by Proposition 9.11.
Since L* is idempotent, the homomorphism L* — L has image L' =
Core L and, therefore, Kernel Nil L*. Thus, Core L is isomorphic to
(L/Nil L)". Consider the mappings R, — R, (restriction to H,,) and
R,« = Rcore ;. (reduction mod Nil L), where R,, R,», Rco., are the sets
of roots for (L, H), (L=, H,), (Core L, H_/Nil L*), respectively. We
know, by Theorem 1.7, that {a®|ae R— {0} } separates R. Since a®(b)=
2(b(h,)/a(h,)) with h, e L™, it follows that {a®|ae R, — {0} } separates R
and, moreover, L> is reflective and Core L classical, since a(#,)#0
(ae R—{0}). Thus, the mappings R, > R~ > R, are bijections. It
therefore follows from Winter [16], Theorem 2.4, that they are
isomorphisms of groupoids. J

We say that L=3,.x L, is weakly reflective if R,(a) is bounded and
[L_,, L,] has a nonnilpotent element for all a,be R such that L, &
Nil L* and L, ¢ Nil L*. The above results lead easily to the following
version of part of them which, by the conjugacy of Cartan subalgebras of
classical Lie algebras is an “invariant characterization.” The proof is based

on passage from L to L™.

9.14. THEOREM. A Lie algebra L is weakly reflective with respect to some
split Cartan subalgebra H if and only if Core L is classical.

10. THE NILPOTENT ROOTS OF L

For a Lie algebra L=3, L, with orbits R,(a) (ae R— {0}, beR)
bounded, L is reflective if and only if the set Nil'R =, {ce R— {0}|
[L',, L!] consists of ad-nilpotent elements}u {0} of nilpotent roots of
(L, H) is {0}. Note, in this connection, that 0e Nil'R is not an anomaly,
since [L}, L{]=0.

For ad L, diagonalizable, Nil'’R=NilR, where NilR =,
{ce R—{O}{L_,, L] consists of ad-nilpotent elements} U {0}.

Without assuming a condition that ad L, be diagonalizable, we now
show that the subalgebra Ly, generated by {L.ceNil R— {0} is ad-
nilpotent on L, provided that the orbits R,(a) (ae R— {0}, be R) are
bounded. Note, in this connection, that 0 € Nil R is an anomaly for certain
Lie algebras L, even when L=L @ L*=L,®L,, where L™ is abelian
and ad L, is irreducible on L* =L,: [L,, Ly] need not be ad-nilpotent.
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10.1. THEOREM. Suppose that the orbits R,(a) (ae R—{0}, beR) are
bounded. Then Ly, ¢ is ad-nilpotent on L.

Proof. Let S=Nil R—{0}. Observe that the subalgebra Hyy x
generated by the “weakly closed” st |J..s [L_,, L.] is ad-nilpotent on L,
by the Jacobson-Engel theorem (Jacobson [5]). We claim that the
“weakly closed” set W={)>_, W, of commutators [x,,.., x,] € W, (with
any legal arrangements of brackets) (n=1,2,.., ¢,€ S, x,€L,) consists of
ad-nilpotent elements. Consider x = [x,.., x,]€ W, of weight >7¢,=0,
x;eLl,, ¢S After successive factorizations x=[[x, -x,,],
[ X+ 155 X,]] of x and generated terms thereof, and successive use of the
Jacobi identity in conjunction therewith, x can be written as a linear com-
bination of terms of W, of the form x' =[x}, [x5,.., x,]1] of weight 0=

teiy x;=L,, cjeS. But then x'e[L., L_.]< H so that xe H%, as a
linear combination of the generated terms x', and ad x is nilpotent on L, as
an element of ad H®. Finally, consider an element x = [x,,.., x,,]€ W, of
weight ¢=3"% ¢;#0. Then ad x is nilpotent on L, by the boundedness of
orbits R,(c) (beR). Since ad W is a weakly closed set of nilpotent linear
transformations of L, it follows that ad L® is nilpotent on L, by the Jacob-
son-Engel Theorem. §

We now identify Nil R precisely in the case of Lie algebras L of charac-
teristic 0.

