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We study the dynamical behavior of the trajectories defined by a
recurrent family of monotone functional differential equations with
infinite delay and concave or sublinear nonlinearities. We analyze
different sceneries which require the existence of a lower solu-
tion and of a bounded trajectory ordered in an appropriate way,
for which we prove the existence of a globally asymptotically sta-
ble minimal set given by a 1-cover of the base flow. We apply
these results to the description of the long term dynamics of a
nonautonomous model representing a stage-structured population
growth without irreducibility assumptions on the coefficient matri-
ces.
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1. Introduction

A large number of mathematical models describing different phenomena in engineering, biology,
economics and other applied sciences present some monotonicity properties with respect to the
state argument, which permits to apply the theory of monotone dynamical systems to their anal-
ysis. When some additional physical conditions occur, the increasing rate of the vector field which
defines the differential equation decreases (or increases) as the state argument increases, so that the
model exhibits concave (or convex) nonlinearities. There are also well-known phenomena in applied
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sciences for which only positive state arguments make sense, and for which the dynamics can be
essentially described by a sublinear vector field. Sublinear, concave and convex monotone semiflows
have been extensively studied in the literature. The works of Krasnoselskii [20,21], Hirsch [17,18],
Selgrade [31], Smith [35], Takáç [36], Krause and Ranft [23], Krause and Nussbaum [22], Zhao and
Jing [40], Freedman and Zhao [13], and references therein, provide a basic theory for autonomous and
periodic monotone differential equations with concave or sublinear nonlinearities as well as for their
discrete analogs. It is important to note that their proofs of the existence of a constant or periodic so-
lution which is globally asymptotically stable require some conditions of strong monotonicity, strong
concavity or strong sublinearity.

More recently, Zhao [39], Jiang and Zhao [19], Novo, Obaya and Sanz [26], and Novo, Núñez and
Obaya [25] have obtained versions of this result valid for recurrent nonautonomous monotone differ-
ential equations. All these papers make use of a skew-product formulation which requires a compact
minimal flow on the base and an ordered normal Banach space on the fiber. In [39] and [19], the
authors study sublinear monotone differential equations and use methods of topological dynamics as
well as the properties of the part metric in the interior of the positive cone. In [26] and [25] convex
monotone functional differential equations with finite delay are considered, and methods of differen-
tiable dynamics are applied in order to prove the exponential stability of the recurrent solutions by
means of an ergodic representation theorem. We point out that in [25] the strong condition required
for the global stability relies on the existence of a strong semiequilibrium instead of on the strong
monotonicity or strong concavity of the semiflow. The bases for an alternative monotone theory for
random dynamical systems are established by Arnold and Chueshov [4,5] and Chueshov [8].

In this paper we give a version of the result above mentioned, valid for recurrent monotone func-
tional differential equations with infinite delay and concave or sublinear nonlinearities. In the line of
the results of Novo, Obaya and Sanz [27] and Muñoz, Novo and Obaya [24], the fiber of our phase
space is the set BU of the bounded and uniformly continuous m-dimensional functions on the nega-
tive half-line, endowed with the supremum norm. Under natural conditions on the vector field, every
bounded trajectory is relatively compact for the compact-open topology, and its omega limit set ad-
mits a flow extension. When the vector field satisfies a quasimonotone condition and is concave or
sublinear with respect to its state argument, the solutions of the functional differential equation de-
fine a monotone and concave or sublinear semiflow on BU. But there is an important difference with
respect to those types of semiflows considered in the previous works before cited: since every tra-
jectory always remembers its whole past, this semiflow satisfies neither a strong monotonicity nor a
strong nonlinearity condition. For this reason we formulate the conditions of concavity or sublinearity
on the vector field instead of on the semiflow. Similarly, the definitions of lower solution and strong
lower solution, which are natural concepts in this monotone setting, can be also given in terms of
the vector field. Roughly speaking, a lower solution is a solution of a differential inequality, and it
determines a positively invariant region of the phase space which is relevant from a dynamical point
of view.

We begin by analyzing the dynamics in the concave case. For it, we describe two different dynam-
ical sceneries which allow us to prove the existence, on the positively invariant region determined by
a lower solution, of a minimal set given by a globally asymptotically stable copy of the base flow. The
first one requires the vector field to be concave, the lower solution to be strong, and the existence of
a bounded trajectory which is above the graph of the lower solution. In the second scenery, the vector
field is strongly concave, and the bounded trajectory whose existence we assume must be strongly
above the graph of the lower solution. Then we prove that the second one of these sceneries has an
analogue in the sublinear situation: the existence of a minimal set given by a globally asymptotically
stable copy of the base flow is guaranteed by the assumptions of strong sublinearity of the vector
field and the existence of a strongly positive bounded semiorbit. In particular, these hypotheses mean
that the null function is a lower solution. Note that the results are optimal in the general settings we
consider: when the delay is infinite, asymptotical stability does not imply exponential stability, even
under some differentiability assumptions.

We apply the previous results to establish the existence of a unique positive recurrent attracting
solution for a nonautonomous version of some population dynamics models, intensively analyzed in
the literature. Different mathematical models representing stage-structured population growth are for-
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mulated and analyzed using methods of the theory of autonomous monotone differential equations
by Aiello and Freedman [1], Freedman and Wu [12], Aiello, Freedman and Wu [2], Wu, Freedman
and Miller [38], and Freedman and Peng [11], among others. Following [38] we consider a popula-
tion growth model of a single species with dispersal in a multi-patch environment, assuming that
the life of the individuals crosses an immature stage before reaching the matureness, and that this
second stage is the only one in which reproduction is possible. We allow the presence of a stochastic
component to determine the maturation period, so that an infinite delay element appears in the evo-
lution equations. The fundamental difference in our approach concerns the birth and death rates as
well as the net exchange rates among different patches: we assume them to be recurrent, bounded
and uniformly continuous functions instead of constants. In addition, we suppress an irreducibility
condition, used in the previous models in order to obtain a kind of strongly monotone semiflow. Ob-
viously, a more realistic model is obtained in this way. And in this case we can go further than in
the general one. The physical conditions on this problem allow us to define the vector field and to
study the corresponding trajectories in a standard fading memory Banach space. The restriction of
the norm topology of this space to the closure of a solution which is globally defined and bounded
agrees with the compact-open topology, and we can apply the spectral theory for infinite-dimensional
linear skew-product semiflows developed by Chow and Leiva [6,7] and Sacker and Sell [30] in order
to deduce the exponential stability of the positive recurrent solution previously found.

Let us sketch the remaining pages of this paper. In Section 2, after explaining the type of infinite
delay functional differential equations we work with, we state and prove the main results of the
paper under concavity assumptions, concerning the existence of a unique equilibrium with strong
properties of attraction. The same result is proved in Section 3 in the case of a strongly sublinear
vector field. Sections 4 and 5 contain the application of this result to the nonautonomous stage-
structured population growth model. In the first one we apply our results to show the existence of
nonautonomous equilibria with some properties of asymptotic attraction for both the mature and
immature populations, while the last section refines the attractivity result showing that in fact the
convergence is of exponential type.

Finally, we close the introduction by recalling some standard concepts and basic results of topo-
logical dynamics.

Let Ω be a complete metric space. A (real and continuous) global flow on Ω is a continuous map
σ : R×Ω → Ω , (t,ω) �→ σ(t,ω) satisfying σ0 = Id and σt+s = σt ◦σs for each s, t ∈ R, where σt(ω) =
σ(t,ω). By replacing R by R+ = {t ∈ R | t � 0}, we obtain the definition of a (real and continuous)
global semiflow on Ω . When the map σ is defined, continuous, and satisfies the previous properties
on an open subset of R × Ω (resp. R+ × Ω) containing {0} × Ω , we talk about a local flow (resp. local
semiflow).

Let (Ω,σ ,R) be a global flow. The orbit of the point ω is {σt(ω) | t ∈ R}. A subset Ω1 ⊂ Ω is σ -
invariant if σt(Ω1) = Ω1 for every t ∈ R. A σ -invariant subset Ω1 ⊂ Ω is minimal if it is compact and
does not contain properly any other compact σ -invariant set, which is equivalent to saying that the
orbit of any one of its elements is dense in it. The continuous flow (Ω,σ ,R) is recurrent or minimal
if Ω itself is minimal.

