On a computation of plurigenera of a canonical threefold

Dong-Kwan Shin

Department of Mathematics, Konkuk University, Seoul 143-701, South Korea

Received 9 December 2005
Available online 19 June 2006
Communicated by Jon Carlson

Abstract

For a canonical threefold \(X \), we know \(h^0(X, \mathcal{O}_X(nK_X)) \geq 1 \) for a sufficiently large \(n \). When \(\chi(\mathcal{O}_X) > 0 \), there are few known results about the integer \(n \). This paper introduces an algorithm for computing plurigenera. Furthermore, when \(\chi(\mathcal{O}_X) \) is small, especially 1 and 2, plurigenera are computed. This produces \(h^0(X, \mathcal{O}_X(nK_X)) \geq 1 \) for \(n \geq 7 \) and \(h^0(X, \mathcal{O}_X(nK_X)) \geq 2 \) for \(n \geq 10 \) when \(\chi(\mathcal{O}_X) = 1 \). Also, \(h^0(X, \mathcal{O}_X(nK_X)) \geq 1 \) for \(n \geq 14 \) and \(h^0(X, \mathcal{O}_X(nK_X)) \geq 2 \) for \(n \geq 20 \) with 8 possible exceptional cases when \(\chi(\mathcal{O}_X) = 2 \).

Keywords: Canonical threefold; Plurigenera

Throughout this paper \(X \) is assumed to be a projective threefold with only canonical singularities and an ample canonical divisor \(K_X \) over the complex number field \(\mathbb{C} \), i.e., a canonical threefold.

It is well known that \(H^0(X, \mathcal{O}_X(mK_X)) \) does not vanish and generates a birational map for a sufficiently large \(m \). In a case of surface \(X \) of general type, \(H^0(X, \mathcal{O}_X(mK_X)) \) does not vanish for \(m \geq 2 \) and \(H^0(X, \mathcal{O}_X(mK_X)) \) generates a birational map for \(m \geq 5 \). In a case of threefold, when \(\chi(\mathcal{O}_X) \leq 0 \), it is easy to have such integer \(m \) (see Fletcher [1]); however, when \(\chi(\mathcal{O}_X) > 0 \), it is not easy to produce such integer \(m \). If there exists an integer \(n \) such that \(h^0(X, \mathcal{O}_X(nK_X)) \geq 2 \), the integer \(m \) can be induced using Kollár’s technique (see Kollár [3]). However, when \(\chi(\mathcal{O}_X) > 0 \), it is not easy to obtain an integer \(n \) such that \(h^0(X, \mathcal{O}_X(nK_X)) \geq 1 \).
M. Reid and A.R. Fletcher described the formula for $\chi(\mathcal{O}_X(nK_X))$. Combining the formula for $\chi(\mathcal{O}_X(nK_X))$ with a vanishing theorem, it is possible to compute $h^0(X, \mathcal{O}_X(nK_X))$. In [1], A.R. Fletcher showed that $h^0(X, \mathcal{O}_X(12K_X)) \geq 1$ and $h^0(X, \mathcal{O}_X(24K_X)) \geq 2$ when $\chi(\mathcal{O}_X) = 1$.

The formula for $\chi(\mathcal{O}_X(nK_X))$ is as follows:

$$\chi(\mathcal{O}_X(nK_X)) = \frac{n(n-1)(2n-1)}{12}K_X^3 + (1 - 2n)\chi(\mathcal{O}_X) + \sum_Q l(Q, n),$$

where the summation is over a basket of singularities. Although singularities in a basket are not necessarily singularities in X, the singularities in X make the contribution as if they were in a basket. For detailed explanations about a basket of singularities, see Reid [5], Fletcher [1] or Kawamata [2]. The exact formula for $l(Q, n)$ is as follows:

$$l(Q, n) = \sum_{i=1}^{n-1} \frac{i\bar{b}(r - i\bar{b})}{2r},$$

where Q is a singularity of type $\frac{1}{r}(1, -1, b)$, r and b are relatively prime, and \bar{b} is the least residue of ib modulo r.

