
JOURNAL OF DIFFERENTIAL EQUATIONS 9, 168-181 (1971) 

Forward and Backward Continuation 
for Neutral Functional Differential Equations 

JACK K. HALE* 

Center for Dynamical Systems, Division of Applied Mathematics, 
Brown University, Providence, Rhode Island 

Received February 9, 1970 

A neutral functional differential equation is a relationship in which the 
derivative of the state of a system at time t is specified in terms of the state 
at time t, as well as the state and the derivative of the state for values of time 
preceding t. Many authors have considered such equations, as may be seen 
by consulting [l-3]. Recently, Driver [4] considered a special class for which 
the derivative occurs linearly and proved the initial value problem is well 
posed in the sense that a solution exists and depends continuously upon the 
initial data. To avoid discussing the differentiability properties of the solution, 
Hale and Meyer [5] introduced an integrated form of the equation which, if 
differentiated, would contain the derivative of the state with coefficients 
depending only on t. Hale and Cruz [6] gave a much more general version 
of [5] and proved again the problem was well posed. 

The present paper continues with the development in [6]. More speci- 
fically, we consider a class of equations which in some respects is more general 
than the ones considered in [6], and it has the advantage that it leads in a very 
natural manner to a discussion of the problem of the backward existence of 
solutions. After developing the basic theory of existence, uniqueness, con- 
tinuous dependence, and continuation of solutions, it is shown that solutions 
of most linear equations with bounded coefficients can not have a nonzero 
solution which approaches zero faster than an exponential. 

1. DEFINITION 

Suppose r 3 0 is a given real number, R = (--co, oo), E” is a real or 
complex n-dimensional linear vector space with norm 1 . 1, C([u, b], En) is 
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the Banach space of continuous functions mapping the interval [u, b] into En 
with the topology of uniform convergence. If [u, b] = [-r, 01, we let C = 
C([--r, 01, En) and designate the norm of an element 4 in C by 14 1 = 
SU~-,~~~~ 1 C(e)/. Single bars are generally used to denote norms in different 
spaces, but no confusion should arise. If 

UER, A>,0 and x E C([u - r, u + A], E”), 

then for any t E [CJ, u + A], we let xt E C be defined by ~~(0) = x(t + e), 
-r < 6 < 0. If D is an open subset of R x C and f, D : 52 + En are given 
continuous functions, we say the relation 

is a functional differential equation. A function x is said to be a solution of (1.1) 
if there are 0 E R, A > 0 such that x E C([u - r, u + A), En), (t, xt) E Q, 
t E [a, o + A) and x satisfies (1.1) on (u, u + A). Notice this definition 
implies that D(t, xt) and not x(t) is continuously differentiable on (a, u + A). 
For a given u E R, 4 E C, (a, 4) E 52, we say x(u, 4) is a solution of (1.1) with 
initial value (a, 4) or simply a solution of (1.1) through (u, 4) if there is an A > 0 
such that x(u, 4) is a solution of (1.1) on [o - r, o + A) and ~,,(a, 4) = 4. 

Equation (1.1) is very general and includes ordinary differential equations 
(r = 0) as well as the following: 

y = f (4 Xt), 

4 [x(t) - w - 91 = fP, 4, b # 0, 

-$x(t - y) = fk 4 (l-4) 

$x (t - +) = f (t, XJ. 

In the classical terminology, for Y > 0, Eq. (1.2) is called a retarded func- 
tional differential equation, Eq. (1.3) an equation of neutral type (because, 
if x is differentiable, the derivative occurs at t and t - I), Eq. (1.4) an equation 
of advanced type, and Eq. (1.5) an equation of mixed type. 

The initial value problem for Eq. (l.l), in general, will not have a solution 
since it includes (1.4) and (1.5). Additional restrictions will be imposed on the 
function D so that the initial value problem is well defined. To formulate 
these restrictions, it is convenient to have 

DEFINITION 1.1. Suppose Q is an open set in R x C, D : !2 + En is 
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continuous, D(t, v) has a continuous Frechet derivative D,,,‘(t, cp) with respect 
to q~ on .Q and 

for (t,v)EQ, #EC, where p(t, v, 0) is an 71 x n matrix with elements of 
bounded variation in 6’ E [-r, 01. For any /? in [-r, 0] we say D is atomic 
at /3 on l2 if 

(1.6) 

where A(t, q~, /3) is continuous in (t, q~) and there is a scalar function 
y(t, p, s, /I) continuous for (t, 93) E Q, s 3 0, y(t, v, 0, p) = 0 such that 

for(t,v)EQ,s >O,#EC. 