In the case of a semiflow (Ω,σ ,R+), we call (positive) semiorbit of ω ∈ Ω to the set {σt(ω) | t � 0};
a subset Ω1 of Ω is positively σ -invariant if σt(Ω1) ⊂ Ω1 for all t � 0; a positively σ -invariant subset
K ⊂ Ω is minimal if it is compact and it does not contain properly any closed, positively σ -invariant
subset; and (Ω,σ ,R+) is a minimal semiflow if Ω itself is minimal.

A flow extension of the semiflow (Ω,σ ,R+) is a continuous flow (Ω, σ̃ ,R) such that σ̃ (t,ω) =
σ(t,ω) for each ω ∈ Ω and t � 0. A compact positively σ -invariant subset admits a flow extension if
the restricted semiflow does. Actually, as proved by Shen and Yi [32], a positively σ -invariant compact
set K admits a flow extension if every point in K admits a unique backward orbit which remains
inside the set K . A backward orbit of a point ω ∈ Ω is a continuous map ψ : R− → Ω such that
ψ(0) = ω and for each s � 0 it is σ(t,ψ(s)) = ψ(s + t) whenever 0 � t � −s.

Finally, if the semiorbit of ω0 ∈ Ω for the semiflow σ is relatively compact, we can consider the
omega limit set of ω0, given by those points ω ∈ Ω such that ω = limn→∞ σ(tn,ω0) for some sequence
(tn) ↑ ∞. The omega limit set is nonempty, compact, connected and positively σ -invariant, and each
one of its points admits a backward orbit inside this set.
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The reader can find the basic properties on topological dynamics here summarized in Ellis [9],
Sacker and Sell [28], Shen and Yi [32] and references therein.

2. Concave monotone differential equations with infinite delay

Let σ : R × Ω → Ω , (t,ω) �→ σ(t,ω) ≡ ω · t be a real continuous global flow on a compact metric
space Ω . Throughout the paper we assume this flow to be minimal. We will work with a family of
infinite delay differential equations defined along the σ -orbits under some fundamental monotonicity
and concavity or sublinearity assumptions. The order in the phase space, that we are describing in
what follows, relies on the usual partial strong order relation in Rm ,

v � w ⇐⇒ v j � w j for j = 1, . . . ,m,

v < w ⇐⇒ v � w and v j < w j for some j ∈ {1, . . . ,m},
v  w ⇐⇒ v j < w j for j = 1, . . . ,m,

where v j represents the jth component of any point v ∈ Rm . We work with the maximum norm
in Rm , ‖v‖ = max j=1,...,m |v j |, which is monotone for this ordering: 0 � v � w ⇒ ‖v‖ � ‖w‖. The
relations �, >, � are defined in the obvious way.

We endow the set X = C((−∞,0],Rm) with the compact-open topology, i.e., the topology of uni-
form convergence over compact subsets. Then X is a Fréchet space and the topology is equivalent to
the metric topology given by the distance

d(x, y) =
∞∑

n=1

1

2n

|x − y|n
1 + |x − y|n , x, y ∈ X,

for the nondecreasing family of seminorms |x|n = sups∈[−n,0] ‖x(s)‖, with n ∈ N. Let BU ⊂ X be the
Banach space

BU = {x ∈ X | x is bounded and uniformly continuous}

endowed with the supremum norm ‖x‖∞ = sups∈(−∞,0] ‖x(s)‖. The positive cone

BU+ = {
x ∈ BU

∣∣ x(s) � 0 for each s ∈ (−∞,0]}
(with nonempty interior) defines a partial strong order relation on BU, given by

x � y ⇐⇒ x(s) � y(s) for each s ∈ (−∞,0],
x < y ⇐⇒ x � y and x �= y,

x  y ⇐⇒ ∃δ > 0 with x � y − δ J , (2.1)

for which the norm in BU is also monotone. The symbol J represents either the vector (1,1, . . . ,1)

of Rm or the constant map (−∞,0] → Rm , s �→ (1,1, . . . ,1) of BU. Again we define relations �, >,
� in the obvious way. To complete the notation, we denote Br = {x ∈ BU | ‖x‖∞ � r} for r > 0.

In what follows we will work with BU endowed with the norm ‖ · ‖∞ as well as with the metric
topology as a subset of X . We will write BUd when this second topology is considered. Similarly, the
symbol limd

n→∞ will represent either convergence in BUd or in Ω × BUd .
As said in the introduction, this section is devoted to the concave monotone case. Let us describe

the family of nonautonomous infinite delay functional differential equations we work with. As usual,
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given a negative half-line I ⊂ R, a point t ∈ I , and a continuous function z : I → Rm , zt will denote
the element of X defined by zt(s) = z(t + s) for s ∈ (−∞,0]. Our equations are

z′(t) = F (ω · t, zt), t � 0, ω ∈ Ω, (2.2)

with F : Ω × BU → Rm , (ω, x) �→ F (ω, x). Several conditions of the following list will be assumed
on F :

(C1) F is continuous on Ω × BU (considering the norm topology on BU),
(C2) there exists the linear differential operator Fx : Ω × BU → L(BU,Rm) and it is continuous (con-

sidering the norm ‖ · ‖∞ in BU and the associated one in L(BU,Rm), also denoted by ‖ · ‖∞),
(C3) for each r > 0, F (Ω × Br) is a bounded subset of Rm and Fx(Ω × Br) is a bounded subset of

L(BU,Rm),
(C4) for each r > 0, the function Ω × Bd

r → Rm , (ω, x) �→ F (ω, x) is continuous (i.e., if limn→∞ ωn = ω
and limd

n→∞ xn = x with xn, x ∈ Br , then limn→∞ F (ωn, xn) = F (ω, x)),
(C5) for each r1 > 0 and r2 > 0, the function Ω × Bd

r1
× Bd

r2
→ Rm , (ω, x, v) �→ Fx(ω, x)v is continuous

(i.e., limn→∞ ωn = ω, limd
n→∞ xn = x with xn, x ∈ Br1 and limd

n→∞ vn = v with vn, v ∈ Br2 , imply
limn→∞ Fx(ωn, xn)vn = Fx(ω, x)v),

(C6) quasimonotone condition: if x1, x2 ∈ BU with x1 � x2 and (x1) j(0) = (x2) j(0) holds for some
j ∈ {1, . . . ,m}, then F j(ω, x1) � F j(ω, x2) for each ω ∈ Ω ,

(C7) concavity condition: if x1, x2 ∈ BU with x1 � x2, then Fx(ω, x2)(x2 − x1) � F (ω, x2) − F (ω, x1) �
Fx(ω, x1)(x2 − x1) for each ω ∈ Ω (which, since F is differentiable, is equivalent to F (ω,λx1 +
(1 − λ)x2) � λF (ω, x1)+ (1 − λ)F (ω, x2) for each (ω, x) ∈ Ω × BU and λ ∈ [0,1]; see Amann [3]),

(C8) strong concavity condition: if x1, x2 ∈ BU with x1  x2, Fx(ω, x2)(x2 − x1)  F (ω, x2) − F (ω, x1)

for each ω ∈ Ω .

Note that F (ωn, xn) − F (ω, x) = ∫ 1
0 Fx(ωn, λxn + (1 − λ)x)(xn − x)dλ + F (ωn, x) − F (ω, x), and hence

condition (C4) follows from (C1), (C3) and (C5).
Condition (C1) and the local Lipschitz character of F with respect to x guaranteed by (C2) and (C3)

ensure that for each ω ∈ Ω and each x ∈ BU there exists a unique function z(·,ω, x) : (−∞,α) → Rm

which solves Eq. (2.2) for t ∈ [0,α), which is maximal in the sense that it cannot be extended to α,
and which satisfies z(s,ω, x) = x(s) for each s ∈ (−∞,0]. Note that α = α(ω, x). If in addition the
solution is bounded (i.e., if supt∈(−∞,α) ‖z(t,ω, x)‖ < ∞), then α = ∞. (See Hale and Kato [14] and
Hino, Murakami and Naito [16].) We define u(·,ω, x) : [0,α) → BU by u(t,ω, x)(s) = z(t + s,ω, x) for
s ∈ (−∞,0] and note that the family (2.2) induces a local skew-product semiflow

τ : R+ × Ω × BU → Ω × BU, (t,ω, x) �→ (
ω · t, u(t,ω, x)

)
.