For the sake of simplicity, denote $\frac{i\bar{b}(r - i\bar{b})}{2r}$ by $g(Q, i)$ and $\sum_Q l(Q, n)$ by $l(n)$. Then $l(n)$ can be expressed as follows:

$$l(n) = \sum_Q l(Q, n) = \sum_Q \sum_{i=1}^{n-1} g(Q, i).$$

The singularity type $\frac{1}{r}(1, -1, b)$ can be denoted by b/r unless there is some confusion. Moreover, identify the singularity type b/r with the number b/r in the interval $(0, 1]$. By identifying the type b/r with the number b/r in $(0, 1]$, our situation is defined more effectively for the computation of $l(n)$.

The following proposition is a standard application of the Kawamata–Viehweg Vanishing Theorem.

Proposition 1. For all $n \geq 2$,

$$p_n := h^0(X, \mathcal{O}_X(nK_X)) = \frac{n(n-1)(2n-1)}{12}K_X^3 + (1 - 2n)\chi(\mathcal{O}_X) + \sum_Q l(Q, n).$$

Even though there is a formula for $h^0(X, \mathcal{O}_X(nK_X))$, it is not easy to compute $h^0(X, \mathcal{O}_X(nK_X))$ because there is no information about the basket of singularities. The following lemmas are needed to compute the plurigenera of X.

Lemma 1. Let Q be a point of type b/r. Let $k = \min\{b, r - b\}$. Then $\bar{b}(r - \bar{b}) = \bar{k}(r - \bar{k})$ for a positive integer i.

Proof. If $k = r - b$, then $\bar{k} \equiv i\bar{r} - i\bar{b} \equiv -\bar{b} \mod r$. The graph of $x(r - x)$ yields $\bar{b}(r - \bar{b}) = i\bar{k}(r - i\bar{k})$. □
Note that \(k \leq \frac{r}{2} \). To compute \(p_n \), by Lemma 1, it may be assumed that the basket consists of points related only to types \(\frac{k}{r} (k \leq \frac{r}{2}) \) because \(\frac{b}{r} \) and \(\frac{k}{r} \) produce the same value for \(g(Q, i) \).

Lemma 2. Let \(\{kj/r_j\} \) be a basket of singularities of \(X \). Then

\[
\sum kj = 10\chi(O_X) + (5p_2 - p_3),
\]

where the summation is over the basket of singularities.

Proof. By Proposition 1, it is possible to compute \(p_3 - 5p_2 \). Recall that \(k \leq \frac{r}{2} \).

\[
p_3 - 5p_2 = 10\chi(O_X) + l(3) - 5l(2)
= 10\chi(O_X) + \sum (g(Q, 2) - 4g(Q, 1))
= 10\chi(O_X) + \sum \frac{2kj(r_j - 2kj) - 4kj(r_j - kj)}{2r_j}
= 10\chi(O_X) - \sum kj.
\]

Lemma 2 is one of the ways by which an upper bound is given for a number of points in a basket. For example, when \(\chi(O_X) = 1 \) and \(p_2 = 0 \), the basket cannot contain more than 10 points.

Lemma 3. Let \(\{kj/r_j\} \) be a basket of singularities of \(X \). Then

\[
4\chi(O_X) + (3p_2 - p_3) < \sum \frac{k_j^2}{r_j} \leq 3 \sum \frac{r_j^2 - 1}{r_j} - 68\chi(O_X) + (3p_2 - p_3),
\]

where the summation is over the basket of singularities.