DEFINITION 1.2. A neutral functional differential equation (NFDE) is 
a system (1.1) for which D, f : Sz -+ En are continuous and D is atomic at zero 
on Q. 

A very special but important case of a NFDE is one in which LJ = 
(7, co) x C, D(t, 9) is linear in q~ 

W, d = j” [h-4, e)i 949 --T 
B(t) = P(4 0) - A4 o-j, det B(t) # 0, 

j j”, [G-44 41 VP) - B(t) do) ( < y(t, s) I q I 

for (t, q) E J2, where B(t) is continuous and y(t, s) is continuous for t E (7, co), 
s > 0, y(t, 0) = 0. In particular, all retarded functional di@mntiul eqtu&ms 
(RFDE) 

are included in the class of NFDE. 
In [6], a NFDE was defined in a manner similar to the above for a class 

of operators D(t, ‘p) = ~(0) - g(t, CJI) even when g(t, 9’) is not differentiable 
in 9. The important difference here is not the smoothness of g(t, q~) but the 
fact that D(t, p’) need not be of this special form. 
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2. FUNDAMENTAL PROPERTIES OF NFDE 

In this section, we give results on the existence, uniqueness, continuation 
and continuous dependence of solutions on initial data. 

THEOREM 2.1 (Existence). If 52 is an open set in R x C and (1 .l) is a 
NFDE, then for any (a, p’) E Q, there is a solution of (1.1) passing through (a, p)). 

Proof. A function x is a solution of (1.1) through (a, v) if and only if 
there is an ar > 0 such that x satisfies the equation 

W, 4 = WJ, d + l”r (s, xs> ds, t E [u, 0 + 011, (2.1) 0 
x, = fp. 

Let $5 : [-Y, co) + En be defined by q(t) = p(t), t E [-r, 01, q(t) -= y(O), 
t E [0, co). Then x is a solution of (2.1) on [ u, u + a] if and only if X(U + t) = 
G(t) + z(t), -Y < t < OL, where z(t) satisfies 

D(u + 4 +t + 4 = W, p’) + jtf (0 + s, $% + z,) 6 t E [O, 4, (2.2) 
0 

z. = 0. 

Since D(t, 9’) is continuously differentiable in q, 

where 

D(t, p + #> = D(t, VJ) + D,‘(t, v)$ + g(t, cp, +) (2.3) 

g(4 % 0) = 0 

for (t, p’) E !S, 1 # I, 1 5 1 < 6 and cF(t, p, 6) is continuous in t, v, 6 for (t, q) E Q, 
6 > 0 and &(t, p, 0) = 0. Therefore, using (2.2) and (2.3), x is a solution 
of (2.1) if and only if x,+~ = I& + at and z satisfies 

Dv’(u + 4 $t) it = W, d - D(u + t, 4%) - g(u + 4 4t , 4 

+ Jtf CJ + 6 $7 + zs) & t E [O, 4 (2.4) 
0 

x0 = 0. 
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Using the fact that D is atomic at 0 on Q, we have (as long as (u + t, qt) E 9) 

z(t) = A-yu + t, Qt , 0) 1 - so- [44J + 4 $5 9 41 49 --T 
+ D(u, p’) - D(u + t, $5) - g(u + 4 $5 ,4 

+ j:,u + s, 6 + zs) dsj. t E [O, 4, 

zo = 0. 

If we let (Tz)(t) = 0, (h)(t) = 0, t E [-r, 01, and 

(2.5) 

+ D u, q> - D(u + t, 4t) - g(” + 4 6 7 %)\ 

then (2.5) is equivalent to the equation 

z = Tz + Sz, 2 f q--r, 4, En), x0 = 0. 