It is proved in Novo, Obaya and Sanz [27] that, under conditions (C1)–(C3), a bounded τ -semiorbit
{(ω0 · t, u(t,ω0, x0)) | t � 0} has a well-defined omega limit set for the product metric, namely

K =
{
(ω, x) ∈ Ω × BU

∣∣∣ ∃(tn) ↑ ∞ with (ω, x) = lim
n→∞

d (
ω0 · tn, u(tn,ω0, x0)

)}
,

and in addition K is compact in Ω × BUd . When condition (C4) is also assumed, the restriction of the
semiflow τ to K is continuous for the product metric, K is a positively τ -invariant set, and it admits
a flow extension, which is also continuous. In particular, u(t,ω, x) is defined for every t ∈ R and every
(ω, x) ∈ K .

From now on we assume conditions (C1)–(C5) on F . Let y(·,ω, x, v) : (−∞,α) → Rm (with α =
α(ω, x)) be the unique solution of the variational equation along the semiorbit of (ω, x)

y′(t) = Fx
(
ω · t, u(t,ω, x)

)
yt (2.3)
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satisfying y(s,ω, x, v) = v(s) for every s ∈ (−∞,0]. If whenever it makes sense we denote
by ux(t,ω, x) ∈ L(BU,BU) the linear differential operator with respect to x, it turns out that
(ux(t,ω, x)v)(s) = y(t + s,ω, x, v), s ∈ (−∞,0], t ∈ (0,α). The proof of this result can be found in
Hale and Verduyn Lunel [15] for equations with finite delay, and it also works in the infinite de-
lay case. Note that hypothesis (C2) on F ensures the continuity of the map Ω × BU × BU → Rm ,
(ω, x, v) �→ Fx(ω, x)v , which is linear in v . In other words, the coefficient function of the family of
Eqs. (2.3) satisfies condition (C1), while the linearity of the map with respect to its state argument v
ensures that it also satisfies conditions (C2)–(C5) and (C7) (replacing Ω by Ω × BU). In particular, the
cocycle property also holds for ux , now over the flow τ on Ω × BU; that is, for every (ω, x) ∈ Ω × BU,

ux(t1 + t2,ω, x) = ux
(
t1, τ (t2,ω, x)

) ◦ ux(t2,ω, x) (2.4)

for those values of t1 and t2 for which all the terms are defined. Note finally that the quasimonotone
hypothesis (C6) of F (ω, x) with respect to x ensures the analogous property for Fx(ω, x)v with respect
to v , and that the strong concavity condition (C8) never holds for (2.3).

As said before, the conditions we will impose ensure the monotonicity and concavity of the
semiflow τ , as shown in the next lemma. Although the proof is standard, a sketch is included. The in-
terested reader can find in Wu [37], Smith [34], Arnold and Chueshov [4,5], Jiang and Zhao [19], Novo,
Obaya and Sanz [26] and references therein the basic properties of monotone and concave (or convex)
semiflows.

Lemma 2.1. Assume that conditions (C1)–(C5) on F hold. Then,

(i) under condition (C6) the semiflow τ is monotone; that is, for each ω ∈ Ω and x1, x2 ∈ BU with x1 � x2
it holds that u(t,ω, x1) � u(t,ω, x2) for those values of t � 0 for which both terms are defined. Conse-
quently, ux(t,ω, x1)v � 0 for every v � 0 whenever it is defined.

(ii) Under conditions (C6) and (C7), the semiflow τ is concave; that is, for each ω ∈ Ω and x1, x2 ∈ BU with
x1 � x2 ,

ux(t,ω, x2)(x2 − x1) � u(t,ω, x2) − u(t,ω, x1) � ux(t,ω, x1)(x2 − x1) (2.5)

for those values of t � 0 for which all the terms are defined.

Proof. (i) It is well known (see e.g. [37,34]) that the quasimonotone condition (C6) implies the mono-
tonicity of the semiflow. The positiveness of the differential operators ux(t,ω, x) is an immediate
consequence of this property under the presence of differentiability conditions (not required for the
monotonicity).

(ii) Arguing as in Novo, Obaya and Sanz [26], we prove that the semiflow inherits the concavity of
the map F : for those t � 0 for which all the terms are defined,

u
(
t,ω,λx1 + (1 − λ)x2

)
� λu(t,ω, x1) + (1 − λ)u(t,ω, x2)

for any λ ∈ [0,1], ω ∈ Ω and x, y ∈ BU with x � y. The differentiability of the map u(t,ω, x) with
respect to x makes this inequality equivalent to (2.5) (see [3]). �

As explained in the introduction, we are interested in establishing conditions ensuring the exis-
tence of a nonautonomous equilibrium (a metric copy of the base) with strong attracting properties.
These conditions are based on the existence of a lower solution or a strong lower solution.

Definition 2.2. A metric copy of the base for τ is a τ -positively invariant compact set K ⊂ Ω × BUd

which agrees with the graph of a continuous function e : Ω → BUd: K = {(ω, e(ω)) | ω ∈ Ω}. In partic-
ular, the semiflow admits a flow extension on K and the map e is τ -invariant: e(ω · t) = u(t,ω, e(ω))

for every t ∈ R and ω ∈ Ω .
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Remarks 2.3. (1) As a consequence of this invariance condition, e(ω)(t + s) = e(ω · t)(s) for every
s ∈ (−∞,0], t ∈ (−∞,−s] and ω ∈ Ω . It is also clear that the minimality of the base flow guarantees
that a metric copy of the base is minimal for the restriction of the semiflow to it.

(2) The function e is a continuous equilibrium for τ in the language of Chueshov [8], Novo, Núñez
and Obaya [25] and Novo, Obaya and Sanz [27]. So that when giving conditions which ensure the
existence of a metric copy of the base we are in fact describing situations in which a continuous
nonautonomous equilibrium exists.

Definition 2.4. Let ã : Ω → Rm be a continuous function. We say that ã is C1 along the σ -orbits if for
every ω ∈ Ω the function R → Rm , s �→ ã ′(ω · s) = (d/dt )̃a(ω · (s + t))|t=0 exists and is continuous. We
say that ã is a lower solution for the family of Eqs. (2.2) if it is C1 along the σ -orbits and the function
a : Ω → BU given by a(ω)(s) = ã(ω · s) for s ∈ (−∞,0] satisfies that u(t,ω,a(ω)) is defined for any
t � 0 and that ã ′(ω) � F (ω,a(ω)) for every ω ∈ Ω . We say that a lower solution ã : Ω → Rm is strong
if ã ′(ω)  F (ω,a(ω)) for every ω ∈ Ω .

Remarks 2.5. (1) The continuity of the lower solution ã : Ω → Rm ensures that the map a : Ω → BUd

is well defined, continuous and norm-bounded.
(2) The idea of lower solution is closely related to the idea of subequilibrium appearing in [8,25,27].

In fact, the function a : Ω → BU satisfies

a(ω · t) � u
(
t,ω,a(ω)

)
for every ω ∈ Ω and t � 0.

This assertion follows easily from a standard comparison argument for equations satisfying the quasi-
monotone condition (C6). See for instance the proof of Proposition 4.4(i) of [25]. However, the concept
of semiequilibrium is more general: there exist subequilibria not associated to lower solutions. In the
case of infinite delay, the subequilibrium defined from a strong lower solution is not strong in the
sense of [25]. However it inherits from the strong character of the lower solution the properties we
need to prove the first result of this section.

Theorem 2.6. Assume that conditions (C1)–(C7) hold and a strong lower solution ã : Ω → Rm exists. Assume
also the existence of a subset K ⊂ Ω × BU satisfying

(k1) K is compact in Ω × BUd ,
(k2) K is positively τ -invariant and the restriction of the semiflow τ to K admits a flow extension,
(k3) K is “above a”: a(ω) � x for any (ω, x) ∈ K .

Then K is a metric copy of the base and the unique set satisfying these properties.
In addition, all the semiorbits corresponding to initial data (ω, x) with a(ω) � x are globally defined

and approach asymptotically K in Ω × BUd; i.e., if K = {(ω, e(ω)) | ω ∈ Ω}, then limt→∞ d(e(ω · t),
u(t,ω, x)) = 0.

Proof. Note that the compactness of K in Ω × BUd and the fact that it admits a flow extension
imply the existence of r > 0 such that K ⊂ Ω × Br : the compactness of {x(0) | (ω, x) ∈ K } in Rm

provides r > 0 with ‖x(0)‖ � r for every (ω, x) ∈ K . Now given (ω, x) ∈ K and s ∈ (−∞,0] we have
(ω · s, u(s,ω, x)) ∈ K and x(s) = u(s,ω, x)(0). Corollary 4.3 of [27] then shows the continuity of the
restriction of τ to K in the product metric.