10.2. THEOREM. Let L=3,., L, be a Lie algebra of characteristic 0.
Then Nil R={ce R— {0}|L,cNil L} uU {0}.

Proof. Since L/Nil L is reductive, the theory of reductive Lie algebras
of characteristic 0 implies that L, < Nil L for ce Nil R. For the other direc-
tion, let Ae [L_,, L.], where ad 4 is not nilpotent on L. By Theorem 3.5.1
of Winter [9], we have c(h)#0, Tr(ad #)*#0 and #¢ L' when L' is the
radical of the killing form on L. It follows that i =4 + Rad L is nonzero in
L=L/Rad L, where Rad L is the solvable radical of L. Since ke [L ., L,]
and c(#) # 0, we have shown that ¢¢ Nil R implies that L, ¢ Nil L. |

The following corollary to Theorem 10.2 is straightforward. In it,
{Lyir> denotes the ideal of L generated by Ly,z and Core R=
R—Nil Ru {0}.

10.3. CorROLLARY. Let L=3, . L, be a split Lie algebra of charac-
teristic 0. Then L/{Lnygy is reductive with rootsystem canonically
isomorphic to Core R.

481/97/1-11
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11. SYMMETRIC LIE ALGEBRAS

11.1. DepiNITION.  Given a Lie algebra L=3Y, . L,, we let Ll=
{xeL,|[h,x]=a(h)xforall he Ly} (a#0)and L} = L,, and we let L' be
the subalgebra L'=Y, . L!. We say that L is symmetric if

a([L",, L'7)#0 for all ae R — {0},

11.2. PROPOSITION. Let L=}, x L, be symmetric and let ae R — {0},
be R with R,(a) bounded. Then a+be R=[L!, L}1+#0.

Proof. Let Ry(a)={b—ra,., b+qa} and suppose that [L!, L;]=0.
Let T={b~ra,.,b} and consider V=3 ., L!. Then V is a module for
L@ =kf, +kh,+ke,with0+#h,=[e,, f,]Je[L}, L' ], sothatr,(c)=c—
(c(h,)jath,) a maps b—ra to b+ qa and to b. Thus, g=0and a+h¢ R.

11.3. THEOREM. Let L=3,.x L, be symmetric. Then Z ,an R is either
{—a,0,a} or {—a,0,qa,.., (p—2)a} for any ae R— {0}, that is, R=
R° U R in the sense of Section 2.

Proof. Suppose that S=7Z anR is not {—a,0,a,., (p—2)a}. Then
Sy(c)=Ry(c)is bounded for all be S — {0}, ce S. Let be S— {0}. Then the
orbits R,(c) are stable under the reversal r (b)=b—2(b(h_ )/c(h,)) ¢ =ic—
2(ic(h )/e(h.)) ¢ = —ic= —b. Thus, S is a symmetryset in Z,, all of whose
orbits S,(a) are bounded. Let a€ S— {0} and consider the module L ,,+

-+ Lo+ ke, for ke,+kh,+kf,, where So(a@)={—ra,..,ra}. Then T=
{~ra,.,0,a} is stable under r,, so that a=r,(—ra)=ra and r=1. It
follows that S is reduced. But then S= {—a, 0, a}, by Proposition 7.1. |}

11.4. THEOREM. Let L=3,.x L, be symmetric and let H= L. Then:
1) RcHom,(H, k);

(1)

(2) ad H is triangulable on L;

(3) L= is symmetric with Cartan subalgebra H

(4) Core L is symmetric;

(5) L/(Nil) L has center 0,

(6) L'=Y, g L\is symmetric and the Cartan subalgebra H' of L' =

L'/Nil L' is ad-diagonalizable.

Proof. For (1) and (2), observe that >, x 0} L! is a module for ad H
which is annihilated by (ad H)'". Thus, (ad H )(lg is upper triangulable with
only zeros on the diagonal, by Engel’s Theorem. It follows that ad H is
triangulable on L. For (3), note that [H_, L,]=L,, so that H_ is a Car-
tan subalgebra of L=. For (4), note that if Ae [L' ,, L1] with a(#)#0,