One now proceeds as in [6] to show there are positive E, fl so that, if &‘(E, /) = 
(5 : [-r, &] --f En, continuous, to = 0, I ii I <p, t E [O, Cl), then T: 
&(p(or,p) + C([--r, I?], E”) is a contraction, S : &(G,p) + C([-7, E], E”) 
is completely continuous, and T + S : &(Z, 8) -+ ,Qe(&, 8). This implies the 
existence of a fixed point of T + S in &(E, 8) and thus a solution of (1 .l) 
through (a, p). 

THEOREM 2.2 (Uniqueness). If D is an open set in R x C and (1.1) is a 
NFDE with f (t, p’) locally Zipschitzian in v in each compact set of 52, then for any 
(u, CJI) E .Q, there is a unique sohtion of (1.1) through (u, 9). 

Proof. The proof is essentially the same as the proof for ordinary differen- 
tial equations if one uses the fact that a solution of (1.1) satisfies Xo+t = qt + zt 
and z satisfies (2.5). 

THEOREM 2.3 (Continuous Dependence). Suppose Q is an open set in 
R x C, D, : Q -+ EQ is atomic at 0 on S2 and Alc(t, v,, 0) is the corresponding 
matrix of Definition 1.1, k = 0, 1, 2 ,... . Suppose Do, A,(t, v, 0) are unayormly 
continuous on closed bounded subsets of Sz, DI, us well us the derivative D;,, with 
respect to v converge to D, , DA,, respectively us k + w uniformly on closed 
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boundedsubsets of 52, fk: Sz + E”, k = 0, 1,2,..., aye cmtinuous,f,& #> -+fo(s, 9,) 
as k + *, (4 #> - 0, d f OY all (s, v) E Q and for any (s, ~JI) E Q, there is a 
neighborhood V(s, 9,) of (s, v) and a constant A+’ such that 

If& 1611 d M (t, 4 E v, 94, k = 0, 1, 2 ,... . 

Finally, let (oh, @) EQ be given, (uk, 9,“) + (u”, $) as k -+ 00 and suppose 
xk = x~(&, @) is a solution of 

with initial value vk at uk. If x0 is defined on [u”, -Y, b], b > o”, and is the only 
solution through (CT”, d), then there is an integer k, such that the xk, k 3 k, , 
can be defined on [u” - Y, b] and x”(t) -+ x”(t) us k -+ co uniformly on 
[Do--r,b];that is, for anyO<e<b-u”+r,thereisak,=kl(E)>O 
such that xk, k 3 k,(e), is dejned on [CT” - Y + E, b] and x”(t) -+ x”(t) as 

k --+ co uniformly on [no - Y + E, b]. 

Proof. The proof is technically complicated but proceeds in a manner 
very similar to the one in [6] taking into account that a solution of (1.1) 
satisfies x,,+~ = +Q + zt where .z satisfies (2.5). 

DEFINITION 2.1. If D is atomic at /3 on Q and W is a subset of Q, we 
say D is uniformly atomic at B on W if there is an N > 0 such that 
I A-l(t, v, B>l < N, I D,‘(t, p)l < N for all (4 v) E W and y(t, v, s, 8) -+ 0 
as s - 0 uniformly for (t, ‘p) E W. 

If x is a solution of (1.1) on [u - r, a), a > u, we say 2 is a continuation of x 
if there is a b > a such that 3 is defined on [u - Y, b), coincides with x on 
[u - Y, a) and satisfies (1.1) on (a, b). A solution x is noncontinuable if no 
such continuation exists; that is [u - I, a) is the maximal interval of existence 
of the solution x. If the conditions of the basic existence theorem are satisfied, 
then there is a solution of (1.1) on [u - Y, a) for some a > u. Zorn’s lemma 
implies the existence of a noncontinuable solution of (1.1). It is also true 
that the maximal interval of existence is open. 

The following theorem as well as the proof is based on the thesis of 
W. Melvin [7]. 

THEOREM 2.4 (Continuation). Suppose !J is an open set in R x C, (1.1) 
is a NFDE and for any closed bounded set W in Q with a 8-neighborhood also 
in Q, f maps W into a bounded set in En, D(t, v), D,‘(t, p’) are uniformly con- 
tinuous on Wand D is uniformly atomic at zero on W. If x is a noncontinuable 
solution of (1.1) on [u - Y, b), then there is a t’ in [u, b) such that (t’, xtt) $ W. 