Proof. To prove the left inequality, computation of the following equation is done below.

\[
5p_2 - 3p_3 = -5K_X^3 + \sum (2g(Q, 1) - 3g(Q, 2))
= -5K_X^3 - 2\sum kj + 5\sum \frac{k_j^2}{r_j}
= -5K_X^3 - 20\chi(O_X) - 10p_2 + 2p_3 + 5\sum \frac{k_j^2}{r_j},
\]

since \(\sum kj = 10\chi(O_X) + 5p_2 - p_3 \) by Lemma 2. Thus,

\[
5K_X^3 = -20\chi(O_X) + 5\sum \frac{k_j^2}{r_j} - 15p_2 + 5p_3.
\]

Since \(K_X^3 > 0 \), the left inequality is induced.
To prove the right inequality, by the result of R. Barlow (see also Kawamata [2] or Reid [5])

$$\rho^* K_X \cdot c_2(Y) = \sum r^2 - \frac{1}{r} - 24 \chi(\mathcal{O}_X),$$

where $\rho : Y \rightarrow X$ is a resolution of singularities of X.

$$\chi(\mathcal{O}_X) = \frac{1}{24} \sum r_j^2 - \frac{1}{r_j} - \frac{1}{72} K_X^3$$

$$\leq \frac{1}{24} \sum r_j^2 - \frac{1}{r_j} - \frac{1}{72} K_X^3$$

$$= \frac{1}{24} \sum r_j^2 - \frac{1}{r_j} - \frac{1}{72} \left(-4 \chi(\mathcal{O}_X) + \sum \frac{k_j^2}{r_j} - 3p_2 + p_3 \right),$$

where the second inequality is Miyaoka–Yau inequality (see Miyaoka [4]) and the last equality is proved just above. Hence,

$$\sum \frac{k_j^2}{r_j} \leq 3 \sum \frac{r_j^2 - 1}{r_j} - 68 \chi(\mathcal{O}_X) + (3p_2 - p_3). \quad \square$$

For the next lemma, some new notation is introduced.

Let $2 \leq m \leq n \leq N$ and the basket of singularities of X be the union of S_1 and S_2, where S_2 is the set of points $< \frac{1}{N-1}$.

In the formula of $l(m)$, the sum $\sum_{Q \in S_1} l(Q, m)$ over S_1 is denoted by $l(m)^+$ and the remaining part $\sum_{Q \in S_2} l(Q, m)$ by $l(m)^-$. In addition, the following term is expressed by $K^3_{X,m,n}$:

$$\frac{12}{(m-1)m(2m-1)} \left(p_m + (2m-1)\chi(\mathcal{O}_X) - l(m)^+ \right) + \left(\frac{3}{2n-1} - \frac{3}{2m-1} \right) \sum_{S_2} k.$$

In Lemma 4, $K^3_{X,m,n}$ acts like the real K^3_{X} in the formula of a plurigenus. Once p_m ($m \leq n$) is known, by Lemma 4, p_n can be computed even though complete information about some points, like S_2, in the basket is unavailable.

Lemma 4. With above assumptions, p_n is given as follows:

$$p_n = \frac{n(n-1)(2n-1)}{12} K^3_{X,m,n} - (2n-1)\chi(\mathcal{O}_X) + l(n)^+.$$

Proof. K^3_{X} can be induced from p_m, which yields

$$K^3_{X} = \frac{12}{(m-1)m(2m-1)} \left(p_m + (2m-1)\chi(\mathcal{O}_X) - l(m) \right)$$

$$= \frac{12}{(m-1)m(2m-1)} \left(p_m + (2m-1)\chi(\mathcal{O}_X) - l(m)^+ - l(m)^- \right).$$
Since a point in S_2 is less than $\frac{1}{N-1}$,

\[
l(m)^- = \sum_{S_2} \sum_{i=1}^{m-1} \frac{i k(r - i k)}{2r}
\]

\[
= \sum_{S_2} \sum_{i=1}^{m-1} \frac{i k(r - i k)}{2r}
\]

\[
= \sum_{S_2} \sum_{i=1}^{m-1} \left(\frac{i k^2}{2} - i k^2 \frac{k}{2r} \right)
\]

\[
= \sum_{S_2} \left(\frac{(m-1)m}{4} k - \frac{m(m-1)(2m-1) k^2}{12} \frac{1}{r} \right).
\]