SYMMETRIC LIE ALGEBRAS 161

then he L* —Nil L; for otherwise Nil L contains L'  +kh+ L., since
Nil L is an ideal which would contain A, contradicting the nilpotence of
Nil L. Similarly, Ae L* — Nil L*. Thus Core L= L*/Nil L* is symmetric.
If L is toral, L* — L/Nil L has image (L/Nil L)} and kernel Nil L®, by a
straightforward verification. For (5), let A+ Nil L € Center L/Nil L. Then
[h L,J=NilL (aeR-{0}). Since L is symmetricc L, ¢ NilL
(ae R—{0}). Thus, a(h)=0, for otherwise L,=[h, L,J<NilL
(ae R—{0}). It follows that the ideal kh+ Nil L is ad-nilpotent on L, so
that 2 e Nil L, by the maximality of Nil L. Thus, L/Nil L has center 0. For
(6), note that if L has center 0 and ad H is diagonalizable on the L,
(ae R—{0}), then ad H is diagonalizable since H is then abelian:
he HY nCenter H=>h central in L=h=0. |

11.5. THEOREM. Let L=73% . L, be symmetric with 0# Z,ac R. Then
Ly(a)/Solv L"“ is the Witt algebra W, for L"“=H+Y 7' L.

Proof. Since L' is symmetric L=L"“/Nil L' is symmetric with
center 0, by Theorem 11.4. Let /I be the image of H in L. It follows that
is abelian, for otherwise any #e€ H") n Center H is central in L. But then A
is ad-diagonalizable on L. Since Center L =0, it follows that H has dimen-
sion 1. Let S be a maximal proper ideal of L'“ containing Nil L' If
HcS, then L=Lyad H)+S§5=H+3=35 and L=S. Thus, H ¢ S. Since
dim H=1, it follows that Hn§=0 and S=Yr"' S,, where S, =
S.(ad H). Tt then follows that adsS, is nil (1<i<p—1) and S is
nilpotent. Thus, §=Solv, 1(a). It follows that L'“/Solv L") is simple of
rank 1 and toral rank 1, so that it is W,, by Kaplansky [3]. |}

11.6. THEOREM. Let L=3,.r L, be a symmetric Lie algebra. Then
(L&, R) is a Lie rootsystem in the sense of Section 2

Proof. Letae R— {0} and choose h,e [L' , L!] with a(h,) #0. Define
a’e Hom, (L&, k) by a®(v)=2(v(h,)/a(h,)). let r (v)=v—a’(v)a (ve L¥),
and note that a%a)=2 and r,R,(a)= R,(a) for every bounded a-orbit
Ri(a) (be R), by Theorem 3.1. Thus, (L, R) is a rootsystem in the sense of
Section 2, and it remains to verify the supplemental “Lie” conditions that
R=R°UR and each “Witt orbit” R,(a) (ae R°— {0}, beR) has 1 or
p—1 or p elements. The condition R = R° U R’ was proved in Theorem 5.3.
Next, consider a “Witt orbit” R,(a) (ae R°— {0}, be R). We must show
that R,(a) has 1, p— 1 or p elements. Accordingly, we may, without loss of
generality, assume that 1 <|(R,(a)| < p— 1. To show that |R,()a)l =p—1,
we may replace L=3__zL, by another symmetric Lie algebra having
corresponding ae R*, be R and R,(a) of the same length. It follows that
we can, successively, replace L by 377\ Ll , with L} =4 32
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[Li, s> L], L/Center L. Consequently, we may assume, with no loss
of generality, that L=3%7_' L} ., and Center L= {0}.

For each 1<i<p—1, choose e;e L., fieL' ., h,=[e,, f;] such that
a(h;)=1 and define r,(v)=v—2(v(h;)/ialh;)) ia=v—20(h;) a (velLf).
Note that r{a)= —a (1<i< p—1). By Theorem 9.1 and the assumption
|Ry(a)l < p—1, the ia-orbits Ty (ia) (b’eT) of T=Rn(b+ Z,a) are r
stable for any 1 <i< p— 1. It follows, in particular, that T contains r(b) =
b—2b(h;) a, so that Z, contains b(h,). Define ¢c,=b—b(h;) acbh+ Z,a and
note that r,(¢;)=¢; since c¢i{h;)=0, for 1<ig<p—1. Since, for
1<i€<p-1, we have r/(c,)=¢;, and r;T,(ia)=T,(ia)(b'e T), one can
easily verify that:

(1) T has either 1 or 2 ia-orbits,

(2) if T has 2 ig-orbits T, T”, then T has an odd number of clements
and 7"=T-T'; and then one of 7", T” has an odd number of elements
and contains ¢,, and the other has an even number of elements.