174 HALE 

Proof. The case r = 0 is known from ordinary differential equations. 
Therefore, suppose r > 0. Also, we may assume b finite. If there is a sequence 
t, --+ b- and a 9 in C such that xt, -+ 9, then the fact that r > 0 implies that 
x(t) is uniformly continuous on [u - Y, b) and x(t) + #(O) as t --t 6. Therefore 
if we define x(b) = #(O), then (b, b) x must belong to the boundary of Q or x 
would be continuable beyond b. Also, the fact that xt is continuous and the 
distance of (b, xb) from any closed bounded set W is positive imply the 
existence of a 1, such that (t, xt) # W for t, < t < b, a conclusion stronger 
than asserted. 

If no such subsequence exists, there are two cases to consider: the cases 
where the set V = {(t, x,)}, t E [u, b), . b is ounded and unbounded. If this set is 
unbounded, then for any closed bounded set Win Sz, there is a constant kw 
such that I+ 1 < k, for (t, +) E W. Let k,’ = max(l x, I, k,}. From hypo- 
thesis, there is a sequence t, + b- monotonically such that / xtK 1 > k,‘. 
From the property of the norm in C and the fact that ~~(0) = x(t + f?), 
this implies the existence of a t, such that (t, zt) 4 W for tw < t < b. 

If the set V = {(t, xt), t E [o, b)} is bounded and has a S-neighborhood 
in Q, then this set is also closed since there are no subsequences t, -+ b- 
such that xt, converges. We wish to show there is an (11 > 0 such that x is 
uniformly continuous on [b - (II, b) and, therefore, {(t, xJ, t E [u, b)) belongs 
to a compact set in Q. This will obviously be a contradiction. 

From the hypotheses on I/, D and Definitions 1 .I and (2.1), there are a 
pa > 0 and continuous functions y(s), s > 0, S(p), 0 < /3 < /3,, , r(O) = 
8(O) = 0, and a constant N such that 

for (a, v) E V, I 4 I < fi, 0 < fl < & , s > 0. Consequently, 

I WJ, C + ~9 - D(u, P>I 

2 IWW/N-T~~)I~I --N sup -7~e~--s I 3W - ~(I3 I # I (2.6) 

for (~~4) E V, I $ I < B, 0 < B < PO , s 3 0. 
If x(t) is not uniformly continuous for t in [u - T, b), there are an E > 0, 

a monotone decreasing sequence of positive numbers A, , A, -+ 0 as k -+ CO 
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and a sequence of real numbers t, with t, , t, - A, in [G, b) such that 
1 x(tk) - x(t, - A, 1 > E for all K. For any s > 0, the fact that x is uniformly 
continuous on [u - r, b - s] implies for any E’ > 0 the existence of a A > 0 
such that 1 x(t) - x(t’)l < E’ for / t - t’ 1 < A, t, t’ in [cr -r, 6 -s]. 
Also, since D(o, 4) is uniformly continuous on V, we can choose A so that 
I qt, 4) - W’, 411 < E’ f or 1 t - t’ j < A, (t, 4) E V, (t’, 4) E V. 

Suppose 0 < j3 < &, is given, choose E’ < mir@, e) and K sufficiently 
largethatjA,j <A,k>K.Foreachk>K,let 

sk = infit E [a, b) : / x(t) - x(t - A,)/ 3 min(j3, e)}. 

This sequence of numbers is well defined since 1 x(tk) - x(t, - Ak)j > E. 
From (2.6), 

- I DO, , +d,) - D(s, - 4 , xs,-~Jl 

3 I D(s, , x,> - W, , x,,-& - c’ 

> min(fi, E)/N - y(s) /3 - NE’ - b(/?) min(& G) Er E. 

Now one can obviously choose &, , , s E’ so that < > 0. Consequently, the 
hypothesis that x(t) is not uniformly continuous on [u - r, b) implies that 
D(t, xt) is not uniformly continuous on [u, b). 