Thus,

\[
K^3_X = \frac{12}{(m-1)m(2m-1)} (p_m + (2m-1) \chi(\mathcal{O}_X) - l(m)^+)
\]

\[
- \frac{3}{2m-1} \sum_{S_2} k + \sum_{S_2} k^2 \frac{1}{r}.
\]

Similarly, from p_n,

\[
K^3_X = \frac{12}{(n-1)n(2n-1)} (p_n + (2n-1) \chi(\mathcal{O}_X) - l(n)^+)
\]

\[
- \frac{3}{2n-1} \sum_{S_2} k + \sum_{S_2} k^2 \frac{1}{r}.
\]

By comparing the two and rearranging the terms, it is seen that

\[
p_n = \frac{n(n-1)(2n-1)}{12} K^3_{X,m,n} - (2n-1) \chi(\mathcal{O}_X) + l(n)^+.
\]

The main theorem is given as follows:

Main Theorem. Let X be a canonical threefold.

(1) When $\chi(\mathcal{O}_X) = 1$, the following is obtained:
 (i) $p_n \geq 1$ for $n \geq 7$,
 (ii) $p_n \geq 2$ for $n \geq 10$.

(2) When $\chi(\mathcal{O}_X) = 2$, the following is obtained:
 (i) $p_{12} \geq 1$ and $p_n \geq 1$ for $n \geq 14$ with possible exceptional cases 1, \ldots, 6 shown in Table 1,
(ii) \(p_{18} \geq 2 \) and \(p_n \geq 2 \) for \(n \geq 20 \) with possible exceptional cases 4, \ldots, 8 shown in Table 1.

In Table 1, the notation \(k/r \times n \) means \(n \) points related to type \(k/r \). Table 1 describes possible exceptional baskets to the main theorem. Note that it does not imply the existence of canonical threefold which has a given basket.

Recall that it is assumed that the basket consists of points related only to types \(k/r \) (\(k \leq \frac{r}{2} \)) by Lemma 1. Thus, in fact, type \(k/r \) in Table 1 stands for either a point of type \(k/r \) or a point of type \((r-k)/r \). For example, \(3/7 \times 2 \) in Table 1 stands for one of the following three cases:

1. \{two points of type 3/7\},
2. \{one point of type 3/7 and one point of type 4/7\}, or
3. \{two points of type 4/7\}.

Remark 1. For an arbitrary canonical threefold of \(\chi(\mathcal{O}_X) = 2 \), Table 1 shows that \(p_{12} \geq 1 \), \(p_{16} \geq 1 \), \(p_{18} \geq 1 \) and \(p_n \geq 1 \) for \(n \geq 20 \). Table 1 shows also that \(p_{20} \geq 2 \), \(p_{23} \geq 2 \), \(p_{24} \geq 2 \) and \(p_n \geq 2 \) for \(n \geq 26 \). Thus, the 8 possible baskets described above are very exceptional.

Remark 2. When \(\chi(\mathcal{O}_X) = 1 \), the number of possible baskets for \(p_6 = 0 \) is less than or equal to 13. When \(\chi(\mathcal{O}_X) = 2 \), the number of possible baskets for \(p_{13} = 0 \) is less than or equal to 26.

The main idea for a proof consists of four steps and is very combinatorial. Hence, it is easily done through computer programming.

Each step will be described under the assumption \(p_4 = 0 \), just for illustrative purposes.

Step 1. Find an appropriate linear combination of \(p_n \)’s to eliminate the term \(K_X^3 \).

\(p_4 = 0 \) implies \(p_2 = 0 \). Consider the following equation:

\[
0 = -p_4 + 14p_2 = -35\chi(\mathcal{O}_X) - I(4) + 14l(2).
\]
Since $-l(4) + 14l(2) = \sum (-g(Q, 3) - g(Q, 2) + 13g(Q, 1))$,
\[
\sum_Q (-g(Q, 3) - g(Q, 2) + 13g(Q, 1)) = 35\chi(O_X),
\]
where the summation is over the basket of singularities. Recall that Q is a point in the interval $(0, 1/2]$.