<5

T T=TUT"

T Teb + Zpa

We claim, for each 1 <i< p~1 and each &' € T, that the ig-orbit T',.(ia)
is stable under each r; (1<j<p-1). By (1) and (2) above, =T, (ia)
(case of one ig-orbit) or T"=T,.(ia) and the ig-orbits of T are T' and
T"=T— T, where one of 7', T" has odd number of elements and the other
has an even number of elements. Since T=r(T)=r(T")ur,(T") and since
riia) = —ia, one can easily verify that r(T"), r/(T") are ia-orbits of T, thus
that they are T”, T” in one of the orders 7", T” or T", T'. But r, preserves
“odd” and “even” numbers of elements. It follows that r(7")=T" and
r{T")=T"for 1<j<p—1.

Take one fixed a-orbit T,(a) of T. Since it is stable under r,,.., 7, ; and
r{a)= —a (1<j<p—1), each of the r,,.., r, , reverse the a-orbit Ty.(a).
It follows that ry(b')= - =r, (") and b'(h;)= -+ =b'(h,_,) for all
b’ e T. Consequently, we have b(h,—h;)=a(h,—h)=0forall I<i<p-—-1.
Since L=3%F,_'g Lj,, , With L§ = 4¢¢ 38,2 5[ L}, , > L, 5], it follows that
h;—h;eCenter L= {0} and h,=h, for all 1<i, j<p—1.

Finally, we let 4 denote h,, so that h=h, for 1 <i<p—1 and a(h)=1.
By the flexibility in the choice of A; above, it follows that ee L,,, feL_,,
with a[e, f]1=1 implies that h=[e, f], for 1<i<p—1. We claim that
eel,, f'eL ., a([e, f'])=0 implies that [¢, f']=0for I<i<p—1.
To see this, let 1<i<p—1, choose eeL,,, feL_,, such that h= e, f]
and suppose that e'e L,,, f'eL_,,, W=1[¢€, f], a(h')=0. We claim that
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=0. To see this, let h"=[¢’, f], i =[e, f']. Consider first the case
where a(h”)=a(h”)=0. Then l=a(h+h")=a([e+¢€', f]), so that h=
[e+¢€', f] as observed above. But then A=h+h" and A" =0. Similarly,
k" =0. It follows that [e+¢’, f+ ' I=h+h +h"+h"=h+Hh" Since 1 =
a(h)=(ath+h)Y=a([e+e', f+ f']), it follows from the discussion above
that s=h+h" and 4’ =0. Thus, [¢, f']=0 in the present case. Next, con-
sider the case where one of a(h”), a(h™) is not zero. We may then assume
with no loss of generality that a(h”) #0, for otherwise we can interchange
h", h". By replacing e’ by (1/a(A")) ', we may also assume that 1 =a(h") =
ale’, f1). But then h"=h, by our earlier discussion. But then A+ 4’ =
Le', f1+ e, f'1=Le, f+f'] and =qa([e, f+f']) implies that
[e', f+ f']=h, by our earlier discussion, so that 4+ h = h and &' =0.

By the preceding paragraph, we have Ly = 4 3.7,_\ Lj,, ;, = kh, that is,
the Cartan subalgebra H=L} of L is one dimensional. Let L¢=3% 7'
L,=Yr-) L} and let S=Solv L“. We observed in Theorem 11.5 that L/S
is the Witt algebra W,. Since S is a proper ideal of L, we have H & S.
Since dim H =1, it follows that HnS={0}. Consequently, S=Y7-/'S,,.
Regard V=3 ;L. as L-module via adjoints, where T=Rn(b+Z,a) ¢
b+Z,a. Let f: L—-Hom V be the associated representation. Since T &
b+ Zya, f(S,,) consists of nilpotent transformations of V for 1 <i<p—1.
By the theorem of Jacobson [5] on weakly closed sets of linear transfor-
mations, it follows that f(.S) consists of nilpotent linear transformations of
V. Letting ¥ be any irreducible subquotient ¥ =V,/V,, |, where V..., V, is
a composition series for V, and letting f: L - Hom ¥ be the associated
representation of L, we claim that f(S) V= {0}. We use the notation 7=
v+ V;, eV for ve V, Note that since f(S) is a Lie algebra of nilpotent
linear transformations of ¥, V= {ve V|f(S) t=0} is nonzero. One sees
easily that ¥, is an L-submodule of 7, since S is an ideal of L:

f(8) 5=0=7f(S)[/(L)5]=0.