On the other hand, 

D(t + 7, xt+r ) - W, 4 = /;f(s, 4 ds 

for all t, t + 7 in [u, b). Since If( s, x,)1 < M for (s, x,) E W and some 
constant M, the function D(t, xt) is uniformly continuous on [u, b). This 
contradiction completes the proof of the theorem. 

To improve on Theorem 2.4 we suppose D(t,#) is continuous in t, +, 
linear in 4, and in fact satisfies 

DC4 $1 = 44 W) + j-” C&k ‘31 N>, det A(t) # 0 
--7 

(2.7) 
G I44 s) sup I w 

tk[--8.0 
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for a continuous matrix A(t) and scalar function y(t, s), r(t, 0) = 0, t E R, 
s 3 0. 

In the proof of Theorem 2.4, the assumption that a S-neighborhood of W 
belonged to J2 was used only to show that relation (2.6) was valid for some /3. 
When D(t,4) is linear in + and satisfies (2.7), &(/I) in (2.6) can be taken 
identically zero. The proof above of Theorem 2.4 for this case yields 

THEOREM 2.5. Suppose .Q is an open set in R x C, f : Q + En is continuous 
and maps closed bounded subsets of Q into bounded sets and D : R x C -+ En 
satisfies (2.7). If (u, 4) E G and x is a noncontinuabZe solution of (1.1) on 
[u - Y, b) through (u, $), th en f or any closed bounded set W in Q there is a 
t, E [a, b) such that (t, xt) 4 Wfor t E [tw , b). 

3. BACKWARD CONTINUATION 

We say a function x E C([u - r - 01, u], E”), 01 > 0, is a sobtion of (1.1) 
on [U - Y - (Y, u] through (u, 4) if x, = 4 and for any T E [u - 01, a], x is a 
solution of (1.1) on [T - Y, U] through (7, x,). We sometimes refer to x as 
a backward continuation of 4 by (1.1). 

THEOREM 3. I. Suppose Q is an open set in R x C and D in (1.1) is atomic 
at -r on L?. If (a, 4) E Q, then there is an 01 > 0 and a solution of (1.1) through 
(u, 4) on [u - Y - 01, u]. If, in addition f (t, 4) is locally Lipschitzian in +, 
then the solution is unique. 

Proof. The proof of this theorem follows the same lines as the proof 
of Theorem 1.1 except all extensions are made to the left of u - Y rather than 
to the right of (I. The assertion of uniqueness is proved in a manner similar 
to the proof of Theorem 1.2. 

If D in (1.1) is atomic at zero and -r on Sz, then Theorems 1.1 and 3.1 
imply for any (a, 4) E Sz, there are a: > 0, fi > 0 and a continuous n-vector 
function x on [u - Y - 01, u + fl] such that x, = 4, D(t, xt) is continuously 
differentiable and satisfies (1 .I) on (u - 01, u + /3). This is the same type of 
result that is known for ordinary differential equations (r = 0). 

Let U be the values of (t, u, (b) E R x R x C for which xt(u, 4) is defined 
and for each (t, u) E R x R, let U(t, u) = (4 E C: (t, u, 4) E U}. Also, define 
qt, 44 = 45 4). 

THEOREM 3.2. Suppose Q is an open set in R x C, D in (1.1) is atomic 
at 0 and -r on 52, and U, U(t, u) are dejined as above. If the functions D, 
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A(t, 4, 0), A(t, 4, -r) of Definition 1.1 are uniform& continuous on closed 
bounded subsets of Sz and f (t, $) is locally Lipschitzian in 4, then the mapping 
T(t, U) : U(t, U) -+ T(t, U) U(t, u) is a homeomorphism. 

Proof. This is a consequence of Theorem 3.1, Theorem 2.3, and the 
extension of Theorem 1.4 to the backward continuation of functions C# by (1.1). 

For RFDE, it is generally impossible to find a solution through (a, 4) 
defined to the left of a. In fact, if such a solution exists on [u - r - 1y, u], 
a > 0, then x must be continuously differentiable on (u - a, u). On the other 
hand, x(u + 0) = +(0) for 0 E (-01,0) and 4 may only be continuous. Even 
if C$ is continuously differentiable, there may not be a solution through (u, 4) 

to the left of u for RFDE. If the differential equation is 

$t) = f (4 %) (3.1) 

it is certainly necessary for f&O) = f (u,+) if a solution of (3.1) exists on 
iIu--erp;o;l 4,~ > 0, through (0, 4). 