Denote $-g(Q, 3) - g(Q, 2) + 13g(Q, 1)$ by $Eq(Q)$. Now, the problem of ‘finding a basket of singularities’ has changed to ‘finding a partition $\sum_Q Eq(Q)$ of $35\chi(O_X)$ using points in the interval $(0, 1/2]$’.

Step 2. Find all possible candidates for a basket of singularities of X which satisfy $\sum_Q Eq(Q) = 35\chi(O_X)$.

When Q is a point of type k/r, the formula for $Eq(Q)$ is as follows:
\[
Eq(Q) = -g(Q, 3) - g(Q, 2) + 13g(Q, 1) = \begin{cases} 4k & \text{if } k/r < 1/3, \\ r + k & \text{if } 1/3 \leq k/r \leq 1/2. \end{cases}
\]

Notice that $Eq(Q)$ is always positive. To find all possible candidates for a basket of singularities, it is enough to consider only points Q at which the values of Eq are less than or equal to $35\chi(O_X)$.

Thus, by following procedures (1) and (2), Step 2 is complete:

1. Find all the points in the interval $(0, 1/2]$ at which the values of Eq are less than or equal to $35\chi(O_X)$.
2. Find all possible candidates for a basket of singularities of X which consist of points in BL and satisfy $\sum_Q Eq(Q) = 35\chi(O_X)$.

Since the summation $\sum_Q Eq(Q)$ is over points Q in a basket, to reduce computation time, a good upper bound for number of points in a basket is needed. Three ways to find an upper bound will be presented next.

Lemma 2 is one of ways to give an upper bound. For the case $p_4 = 0$, $\sum k_i = 10\chi(O_X) - p_3$ since $p_2 = 0$. A basket cannot contain more than $10\chi(O_X)$ points since $k_i \geq 1$. Hence, one of the upper bounds is $10\chi(O_X)$. Lemma 2 is very useful when p_2 is known.

Another way to attain an upper bound is to compute $\frac{35\chi(O_X)}{\min\{Eq(Q)\}}$ since $\sum_Q Eq(Q) = 35\chi(O_X)$. Since the formula for $Eq(Q)$ is explicitly given, it is easy to find the minimum of $Eq(Q)$. The minimum is 3 which occurs at the point $1/2$, so one of the upper bound is $35\chi(O_X)/3$. This upper bound is not as good as an upper bound given by Lemma 2, but is useful when p_2 is unknown.

A third way comes from the following:
\[
p_n - p_{n+1} = -\frac{n^2}{2}K_X^3 + 2\chi(O_X) - \sum g(Q, n).
\]

If $p_n \geq p_{n+1}$, another upper bound $\frac{2\chi(O_X) - p_n + p_{n+1}}{\min\{g(Q, n)\}}$ is found since $K_X^3 > 0$. This results in a fairly good upper bound, but caution is needed because the $\min\{g(Q, n)\}$ can be a zero.
Notice that there are an infinite number of points in the subinterval \((0,1/3)\) at which the value of \(\text{Eq}(Q)\) is \(4k\), since \(\text{Eq}(Q)\) is independent of \(r\) for a point in the interval \((0,1/3)\). This kind of point in the basket will be denoted by \(k/R\). It means that a point of type \(k/R\) stands for infinitely many points in the subinterval \((0,1/3)\) at which the value of \(\text{Eq}(Q)\) is \(4k\). For example, when \(\chi(O_X) = 2\), the basket \(\{1/2 \times 5, 1/3, 3/7 \times 2, 4/11, 2/R_1, 2/R_2\}\) satisfies \(\sum_O \text{Eq}(Q) = 35\chi(O_X)\). \(R_1\) and \(R_2\) should be determined.

Step 3. Classify all candidates by determining whether or not \(p_n \geq 1\) (or 2) for necessary \(n\).