Note also that, in fact, K is “strongly above a”: there exists δ > 0 such that a(ω) + δ J � x for any
(ω, x) ∈ K . This follows from the equality x(s) − a(ω)(s) = u(s,ω, x)(0) − a(ω · s)(0) for any (ω, x) ∈ K
and s ∈ (−∞,0] (due to the flow extension in K ), from the continuity on Ω × BUd of the map
K → Rm , (ω, x) �→ x(0) − a(ω)(0) (see Remark 2.5(1)), and from the fact that the image of every
point is strongly positive (and hence larger than δ J for a δ > 0), which we check by contradiction
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using that a is a strong lower solution: if there is (ω∗, x∗) ∈ K and j ∈ {1, . . . ,m} with 0 = x∗
j (0) −

a j(ω
∗)(0) = z j(0,ω∗, x∗) − ã j(ω

∗), since ã ′
j(ω

∗) < F j(ω
∗,a(ω∗)) � F j(ω

∗, x∗) = z′
j(0,ω∗, x∗), we find

that ã j(ω
∗ · l) > z j(l,ω∗, x∗) for some l < 0, contradicting (k3).

We begin by proving that the family

D = {
ux(t,ω, x) J

∣∣ t � 0 and (ω, x) ∈ K
}

(2.6)

is relatively compact in BUd . On the one hand, it is uniformly bounded: according to Lemma 2.1 and
Remark 2.5(2), given any t � 0 and (ω, x) ∈ K (with a(ω) + δ J � x, as just checked),

0 � δux(t,ω, x) J � ux(t,ω, x)
(
x − a(ω)

)
� u(t,ω, x) − u

(
t,ω,a(ω)

)
� u(t,ω, x) − a(ω · t);

hence, from the boundedness of K and a (see Remark 2.5(1)), we conclude that there exists a
common k > 0 such that 0 � ux(t,ω, x) J � k J . The monotonicity of the norm in BU proves the
uniform boundedness. On the other hand, D is equicontinuous: if y(t,ω, x, J ) = (ux(t,ω, x) J )(0) rep-
resents the solution of the corresponding equation (2.3), then (ux(t,ω, x) J )(s) = y(t + s,ω, x, J ), with
y(t + s,ω, x, J ) = J if t + s � 0 (so that its derivative is zero for s ∈ (−∞,−t−]) and∥∥(d/ds)y(t + s,ω, x, J )

∥∥ = ∥∥Fx
(
τ (t + s,ω, x)

)(
ux(t + s,ω, x) J

)∥∥ � lk

for s ∈ [−t+,∞), where l = sup(ω,x)∈Ω×Br
‖Fx(ω, x)‖∞ , finite by condition (C3). Arzelà–Ascoli theorem

and the fact that the closure of D in metric remains in BU, easily deduced, prove the assertion.
The main step of this proof is to check that

lim
t→∞ y(t,ω, x, J ) = 0 uniformly in (ω, x) ∈ K . (2.7)

This property will follow easily once we have proved that O ⊆ K × {0}, where

O =
{
(ω, x, v) ∈ K × BU

∣∣∣ ∃(tn) ↑ ∞ and
(
(ωn, xn)

) ⊂ K

with (ω, x, v) = lim
n→∞

d (
τ (tn,ωn, xn), ux(tn,ωn, xn) J

)}
. (2.8)

Here limd means that the sequences (u(tn,ωn, xn)) and (ux(tn,ωn, xn) J ) converge in BUd . Note that,
since D is relatively compact, O is a nonempty subset of K × BU. Clearly, O is compact in K × BUd .
The boundedness of D and condition (C5) ensure that the restriction of the semiflow

φ : R+ × K × BU → K × BU, (t,ω, x, v) �→ (
τ (t,ω, x), ux(t,ω, x)v

)
to O is continuous for the product metric (see Corollary 4.3 in [27]). In particular, O is positively
φ-invariant. Besides, it admits a flow extension, since any one of its points admits a unique backward
orbit. The uniqueness is due to the infinite delay, while the existence is checked as follows: a point
(ω, x, v) ∈ O is the limit in the product metric of a sequence (φ(tn,ωn, xn, J )) with ((ωn, xn)) ⊂ K and
(tn) ↑ ∞. Given s > 0 we consider the sequence (φ(tn − s,ωn, xn, J )), assuming without restriction
that tn − s > 0 for every n. The compactness of K and the relatively compactness of D ensure the
existence of a subsequence, say (φ(t j − s,ω j, x j, J )), which converges in Ω × BUd × BUd to the point
(ω∗, x∗, v∗). Then φ(s,ω∗, x∗, v∗) = (ω, x, v).

We reason by contradiction assuming that O � K × {0}. The map

h : O → R, (ω, x, v) �→ sup
1� j�m

v j(0)

x j(0) − ã j(ω)
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is well defined (recall that x(0)− ã(ω) = x(0)−a(ω)(0) � δ J � 0), nonnegative and continuous. Hence
it reaches its maximum value α̃ at a point (ω̃, x̃, ṽ) ∈ O . Our contradiction hypothesis means that
α̃ > 0. We assume without restriction that α̃ = ṽ1(0)/( x̃1(0) − ã1(ω̃)). Now, for j = 1, . . . ,m, we
take α j(t) as the real number satisfying y j(t, ω̃, x̃, ṽ) = α j(t)(z j(t, ω̃, x̃ ) − ã j(ω̃ · t)). As seen before,
α j is defined for every t ∈ R, and it is clearly a C1 function. Note also that α̃ = α1(0) = max{α j(t) |
1 � j � m, t ∈ R}. However, as we are going to prove, α′

1(0) < 0, which gives the contradiction we
search.

The differential equations (2.3) and (2.2) respectively satisfied by y(t, ω̃, x̃, ṽ) and z(t, ω̃, x̃ ) show
that y′

1(0, ω̃, x̃, ṽ) = (Fx(ω̃, x̃ ))1 ṽ and z′
1(0, ω̃, x̃ ) = F1(ω̃, x̃ ). Therefore

α′
1(0)

(
x̃1(0) − a1(ω̃)(0)

) = (
Fx(ω̃, x̃ )

)
1 ṽ − α̃

(
F1(ω̃, x̃ ) − ã ′

1(ω̃)
)
. (2.9)

The fact that ã is a strong lower solution and the concavity condition (C7) provide

α̃
(

F1(ω̃, x̃ ) − ã ′
1(ω̃)

)
> α̃

(
F1(ω̃, x̃ ) − F1

(
ω̃,a(ω̃)

))
�

(
Fx(ω̃, x̃ )

)
1

(
α̃

(
x̃ − a(ω̃)

))
�

(
Fx(ω̃, x̃ )

)
1 ṽ. (2.10)

To check the last inequality, note first that (C6) ensures that (Fx(ω̃, x̃ )) j w � 0 whenever w � 0 and
w j(0) = 0; and second that w̃ = α̃( x̃ − a(ω̃)) − ṽ satisfies

w̃1(0) = α̃
(

x̃1(0) − ã1(ω̃)
) − ṽ1(0) = 0,

w̃ j(s) = α̃
(

x̃ j(s) − ã j(ω̃ · s)
) − ṽ j(s) � α j(s)

(
z j(s, ω̃, x̃ ) − ã j(ω̃ · s)

) − ṽ j(s)

= y j(s, ω̃, x̃, ṽ) − ṽ j(s) = 0 for every s ∈ (−∞,0] and 1 � j � m.

Combining (2.9) and (2.10) we conclude that α′
1(0) < 0. Assertion (2.7) is proved.

Now we can complete the proof of the first two assertions. Let k1,k2 ∈ R satisfy k1 J � x � k2 J for
every (ω, x) ∈ K . Then, by Lemma 2.1, for t > 0,

0 � z(t,ω,k2 J ) − z(t,ω, x) �
(
ux(t,ω, x)(k2 J − x)

)
(0)

�
(
ux(t,ω, x)

(
(k2 − k1) J

))
(0) = (k2 − k1)y(t,ω, x, J ).

The last term is bounded for every t as a consequence of (2.7). Consequently the monotonicity of the
norm in Rm and the boundedness of z(t,ω, x) for (ω, x) ∈ K ensure that z(t,ω,k2 J ) is bounded and
hence defined for every t > 0. Then, again by (2.7),

lim
t→∞

(
z(t,ω,k2 J ) − z(t,ω, x)

) = 0 uniformly in (ω, x) ∈ K .