Since ¥ is irreducible, V= Vg and f(S) V= {0}.
Since f(S) V= {0}, we may regard ¥ as a module for W, = L/S where
the module action is given by

(x+s)o=[x,0]

for x+SelL/S, i=v+V,, eV, [x,v]=[x,0]+V,,,eV. We let V=
S.cr~ V. be the root decomposition of ¥ with respect to H< L and
H+S/S=H in L/S=W,, and regard T’ as a subset of R. The restricted
irreducible W -modules are shown in Block [4] to have dimensions 1,
p— 1 or p and one-dimensional weight spaces. It follows that |T"}| =1, p—1
or p. Since 1 <|R,(a)|, one of b—a, b+ a is in R. Consequently, we can
choose ¥ such that V,# {0} and either V,_,# {0} or V,, ,# {0}, by
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Proposition 11.2. For this 7, |T’|#1, so that |T'|=p—1 or |T’| = p. But
then p—1<|T'|<|R(a)| < p—1, so that |[R,(a)l=p—1 as was to be
proved. |

11.7. CorOLLARY. Let L be a symmetric Lie algebra. Then L is reflective
if and only if Z,a & R for all ac R— {0} if and only if R is classical:
R=Ru {0}

Proof. The latter condition is equivalent, by Theorem 11.6, to the con-
dition that the Lie rootsystem R is classical, that is, R= R v {0}, which in
turn is equivalent, by the results stated in Section 7, to the condition that
the orbits R,(a) (ae R— {0}, be R) of the Lie rootsystem R are all boun-
ded. |

We close by noting that part of Theorem 9.5 generalizes as follows, by
the same arguments.

11.8. CorROLLARY. Let L=Y, p L, be symmetric. Then dim L, =1 for
all ae R

12. EXCLUSION OF SUBTYPES OF R AND L

Let R be a Lie rootsystem and/or L=3,_, L, a symmetric Lie algebra.
We have observed that L is reflective and Core L is classical if and only if
R is classical: R has no Ra= Rn Za of type W,. The latter condition can
be restated “R excludes W,” in the following language.

12.1. DerINITION. Let S be a rootsystem of rank r. Then R excludes S
if Ra,"--a,=Rn(Za,+ -+ +Za,) is not isomorphic to S for any
ay,...a, € R L=3, gL, excludes S if R excludes S.

12.2. THEOREM. Let R be an irreducible Lie rootsystem. Then:

(1) R is classical or R = R° if and only if R excludes W® A and T,;

(2) R is classical or rank 1 if and only if R excludes W A, WO W
and S,.

Proof. One direction for both (1) and (2) is clear. For the other, sup-
pose that R excludes W@® 4 and T,. Suppose that ae R°, he R and con-
sider Rab. If a0, then Rab=W U 4 and a+ b ¢ R, since the possibilities
W@® A, T, are excluded. It follows that a,a'€ R® and a+a’' e R implies
a+aeR% a+ad =4 -beR=>a+beR=>a=0=a+a =da €R’
Similarly, b,b'e R and b+b'€R implies b+b'eR|) {0} b+b =
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—aeR® =a+beR=a=0=>b+b"=0e R uU {0}. Since R is irreducible,

it

follows that R=R° or R= R U {0}. This proves (1). For (2), suppose

that R excludes W@ A, W@ W and S,. Then R also excludes T, so that R

is

classical or R=R’ Let ae R—{0} and define S=Rnka, T=

(R—S)u {0}. Take be T and note that b+#0 implies Rab= W W and

a
a

B

p—

11

12.

13.

15.
16.

+b¢ R, by exclusion of W@ W. It follows that a, @’ € S, a + a’ € R implies
+ad'eSand b,b'eT, b+b' e R implies b+ b’ e T, as in earlier arguments.
y irreducibility of R, therefore, R=S and R has rank 1. }
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