Since it is claimed that \(p_n \geq 1\) for \(n \geq 7\) when \(\chi(O_X) = 1\), it is enough to check all candidates for \(7 \leq n \leq 13\). Once \(p_n \geq 1\) for \(7 \leq n \leq 13\), it can easily be shown that \(p_n \geq 1\) by induction for \(n \geq 14\). For example, \(p_{15} \geq p_7 + p_8 - 1\).

The difficulty in this step is that the candidate may contain a point of type \(k/R\). Without any information about \(R\), it is not possible to compute \(p_n\). For example, to compute \(p_7\), even though \(k\) is known, it is not possible to compute \(6k\) since \(R\) is unknown.

For \(7 \leq n \leq 13\), the maximal multiple of \(k\) is \(12k\) in \(p_{13}\). Thus, to compute \(p_n\) for \(7 \leq n \leq 13\), divide the interval \((0,1/3)\) into two subintervals \((0,1/12)\) and \((1/12,1/3)\).

For example, let us take \(2/R\). First, to be a point in the interval \([1/12,1/3]\), \(R\) must be between 6 and 25. Thus, there are 9 possible values for \(R\) since 2 and \(R\) are relatively prime. Hence, \(i/k\) (\(i = 1,\ldots, 12\)) can be computed for each of 9 values of \(R\). Second, if \(2/R\) is a point in \((0,1/13)\), then it is possible to compute \(p_n\) for \(7 \leq n \leq 13\) without any information about \(R\). By assuming \(m = 4\) and \(N = 13\) in Lemma 4, \(p_n\) for \(7 \leq n \leq 13\) can be computed. In conclusion, \(p_n\) can be computed eventually in every case.

For the case \(\chi(O_X) = 2\), the same procedures are followed.

Step 4. Filter the candidates which fail to pass the test \(p_n \geq 1\) or 2.

Some baskets satisfy all the conditions, yet still cannot exist. To filter such candidates, there are some tools including Lemma 3.

For example, when \(\chi(O_X) = 1\), \(p_2 = 0\) and \(p_3 = 0\), a basket \(\{4/11, 2/5 \times 2, 1/2 \times 2\}\) passes Steps 1, 2 and 3. It is easily seen that \(\sum k_j^2/r_j > 4\) but \(3 \sum r_j^2 - 1 - 68 < 3\). This basket does not satisfy the right inequality in Lemma 3, thus it cannot exist.

Another example is \(\{\chi(O_X) = 2, K^3_X = \frac{1}{2784}\},\) and a basket \(\{1/2 \times 4, 1/3 \times 2, 2/5, 3/7, 3/8, 5/13, 1/5\}\). This example passes Steps 1, 2 and 3. However, \(p_{17} = 0\) although \(p_5 = 1\) and \(p_{12} = 1\). Hence, it cannot exist.

For all these steps, a computer software which can do symbolic computations was employed.

Proof of Main Theorem. To prove the theorem, the problem is divided into three cases. To deal with each case, the four steps described above are going to be utilized.

Case 1. \(p_4 = 0\).

Case 2. \(p_4 \neq 0, p_7 = 0\).

Case 3. \(p_4 \neq 0, p_7 \neq 0\).

Case 1. \(p_4 = 0\).

In Step 1, the linear combination \(-p_4 + 14p_2 = 0\) was used.
In Step 2, when $\chi(\mathcal{O}_X) = 1$, BL of 41 points was obtained to find all the possible candidates for a basket of singularities. When $\chi(\mathcal{O}_X) = 2$, BL of 143 points was obtained.

In Steps 3 and 4, it was determined that $p_n \geq 1$ for $n \geq 7$ and $p_n \geq 2$ for $n \geq 10$ when $\chi(\mathcal{O}_X) = 1$.