Given any � > 0 we take t∗ > 0 such that ‖z(t,ω,k2 J ) − z(t,ω, x)‖ � � for every t � t∗ and
every (ω, x) ∈ K . We take now (ω, x1), (ω, x2) ∈ K and fix s ∈ (−∞,0]. Then ‖x1(s) − x2(s)‖ =
‖z(t∗,ω · (−t∗ + s), u(−t∗ + s,ω · (−t∗ + s), x1))− z(t∗,ω · (−t∗ + s), u(−t∗ + s,ω · (−t∗ + s), x2))‖ � 2�.
Hence x1 = x2, from where we deduce that K is a metric copy of the base. The same argument
precludes the existence of a set with properties (k1), (k2) and (k3) and different from K .

Let e : Ω → BU be the map satisfying K = {(ω, e(ω)) | ω ∈ Ω}. Take now (ω0, x0) ∈ Ω × BU with
x0 � a(ω0). We first prove that z(t,ω0, x0) is defined for every t ∈ R: choose k3 ∈ R such that x0 � k3 J
and e(ω) � k3 J for every ω ∈ Ω , and recall that, as seen before, z(t,ω0,k3 J ) is defined for every
t ∈ R; then, if t � 0,

ã(ω0 · t) � z
(
t,ω0,a(ω0)

)
� z(t,ω0, x0) � z(t,ω0,k3 J ),
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from where the assertion follows easily. Let K1 be the omega limit set of (ω0, x0) in Ω ×BUd , and take
(ω, x) ∈ K1. Then (ω, x) = limd

n→∞(ω0 · tn, u(tn,ω0, x0)) for a sequence (tn) ↑ ∞. By Remark 2.5(2) and
Lemma 2.1,

a(ω0 · tn) � u
(
tn,ω0,a(ω0)

)
� u(tn,ω0, x0),

and hence the continuity of a ensures that a(ω) � x. Consequently, the set K1 satisfies conditions (k1),
(k2) and (k3). By the uniqueness before checked, K1 = K . From here it follows easily the asymptotical
convergence stated in the theorem, whose proof is hence complete. �

The strong character of the lower solution required in the previous theorem can be replaced by
the strong concavity condition of the vector field F , as the next result shows.

Theorem 2.7. Assume that conditions (C1)–(C8) hold and a lower solution ã : Ω → Rm exists. Assume also
the existence of a subset K ⊂ Ω × BU satisfying

(k1) K is compact in Ω × BUd ,
(k2) K is positively τ -invariant and the restriction of the semiflow τ to K admits a flow extension,
(k̃3) K is “strongly above a”: a(ω)  x for any (ω, x) ∈ K .

Then K is a metric copy of the base and the unique set satisfying these properties.
In addition, all the semiorbits corresponding to initial data (ω, x) with a(ω)  x are globally defined and

approach asymptotically K in Ω × BUd .

Proof. The proof of the first assertion is almost identical to the one of Theorem 2.6: checking the
existence of δ > 0 with a(ω) + δ J � x for every (ω, x) ∈ K is easier, and the strict inequality in the
chain of inequalities (2.10) is now the second instead of the first. The proof of the second assertion
starts by taking (ω0, x0) ∈ Ω × BU with x0 � a(ω0) and is identical to the corresponding proof in
Theorem 2.6 except for the way of checking that the omega limit set K1 satisfies condition (k̃3). We
look for λ ∈ [0,1) such that x0 � λa(ω0) + (1 − λ)e(ω0). Then, the monotonicity and the concavity of
the semiflow (see Lemma 2.1 and its proof) and Remark 2.5(2) allow us to ensure that for any t > 0,

u(t,ω0, x0) � u
(
t,ω0, λa(ω0) + (1 − λ)e(ω0)

)
� λa(ω0 · t) + (1 − λ)e(ω0 · t)

and

u(t,ω0, x0) − a(ω0 · t) � (1 − λ)
(
e(ω0 · t) − a(ω0 · t)

)
� (1 − λ)δ J .

Hence, the definition of K1 and the continuity of a ensure that a(ω) + (1 − λ)δ J � x for every
(ω, x) ∈ K1, and (k̃3) is satisfied. �
Remark 2.8. One defines upper solution and strong upper solution in an analogous way. In fact, Theo-
rems 2.6 and 2.7 can be symmetrically formulated and proved in the case of existence of an upper
solution if the concavity conditions on F are replaced by their convex analogs.

3. Sublinear monotone differential equations with infinite delay

The purpose of this section is to analyze the conditions ensuring the existence of a unique (and
asymptotically stable) copy of the base when the concavity hypotheses are replaced by some sublin-
earity properties. So that from now on we keep the hypotheses on the base flow and work with the
family of equations

z′(t) = F (ω · t, zt), t � 0, ω ∈ Ω, (3.1)
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with the function F : Ω × BU+ → Rm , (ω, x) �→ F (ω, x) satisfying the following list of conditions. We
denote B+

r = Br ∩ BU+ .

(S1) F is continuous on Ω × BU+ (considering the norm topology on BU), and F (ω,0) � 0 for every
ω ∈ Ω ,

(S2) there exists the linear differential operator Fx : Ω × Int BU+ → L(BU,Rm) and it is continuous
(considering the norm ‖ · ‖∞ in BU and the associated one in L(BU,Rm)),

(S3) for each r > 0, F (Ω × B+
r ) is a bounded subset of Rm and Fx(Ω × Int B+

r ) is a bounded subset
of L(BU,Rm),

(S4) for each r > 0, the function Ω× B+d
r → Rm , (ω, x) �→ F (ω, x) is continuous (i.e., if limn→∞ ωn = ω

and limd
n→∞ xn = x with xn, x ∈ B+

r , then limn→∞ F (ωn, xn) = F (ω, x)),
(S5) for each r1 > 0 and r2 > 0, the map Ω × Int B+d

r1
× Bd

r2
→ Rm , (ω, x, v) �→ Fx(ω, x)v is continu-

ous (i.e., limn→∞ Fx(ωn, xn)vn = Fx(ω, x)v in the case that limn→∞ ωn = ω, limd
n→∞ xn = x and

limd
n→∞ vn = v with xn, x ∈ Int B+

r1
and vn, v ∈ Br2 ),

(S6) quasimonotone condition: if x1, x2 ∈ BU+ with x1 � x2 and (x1) j(0) = (x2) j(0) holds for some
j ∈ {1, . . . ,m}, then F j(ω, x1) � F j(ω, x2) for each ω ∈ Ω ,

(S7) sublinearity condition: if x ∈ BU+ with x � 0, then Fx(ω, x)x � F (ω, x) for each ω ∈ Ω (which,
since F is differentiable, is equivalent to F (ω,λx) � λF (ω, x) for each (ω, x) ∈ Ω × BU+ and
λ ∈ [0,1]; see [8]),

(S8) strong sublinearity condition: if x ∈ BU+ with x � 0, then Fx(ω, x)x  F (ω, x) for each ω ∈ Ω .

We also keep the notation established in the previous section. As there, conditions (S1)–(S6) en-
sure the local existence and monotonicity of u(t,ω, x) for (ω, x) ∈ Ω × BU+ and t ∈ [0,α), with
α = α(ω, x). That is, the family of Eqs. (3.1) induces a local skew-product semiflow

τ : R+ × Ω × BU+ → Ω × BU+, (t,ω, x) �→ (
ω · t, u(t,ω, x)

)
. (3.2)

The conclusions deduced from (C1)–(C6) concerning the existence and characteristics of omega limit
sets for bounded trajectories and the properties of the solutions of the corresponding variational
equations (2.3), also hold in this case. In addition,

Lemma 3.1. Assume that conditions (S1)–(S7) on F hold. Then the semiflow τ is sublinear; that is, if (ω, x) ∈
Ω × BU+ , it holds that ux(t,ω, x)x � u(t,ω, x) for those values of t � 0 for which both terms are defined.

Proof. Having in mind that F (ω,λx) � λF (ω, x) if λ ∈ [0,1], a standard argument of comparison of
solutions provides

u(t,ω,λx) � λu(t,ω, x) (3.3)

for ω ∈ Ω , x � 0 and λ ∈ [0,1] for those t � 0 for which both functions are defined. Since u is C1

in x, (3.3) holds for x � 0 and is equivalent to the assertion. �
The fact that F (ω,0) � 0 ensures that the constant function a ≡ 0 defines a subequilibrium for τ

(defined as in the previous section) if u(t,ω,0) is globally defined for every ω ∈ Ω , which in particu-
lar happens if there exists a globally defined positive semiorbit. In this sense, the result proved in the
following theorem is the version of Theorem 2.7 for the strongly sublinear setting.