THEOREM 3.3. If IR is an open set in R x C, f : Q -+ R” is atomic at 
-r on Q, (u, +) E l2 and there is an OL, 0 < 01 < r such that d(0) is continuous 

for eE[--cu,O],&O> =f(u,d), h th t en ere are an Z > 0 and a unique solution x 
of (3.1) on [U - r - Or, u] through (a, $). 

Proof. A function x is a solution of (3.1) on [u - r - a, u] through (u, 4) 
if and only if x0 = 4, (t, xt) E Q, t E [u - a, u] and 

f(4 4 = w, t E [u - a, u]. (34 

For any a > 0, let 4 : [-r - LY, 0] + E”, J(t) = 4(t), t E e-r, 01, 
J(t) = 4(-r), t E [-r - 01, -r]. Th en x is a solution of (3.2) if and only 
if X(U + t) = J(t) + z(t) and z satisfies 

f(u + t,Jt + 4 = d(t), t E [-a, 01. (3.3) 

If f(t,$ + #> =f(t,$) +h’(t,#W +g(t,$, $1, then the definition of 
the derivative implies that g(t, +,#) is continuous in (t, v, #), g(t, +, 0) = 0 
and 

I g(t, 9, $1 - dt, v-3 a < 0, $2 8) I # - f I, l9Llrl GB 

where d’(t, 4, 16) is continuous in (t, $, /3) for (t, 4) E Q, /? > 0, and c?(t, $, 0) = 
0. If we make use of this in (3.3), then x is a solution of (3.2) if and only if 
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~(0 + t) = 4(t) + z(t) and z(t) satisfies 

f+‘(u + 4 Jt, Zt = -..(u + 4 $t, - A” + 4 4t Y 4 +4(t), 

z, = 0. 

t E 1-9 01, 

(3.4) 

If we let A(t, 4, -r) “z’ B(t, 9) be the function defined in Definition 1.1, 
then x(u + t) = &t) + x(t) is a solution of (3.2) if and only if z(t) satisfies 

z(t) = B-l(u + t,& ] -,y,+ [&J(u + t,$t ,a M3 -fk + tdd 

- g(u + t,+t 9 4 + C(t)/ 9 t E L-2 01, (3.5) 

z, = 0. 

For any p > 0, let B, = (4 E C : 1 (CI 1 < /I}, For any Y, 0 < v < l/4, there 
areol>O,jI>O,suchthat(u+t,$+$)EQ. 

I B-l(fJ + 2, d + $11 QJ + t, + + !A B) < v 

I qu + 4 d + ?4I Y(O + t, d + !A 01, -r) < v 

for (t, #) E [- (II, 0] x B, , where y(t, 4, 01, -7) is defined in Definition 1.1. 
Choose OL, p so that these relations are satisfied. For any nonnegative real 

E, 8, let L-Z+, p) be the set defined by 

Jz?(&,jt7) = (4 E C([-r - 5, 01, q : 5, = 0, et E Bs 9 t E [--or, O]}. 

For any 0 < B < /I, there is an E, 0 < 6 < OL, so that 1 & - 4 1 < 18 - 8, 
tE[--ar,0].Thusj5t+~t--l dB+B-18=Band(o+t,~t+~t)E52 
for t E C--E, 01, 5 E JS?(%, p). Further restrict & so that 

I B-p + t,$t>l * If(u + t,Jt> -f(u,9)1 < vp 

I B-yu + t,$&>1 - I h(O) -&)I < $ 

for t E [-El 01. 
For any 6 E .x2(&, fi), define the transformation 

T : d(oL, ,k?) -+ C([-r - 62, 01, E”) 
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by the relation 

By hypothesis d(O) = f(u, 4) and th ere f ore the fixed points of T in &(&, p) 
coincide with the solutions x of (3.3) on [u - T - ol, u] with x(u + t) = 
$(t) + z(t) where zt E A+, fl), t E [-E, 01. 