When $\chi(\mathcal{O}_X) = 2$, it was determined that $p_{12} \geq 1$, $p_n \geq 1$ for $n \geq 14$ and $p_{18} \geq 2$ and $p_n \geq 2$ for $n \geq 20$ with the following possible exceptional baskets:

1. $\chi(\mathcal{O}_X) = 2$, $K_X^3 = 1/462$, {1/2 × 5, 1/3, 3/7 × 2, 4/11, 2/7 × 2}.

 With these data, $p_{15} = 0$.

2. $\chi(\mathcal{O}_X) = 2$, $K_X^3 = 1/840$, {1/2 × 5, 1/3, 3/7 × 2, 3/8, 3/10, 2/7}.

 With these data, $p_{15} = 0$.

3. $\chi(\mathcal{O}_X) = 2$, $K_X^3 = 1/1680$, {1/2 × 6, 1/3 × 2, 3/7 × 2, 5/16, 1/5}.

 With these data, $p_{17} = 0$.

4. $\chi(\mathcal{O}_X) = 2$, $K_X^3 = 1/1170$, {1/2 × 4, 1/3 × 3, 2/5, 4/9, 1/4 × 2, 5/13}.

 With these data, $p_{14} = p_{17} = p_{19} = 0$ and $p_{21} = p_{22} = 1$.

5. $\chi(\mathcal{O}_X) = 2$, $K_X^3 = 1/1680$, {1/2 × 5, 1/3 × 7/16, 2/7, 1/5}.

 With these data, $p_{17} = p_{19} = 0$ and $p_{22} = 1$.

6. $\chi(\mathcal{O}_X) = 2$, $K_X^3 = 1/2856$, {1/2 × 5, 1/3, 3/7 × 2, 3/8, 5/17}.

 With these data, $p_{15} = 0$ and $p_{18} = p_{22} = p_{25} = 1$.

7. $\chi(\mathcal{O}_X) = 2$, $K_X^3 = 1/1020$, {1/2 × 5, 2/5, 5/12, 6/17, 1/4 × 2}.

 With these data, $p_{18} = p_{21} = 1$.

8. $\chi(\mathcal{O}_X) = 2$, $K_X^3 = 1/714$, {1/2 × 5, 1/3, 5/14, 7/17, 1/4 × 2}.

 With these data, $p_{18} = 1$.

Case 2. $p_4 \neq 0$, $p_7 = 0$.

$p_3 = 0$ since $p_4 \neq 0$ and $p_7 = 0$. For Case 2, the linear combination $-5p_7 + 91p_3 = 0$ was used. Four steps described above were followed and all the possible baskets were obtained. All the possible baskets for this case showed:

- When $\chi(\mathcal{O}_X) = 1$, $p_n \geq 1$ for $n \geq 7$ and $p_n \geq 2$ for $n \geq 10$.
- When $\chi(\mathcal{O}_X) = 2$, $p_{12} \geq 1$ and $p_n \geq 1$ for $n \geq 14$. Moreover, $p_{18} \geq 2$ and $p_n \geq 2$ for $n \geq 20$.

Case 3. $p_4 \neq 0$, $p_7 \neq 0$.

First, let us investigate the case $\chi(\mathcal{O}_X) = 1$.

It is clear that $p_8 \geq 1$, $p_{11} \geq 1$ and $p_{12} \geq 1$ since $p_4 \geq 1$ and $p_7 \geq 1$. If $p_9 \geq 1$ and $p_{10} \geq 1$, then $p_n \geq 1$ ($n \geq 13$) can be shown by inducting from p_i ($i = 7, \ldots, 10$). For example, $p_{13} \geq p_4 + p_9 - 1$. Thus, the first claim for the case $\chi(\mathcal{O}_X) = 1$ can be proved.

To get a contradiction, it is assumed that $p_9 = 0$ or $p_{10} = 0$, then $p_2 = p_3 = p_5 = 0$ since $p_9 = 0$ or $p_{10} = 0$. The linear combination $-p_5 + 6p_3 = 0$ was used and all the steps described above were followed; however no candidate was produced which gave $p_9 = 0$ or $p_{10} = 0$.