Theorem 3.2. Assume that conditions (S1)–(S8) hold. Assume also the existence of a subset K ⊂ Ω × BU+
satisfying

(k1) K is compact in Ω × BUd+ ,
(k2) K is positively τ -invariant and the restriction of the semiflow τ to K admits a flow extension,
(k̂3) x � 0 for every (ω, x) ∈ K .
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Then K is a metric copy of the base and the unique set satisfying these properties.
In addition, all the semiorbits corresponding to initial data (ω, x) with x � 0 are globally defined and

approach asymptotically K in Ω × BUd+ .

Proof. The beginning of the proof follows the scheme of the one of Theorem 2.6. Reasoning as there,
we show the existence of r > 0 such that K ⊂ Ω × B+

r , while the compactness of K , the continuity
of the (strongly positive) map K → Rm , (ω, x) �→ x(0) for the product metric on K , and the flow
extension in K ensure the existence of δ > 0 with x � δ J for every (ω, x) ∈ K . To check the next step,
that is, the relative compactness in BUd+ of the family D defined by (2.6), the only modification refers
to its uniform boundedness: since, by Lemmas 2.1 and 3.1,

0 � ux(t,ω, x)(δ J ) � ux(t,ω, x)x � u(t,ω, x)

for every (ω, x) ∈ K and t � 0, we obtain ‖ux(t,ω, x) J‖∞ � r/δ. Finally, to prove assertion (2.7), that
is, limt→∞ y(t,ω, x, J ) = 0 uniformly in (ω, x) ∈ K , we repeat everything for a ≡ 0 excepting the
analogue of (2.10), which now becomes

α̃F1(ω̃, x̃ ) > α̃
(

Fx(ω̃, x̃ )
)

1̃x �
(

Fx(ω̃, x̃ )
)

1 ṽ.

Here we use (S8) for the first inequality and (S6) for the second one.
Once obtained these fundamental preliminary results, the rest of the proof requires some ad-

ditional work. Given any point (ω̃, x̃ ) ∈ Ω × BU+ with x̃ � 0, we choose (ω̃, x) ∈ K and take
0 < λ < 1 with λx � x̃ � λ−1x. The sublinearity and monotonicity properties of τ (see also the proof
of Lemma 3.1) and the lower and upper bounds for K ensure that

δλ J � λu(t, ω̃, x) � u(t, ω̃, λx) � u(t, ω̃, x̃ )

� u
(
t, ω̃, λ−1x

)
� λ−1u(t, ω̃, x) � rλ−1 J .

Consequently, the semiorbit of (ω̃, x̃ ) is globally defined, and its omega limit set satisfies condi-
tions (k1), (k2) and (k̂3).

Let us now define

K̃ = {(
ω,λx1 + (1 − λ)x2

) ∈ Ω × BU+
∣∣ (ω, x1), (ω, x2) ∈ K and λ ∈ [0,1]},

which is clearly a new compact subset of Ω × BUd+ satisfying δ J � x � r J for every (ω, x) ∈ K̃ , and

D̃ = {
u(t,ω, x)

∣∣ t � 0 and (ω, x) ∈ K̃
} ⊂ BU.

Since, as checked before, there exist δ̃ > 0 and r̃ > 0 such that δ̃ J � u(t,ω, δ J ) � u(t,ω, r J ) � r̃ J for
every t � 0, we deduce from the monotonicity of τ that δ̃ J � x � r̃ J for every x ∈ D̃ . The monotonicity
of the norm ensures that the family D̃ is uniformly bounded. In addition, it is equicontinuous at every
compact subinterval [l,0] ⊂ (−∞,0]. This follows from the equicontinuity of K̃ in such intervals, in
turn deduced from its compactness in Ω × BUd , and from condition (S3) on the vector field F . Since
the metric closure of D̃ remains in BU, Arzelà–Ascoli theorem shows that D̃ is relatively compact
in BUd . (A more detailed proof of a similar property is done in Proposition 4.1 of [27].)

It follows easily from the relative compactness of D̃ that the set

Õ =
{
(ω, x) ∈ Ω × BU+

∣∣∣ ∃(tn) ↑ ∞ and
(
(ωn, xn)

) ⊂ K̃ with (ω, x) = lim
n→∞

d (
ωn · tn, u(tn,ωn, xn)

)}
is a compact subset of Ω ×BUd+ , with δ̃ J � u(t,ω, x) � r̃ J for every (ω, x) ∈ Õ and t � 0. Corollary 4.3
of [27] ensures that the restriction of τ to Õ is continuous for the product metric. Hence the set is



3344 C. Núñez et al. / J. Differential Equations 246 (2009) 3332–3360
positively τ -invariant. In addition, Õ admits a flow extension, as checked as the analogous property
for the set O given by (2.8). Consequently, Õ satisfies (k1), (k2) and (k̂3), which as seen before implies
that

lim
t→∞ y(t,ω, x, J ) = 0 uniformly in (ω, x) ∈ Õ . (3.4)

This property will be fundamental to prove the following one, from which the statements of the
theorem will be easily deduced: given any ε > 0 there exists tε > 0 such that

d
(
u(tε,ω, x1), u(tε,ω, x2)

)
� ε for every (ω, x1), (ω, x2) ∈ K . (3.5)

In turn, (3.5) requires some previous work. We fix a constant c > 0 such that

−c J � ux
(
t,ω,λx1 + (1 − λ)x2

)
(x1 − x2) � c J (3.6)

for every (ω, x1), (ω, x2) ∈ K , λ ∈ [0,1] and t � 0. The existence of this constant follows from
(δ − r) J � x1 − x2 � (r − δ) J and from

0 � ux(t,ω, x)δ J � ux(t,ω, x)x � u(t,ω, x) � u(t,ω, r J ) � r̃ J (3.7)

for t � 0 and ω ∈ Ω if δ J � x � r J , which implies that 0 � ux(t,ω, x) J � ( r̃/δ) J .
Now we fix ε > 0 and choose nε > 0 with

d(x1, x2) � ε

2
+ sup

s∈[−nε,0]
∥∥x1(s) − x2(s)

∥∥ (3.8)

for every pair of points x1, x2 ∈ BU. Property (3.4) ensures the existence of t̃ε > 0 such that
‖y(t,ω, x, J )‖ < ε/(2c) for every (ω, x) ∈ Õ and t � t̃ε . Therefore, there exists a constant ρε > 0
such that ∥∥(

ux(t,ω, x) J
)
(0)

∥∥ = ∥∥y(t,ω, x, J )
∥∥ <

ε

2c
for t ∈ [̃ tε,̃ tε + nε] (3.9)

when δ̃ J � x � r̃ J and d̄((ω, x), Õ ) � ρε . The symbol d̄ represents the product distance in Ω × BU.
The existence of ρε follows from the compactness of Õ and from the following property of conti-
nuity in the product metric of the restriction of the cocycle ux , which is proved in Proposition 4.2
of [27]: if for (ω, x) ∈ BU it is (ω, x) = limd

n→∞(ωn, xn), with (ωn, xn) ⊂ Ω × Br∗ , and there is t0 > 0
with ‖y(t,ωn, xn, J )‖ � r∗ for every t ∈ [0, t0] and n ∈ N, then ux(t,ω, x) J = limd

n→∞ ux(t,ωn, xn) J .
(A common bound r∗ � r̃ for ‖ux(t,ω, x) J‖∞ when t � 0, ω ∈ Ω and δ̃ J � x � r̃ J is obtained by re-
peating the argument used in (3.7).) And finally, there exists t̄ε > 0 such that d̄(τ (t,ω, x), Õ ) < ρε for
every (ω, x) ∈ K̃ whenever t � t̄ε , as immediately deduced by contradiction from the relative com-
pactness of D̃ and the definition of Õ .

Let us now take (ω, x1), (ω, x2) ∈ K and t ∈ [̃ tε,̃ tε + nε]. Then

u(t + t̄ε,ω, x1)(0) − u(t + t̄ε,ω, x2)(0) =
1∫

0

(
ux

(
t + t̄ε,ω,λx1 + (1 − λ)x2

)
(x1 − x2)

)
(0)dλ.