We now show that T is a contraction on d&p). It is clear from (3.6) 
and the above restriction on E”;, j that 

IPW) - FW)l G v I l-t - & I + v I 5t - 5t I < 4 I 5t - 5t I 

for all t E [-&, 01, 5, E E &‘(Z, p). Therefore, T : &‘(oI, p) + &(G, p) and T 
is a contraction. Thus, there is a unique fixed point in A+%, p) and this proves 
the theorem. 

Except for the fact that f(t, p) is assumed to have a first derivative in p 
rather than be only locally Lipschitzian, Theorem 3.3 is a generalization of a 
result of Hastings [8]. 

COROLLARY 3.1. Suppose L? is an open set in R x C, f : 12 ---f En is 
continuous and atomic at -r. If T(t, u) : C -+ C, t 3 u, is de$ned by 
T(t, u)+ = q(u, +), then T(t, u) is one-to-one. 

Proof. If the assertion is not true, then there are 4 f + in C and a t, > u 
such that xtl(u, 4) = xt,(u, #>, xt(u, 4) f x&, ~4, 0 < t < tl . If x(t) = 
x(u, N(t), r(t) = xh W), then $4 = f (t, d, j(t) = f (t, rJ for all t > 0 
in the domain of definition of x. Since f is assumed to be atomic at --I, 
Theorem 3.3 implies there are an 01 = a(tl) > 0 and unique solutions of (3.1) 
on [tl - Y - 01, t, - ~1 through PI , q), (4 , rt,)- Since (4 , xt,) = (tI , yt,) 
by hypotheses, it follows that (t, xt) = (t, yt) for t, - 01 < t < t, . This is a 
contradiction and proves the corollary. 

4. RATE OF APPROACH TO ZERO OF SOLUTIONS OF LINEAR EQUATIONS 

In this section, we prove 

THEOREM 4.1. Suppose Sz = (T, c.0) X C, D(t, p), f (t, p) in (1.1) are 
linear in v, there is apositiwe constant k such that 1 D(t, v)l < 1 kl p I, f (t, q I < 
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k 1 y I, (t, 9’) E D and D is unz$.mu’y atomic at 0 and -r on 52. For any (a, ‘p) E Q, 
there is a unique solution x(a, p’) of (1.1) through (a, p’) which exists on (T, co) 
and, if a solution x(t) approaches zero faster than any exponential as t + co, 
then x(t) = 0 for all t E (T, co). 

Proof. The existence and uniqueness of the solution x(u, CJJ) on (T, co) 
follows from the results in Sections 2 and 3. Furthermore, following the same 
arguments as in Lemma II.1 in [5], one can show there are positive constants 
a, b > 0 such that for any u E (T, co), 

1 xt 1 < aeblt-ul 1 x, I, t E (7, a’). 

Suppose x(u) approaches zero faster than any exponential as u -+ co and 
there is a t E (7, co) such that 1 xt / > 0. For any 01 > 0, there is a constant 
K(cx, t) such that I x, 1 < K(o~, t) e-Lur, u E [t, 00). Therefore, for a > t, 

0 < I xt 1 < ae-btK(or, t) e-(=-b)u. 

If (II is chosen such that ~11 > b, then for u sufficiently large, this gives a 
contradiction and proves the theorem. 

The above theorem generalizes a result of Wright [9] for differential- 
difference equations. 

For autonomous linear RFDE, one can prove that no nonzero solution can 
approach zero faster than any exponential as t -+ co provided that f is atomic 
at -r. The basic idea of the proof proceeds in the same manner but requires an 
estimate of the solution at time t in terms of the solution and the derivatives 
of the solution at time u > t. For this case, D. Henry [lo], using properties 
of entire functions, has proved a much stronger result; namely, any solution 
approaching zero faster than any exponential as t + co must be identically 
zero after a fixed time (depending only on the equation and not the solution) 
even when f is not atomic at -r. 

For nonautonomous linear periodic RFDE, examples are known (see [l 1)) 
for which nonzero solutions can approach zero faster than any exponential 
as t ---f co. However, these examples have an f which is not atomic at -r. 
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