Therefore, $p_n \geq 1$ for $n \geq 7$ when $\chi(\mathcal{O}_X) = 1$.

Next, check the second claim for the case $\chi(\mathcal{O}_X) = 1$.

When $p_4 = 1$, there are two subcases (1) $p_4 = p_2 = 1$, (2) $p_4 = 1$, $p_2 = 0$. For both subcases, the linear combination $-p_4 + 14p_2$ was used and all steps were followed. In both cases, no candidate gave $p_n = 1$ for some $n \geq 10$. In fact, to show this, it is enough to check p_n for $10 \leq n \leq 13$ since $p_4 = 1$.

When $p_4 \geq 2$, then $p_n \geq 2$ for $n \geq 11$ since $p_n \geq 1$ for $n \geq 7$. Only one information about p_{10} is so far known, i.e., $p_{10} \geq 1$. If $p_{10} = 1$, then $p_6 = p_3 = p_2 = 0$ since $p_4 \geq 2$. The linear combination $-p_6 + 11p_3 = 0$ was used for the case $p_{10} = 1$, $p_6 = 0$ and $p_3 = 0$; however, no candidate gave $p_{10} = 1$. Hence, if $p_4 \geq 2$, then $p_n \geq 2$ for $n \geq 11$.

Therefore, $p_n \geq 2$ for $n \geq 10$ since $p_6 \geq 1$ and $p_3 \geq 1$ for $n \geq 7$. Only one information about p_1 is so far known, i.e., $p_1 \geq 1$. If $p_1 = 1$, then $p_2 = p_3 = p_4 = 0$ since $p_4 \geq 2$. The linear combination $-p_6 + 11p_3 = 0$ was used for the case $p_1 = 1$, $p_6 = 0$ and $p_3 = 0$; however, no candidate gave $p_1 = 1$. Hence, if $p_4 \geq 2$, then $p_n \geq 2$ for $n \geq 10$.

Therefore, $p_n \geq 2$ for $n \geq 10$ when $\chi(\mathcal{O}_X) = 1$.

Now assume $\chi(\mathcal{O}_X) = 2$.

Since $p_4 \geq 1$ and $p_7 \geq 1$, it is clear that $p_{12} \geq 1$, $p_{14} \geq 1$, $p_{15} \geq 1$ and $p_{16} \geq 1$. Hence, if $p_{17} \geq 1$, then the first claim for the case $\chi(\mathcal{O}_X) = 2$ is proved since $p_n \geq 1$ ($n \geq 18$) can be shown by inducing from p_i ($i = 14, 15, 16, 17$). To get a contradiction, it is assumed that $p_{17} = 0$. Then, $p_2 = p_3 = p_5 = 0$ since $p_{12} \geq 1$, $p_{14} \geq 1$ and $p_{15} \geq 1$. Using the linear combination $-p_5 + 6p_3 = 0$ and following all the steps resulted in no candidate giving $p_{17} = 0$.

Therefore, $p_{12} \geq 1$ and $p_n \geq 1$ for $n \geq 14$ when $\chi(\mathcal{O}_X) = 2$.

Next, check the second claim for the case $\chi(\mathcal{O}_X) = 2$.

If $p_4 \geq 2$, then $p_n \geq 2$ for $n \geq 18$ since $p_n \geq 1$ for $n \geq 14$. Thus, $p_4 = 1$ may be assumed. When $p_4 = 1$, two subcases (1) $p_4 = p_2 = 1$ and (2) $p_4 = 1$, $p_2 = 0$ are produced. For both cases, the linear combination $-p_4 + 14p_2$ was used and all steps carried out. In both cases, there is no candidate which gives $p_{18} = 1$ or $p_n = 1$ for some $n \geq 20$.

Therefore, the main theorem is proved. □

Remark 3. Although the proof is quite awkward, the technique for the proof is simple and combinatorial. Hence, it can be applied to the case $\chi(\mathcal{O}_X) \geq 3$, for which more computations are needed.

References