Since, according to the cocycle property (2.4) for ux ,

ux
(
t + t̄ε,ω,λx1 + (1 − λ)x2

)
(x1 − x2)

= ux
(
t, τ

(
t̄ε,ω,λx1 + (1 − λ)x2

))(
ux

(
t̄ε,ω,λx1 + (1 − λ)x2

)
(x1 − x2)

)
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and (3.6) holds, we deduce from the monotonicity of ux ensured by Lemma 2.1, the choices of t̄ε and
ρε and (3.9) that

∥∥u(t + t̄ε,ω, x1)(0) − u(t + t̄ε,ω, x2)(0)
∥∥ � c

1∫
0

∥∥(
ux

(
t, τ

(
t̄ε,ω,λx1 + (1 − λ)x2

))
J
)
(0)

∥∥dλ � ε

2
.

This and (3.8) show that (3.5) holds for tε = nε + t̃ε + t̄ε .
We can complete the proof of the theorem. To check that K is a copy of the base, i.e., that each one

of its sections reduces to a point, we take ε > 0 and write (ω, x1) and (ω, x2) in K as τ (tε,ω · (−tε),
u(−tε,ω, x1)) and τ (tε,ω · (−tε), u(−tε,ω, x2)), with tε provided by (3.5), which hence shows that
d(x1, x2) < ε and therefore that x1 = x2. To check that K is the unique set satisfying (k1), (k2) and
(k̂3) note that the union of two of those sets also satisfies the three properties, and hence it is a copy
of the base. Finally, as seen before, the omega limit set of the semiorbit starting at any (ω, x) with
x � 0 satisfies (k1), (k2) and (k̂3), and hence it agrees with K . �
Remarks 3.3. (1) Assuming that the initial vector field F satisfies hypotheses (C1)–(C6) and (C8), it is
possible to determine regularity conditions on a lower solution ã ensuring that the new vector field
F̃ (ω, x) = F (ω, x + a(ω)) − ã ′(ω) satisfies properties (S1)–(S6) and (S8). In this sense Theorem 3.2
weakens the conditions of Theorem 2.7 in those situations for which such a lower solution is a priori
known.

(2) There are well-known examples of sublinear vector fields admitting an infinite number of
minimal sets for which ã ≡ 0 is a strong lower solution. This means that Theorem 2.6 does not have
an analogue in the sublinear setting.

4. A nonautonomous stage-structured population growth model

The results previously obtained allow us to establish the existence of a unique positive attracting
recurrent state for a nonautonomous model describing a stage-structured population growth.

As explained in the introduction, our model is a nonautonomous version of the one described
by Wu, Freedman and Miller in [38], which in turn generalizes the previous models of Aiello and
Freedman [1], Freedman and Wu [12], and Aiello, Freedman and Wu [2]. The equations we will work
with are hence time-dependent versions of those appearing in [38]. However, the way in which they
are obtained presents some additional points of difficulty in our nonautonomous framework. For this
reason we explain with some detail the ideas taking the equations initially obtained for the model
to a form in which our results can be applied. We slightly modify the arguments of the mentioned
authors.

Let m be the number of patches, and represent by I j(t) and M j(t) the number of immature and
mature individuals in the j patch for j = 1, . . . ,m. We make the following assumptions:

– the birth rate of the immature population in each patch is proportional to the number of mature
individuals, α̃ j(t) being the proportionality value in time t;

– the death rate of the immature population in each patch is proportional to the number of imma-
ture individuals, β̃ j(t) being the proportionality value in time t;

– the death rate of the mature population in each patch is of logistic nature: proportional to the
square of the number of mature individuals, γ̃ j(t) being the proportionality value in time t;

– the net exchange rates of mature and immature populations from the k patch to the j patch are
proportional to the differences Mk − M j and Ik − I j , ε̃ jk(t) and η̃ jk(t) being the proportionality
values in time t;

– the probability distribution of the maturation period in all the patches is given by a positive
and normalized Borel measure μ on [0,∞). This means that an individual has matured after a
period t of its life with probability μ[0, t].
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The evolution equations then take the form

M ′
j(t) = −γ̃ j(t)M2

j (t) +
∑
k �= j

ε̃ jk(t)
(
Mk(t) − M j(t)

) + p j(t),

I ′j(t) = −β̃ j(t)I j(t) +
∑
k �= j

η̃ jk(t)
(

Ik(t) − I j(t)
) + α̃ j(t)M j(t) − p j(t),

p j(t) representing the maturation rate in the j patch. This model includes the fixed maturation period
case, in which μ is the Dirac measure concentrated in the maturating time t∗ .

We also assume all the functions α̃ j, β̃ j, γ̃ j, η̃ jk, ε̃ jk : R → R to be bounded and uniformly contin-
uous, that there exists δ > 0 with α̃ j > δ, β̃ j > δ, γ̃ j > δ, and that η̃ jk � 0 and ε̃ jk � 0. Moreover, we
assume that they are recurrent: if Ω is the common hull for all these functions, then the translation
flow σ on Ω is minimal. This is the case if, for instance, these coefficient functions are almost periodic
or almost automorphic. We represent by α j, β j, γ j, η jk, ε jk : Ω → R the corresponding (continuous)
operators of evaluation in time 0. In this way we obtain a 2m-dimensional system of evolution equa-
tions for each element ω ∈ Ω , namely

M ′
j(t) = −γ j(ω · t)M2

j (t) +
∑
k �= j

ε jk(ω · t)
(
Mk(t) − M j(t)

) + p j(t), (4.1)

I ′j(t) = −β j(ω · t)I j(t) +
∑
k �= j

η jk(ω · t)
(

Ik(t) − I j(t)
) + α j(ω · t)M j(t) − p j(t). (4.2)

Note that the initial system is one of the previous ones: it corresponds to the initial vector function
ω∗ ∈ Ω with components α̃1, . . . , ε̃d,d−1.

In what follows we fix an element ω ∈ Ω . Our next purpose is to obtain a representation for p j(t)
suitable to apply our results to the rewritten equations. Note first that

p j(t) = d

dh

t∫
−∞

y j(t, s,h)dμ(t − s)

∣∣∣∣
h=0+

, (4.3)

y j(t, s,h) being the number of immature individuals living in time t > s in the j patch who were
born at any of the patches in the interval of time [s − h, s] for h > 0. This is a consequence of the
fact that the number of maturating individuals in the j patch in the period [t − h, t] is precisely∫ t
−∞ y j(t, s,h)dμ(t − s): the integral, for s ∈ (−∞, t], of those immature individuals who were born

in the period [s − h, s] with the maturation probability corresponding to the time t − s.
The definition of y j(t, s,h) shows that if h > 0 is small enough (so that we can ignore the migra-

tions and the deaths), then

y j(s, s,h) =
s∫

s−h

α j(ω · r)M j(r)dr. (4.4)

In addition, since y j(t, s,h) only makes sense if the maturation time of those individuals is longer
than t − s,

d

dt
y j(t, s,h) = −β j(ω · t)y j(t, s,h) +

∑
k �= j

η jk(ω · t)
(

yk(t, s,h) − y j(t, s,h)
)
.
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We write the previous m linear ODEs in system form,

d

dt

⎡⎢⎣ y1(t, s,h)
.
.
.

ym(t, s,h)

⎤⎥⎦ = A(ω · t)

⎡⎢⎣ y1(t, s,h)
.
.
.

ym(t, s,h)

⎤⎥⎦ , (4.5)

the entries of the matrix A(ω) = [a jk(ω)] being a jk(ω) = η jk(ω) for j �= k and a jj(ω) = −β j(ω) −∑
k �= j η jk(ω). Note that the matrix A(ω · t) is negatively diagonally dominant by rows for every t ∈ R,

and hence a hyperbolic matrix for which the stable bundle at +∞ is Ω × Rm (see Fink [10] and
Sacker and Sell [29]). In addition, since the nondiagonal entries of the matrix A are nonnegative, the
linear system (4.5) is cooperative and the induced flow on Ω × Rm is monotone (see Smith [34]).
Let Uω(t) be the fundamental matrix solution of the linear system y′ = A(ω · t)y with Uω(0) = Idm ,
which is defined for every t ∈ R and satisfies the linear cocycle property Uω(t + s) = Uω·t(s)Uω(t).
Then, if Yω(t, s) = Uω(t)U−1

ω (s) for t � s, we have (d/dt)Yω(t, s) = A(ω · t)Yω(t, s) and Yω(s, s) = Idm

and, by (4.5) and (4.4),⎡⎢⎣ y1(t, s,h)
.
.
.

ym(t, s,h)

⎤⎥⎦ = Yω(t, s)

⎡⎢⎣ y1(s, s,h)
.
.
.

ym(s, s,h)

⎤⎥⎦ = Yω(t, s)

⎡⎢⎣
∫ s

s−h α1(ω · r)M1(r)dr
.
.
.∫ s

s−h αm(ω · r)Mm(r)dr

⎤⎥⎦ .

In addition, since Yω(t, t + s) = U−1
ω·t(s) for every s � 0,⎡⎢⎣ y1(t, t + s,h)

.

.

.

ym(t, t + s,h)

⎤⎥⎦ = U−1
ω·t(s)

⎡⎢⎣
∫ t+s

t+s−h α1(ω · r)M1(r)dr
.
.
.∫ t+s

t+s−h αm(ω · r)Mm(r)dr

⎤⎥⎦ .

We write U−1
ω (s) = [u jk(ω, s)]. The following remarks are fundamental in what follows. Note first that

the entries of this matrix U−1
ω (s) satisfy

u jk(ω, s) � 0 and u jj(ω, s) > 0 (4.6)

for s � 0. This follows from the conditions U−1
ω (s) = Yω(0, s) and Yω(s, s) = Idm and from the

monotonicity and the componentwise separating property of cooperative systems of linear ODEs
like y′ = A(ω · s)y (see Smith [34] and Shen and Zhao [33]). In addition, due to the hyperbolic char-
acter of the matrix A before mentioned, it turns out (see again [29]) that there exist constants k � 1
and � > 0 with ∥∥Uω(t)U−1

ω (s)
∥∥ � ke−�(t−s) (4.7)

for every ω ∈ Ω and t � s (where we consider the matrix norm associated to the maximum norm
in Rm), which in particular means that lims→−∞ U−1

ω (s) = 0 exponentially uniformly in Ω . Coming
back to our equations, note that

t∫
−∞

y j(t, s,h)dμ(t − s) =
0∫

−∞
y j(t, t + s,h)dμ(−s)

=
m∑

k=1

0∫
−∞

u jk(ω · t, s)

( t+s∫
αk(ω · r)Mk(r)dr

)
dμ(−s),
t+s−h
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so that the integral is defined as long as the functions Mk : (−∞, t] → R are bounded, as deduced
from inequality (4.7) for t = 0. Consequently, relation (4.3) shows that the last term in Eqs. (4.1)
and (4.2) corresponding to the j patch can be written as

p j(t) =
m∑

k=1

0∫
−∞

u jk(ω · t, s)αk
(
ω · (t + s)

)
Mk(t + s)dμ(−s). (4.8)

Once obtained the expression of p j(t), we can explicitly rewrite the evolution equations. Let us
denote M = [M1, . . . , Mm]T and I = [I1, . . . , Im]T , and consider them as elements of BU and Rm re-
spectively. We define H j : Ω × BU → R, F j : Ω × BU → R and G j : Ω × Rm × BU → R by

H j(ω, M) =
m∑

k=1

0∫
−∞

u jk(ω, s)αk(ω · s)Mk(s)dμ(−s),

F j(ω, M) = −γ j(ω)M2
j (0) +

∑
k �= j

ε jk(ω)
(
Mk(0) − M j(0)

) + H j(ω, M),

G j(ω, I, M) = −β j(ω)I j +
∑
k �= j

η jk(ω)(Ik − I j) + α j(ω)M j(0) − H j(ω, M)

and, finally, we represent F = [F1, . . . , Fm]T and G = [G1, . . . , Gm]T . Then Eqs. (4.1) and (4.2) for the
fixed element ω can be reformulated as

M ′(t) = F (ω · t, Mt), (4.9)

I ′(t) = G
(
ω · t, I(t), Mt

)
, (4.10)

these expressions describing simultaneously the evolution of the populations in all the patches. In the
fixed maturation period case the equation we obtain is of fixed finite delay type. We point out that
the symmetry conditions ε jk = εkj and η jk = ηkj are not necessary in what follows, although they are
logical properties for the model.

Now we let ω vary in Ω . Note that the family of Eqs. (4.9) does not depend on the immature
population. So that in order to establish the existence of a global nonautonomous equilibrium for the
mature and immature populations we begin by analyzing the mature one.

We consider (4.9) as a family of equations of type (2.2). The following result shows that it defines a
global semiflow on Ω ×BU+ . Note that only the elements of the positive cone BU+ represent possible
populations.

Proposition 4.1. The function F satisfies F (ω,0) � 0 and all the hypotheses (C1)–(C8), and the family of
Eqs. (4.9) defines a monotone and concave local semiflow on Ω × BU and a monotone and concave global
semiflow on Ω × BU+ .

Proof. We omit the proof of the first assertion (which in particular means that F also satisfies
(S1)–(S8)). The monotonicity and concavity of the semiflow are guaranteed by Lemma 2.1. Finally,
the global character of the restriction to Ω × BU+ follows from the boundedness of any semiorbit,
which in turn is deduced again from the monotonicity, having in mind that k J is an upper solution
when k is large enough to ensure that F (ω,k J ) � 0. �

Our next result, Theorem 4.2, proves the existence of a unique nonautonomous equilibrium (see
Remark 2.3(2)) for the corresponding semiflow which is strongly positive and which attracts asymp-
totically any semiorbit starting at a strongly positive initial mature population. We point out that,
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although we apply Theorem 2.6 to prove this result, it could also be obtained as a consequence of
Theorems 2.7 or 3.2. In fact, the results obtained in Section 3 provide a description of the dynam-
ics of population models similar to the one we are considering but for which the death rates in the
different patches of the mature population are given by suitable strongly sublinear functions.

Theorem 4.2. There exists a unique metric copy of the base for the semiflow defined by (4.9) on Ω × BU+ ,
KM = {(ω, M∗(ω)) | ω ∈ Ω} with M∗(ω) � 0, such that the semiorbit starting at any point (ω, x) with x � 0
approaches asymptotically K M in Ω × BUd as t → ∞.

Proof. Note to begin that, for j = 1, . . . ,m and ω ∈ Ω ,

m∑
k=1

0∫
−∞

u jk(ω, s)αk(ω · s)dμ(−s) > η > 0,

since this expression defines a function which is continuous in ω, inequalities (4.6) hold, and the
functions α1, . . . ,αm are strictly positive (recall that

∫ 0
−∞ dμ(−s) = 1). Having in mind that γ j > 0

for j = 1, . . . ,m, we deduce the existence of ε > 0 small enough and k > 0 large enough such
that F (ω,ε J ) � 0 and F (ω,k J )  0. It follows easily (see Remark 2.5(2)) that ε J � u(t,ω, ε J ) �
u(t,ω,k J ) � k J for every t � 0. Let KM ⊂ Ω × BU be the omega limit set of the semiorbit starting
at (ω,k J ). Then ε J � x � k J for every (ω, x) ∈ KM , and hence KM satisfies (k1), (k2) and (k3) of
Theorem 2.6 for the strong lower solution ã : Ω → Rm , ω �→ ε J . Proposition 4.1 and these facts prove
our statement. �

Let us now analyze the situation for the immature population. As explained in Remark 2.3(1),
(M∗(ω))t(s) = M∗(ω)(t + s) = M∗(ω · t)(s) for every t ∈ R and s ∈ (−∞,0]. Substituting now the
variable M by the function M∗(ω) in Eq. (4.10) we obtain the family of m-dimensional linear systems
of ODEs

I ′(t) = G
(
ω · t, I(t), M∗(ω · t)

) = A(ω · t)I(t) + L(ω · t), (4.11)

where L : Ω → Rm is the continuous function with components

L j(ω) = α j(ω)M∗(ω) j(0) − H j
(
ω, M∗(ω)

)
for j = 1, . . . ,m; that is, denoting R(ω) =

⎡⎣ α1(ω)(M∗)1(ω)(0)

.

.

.
αm(ω)(M∗)m(ω)(0)

⎤⎦, we have

L(ω) = R(ω) −
0∫

−∞
U−1

ω (s)R(ω · s)dμ(−s),

and we obtain a linear equation that the immature population must satisfy when the mature one is
in the equilibrium situation described by KM . The continuity of α j and M∗ and condition (4.7) for
t = 0 ensure that L(ω) is bounded and continuous in Ω .

Note that the family (4.11) of linear ordinary differential equations induces a global flow on
Ω × Rm . Clearly, in order to obtain a nonautonomous equilibrium for the whole (mature and im-
mature) population we need to obtain a nonautonomous equilibrium in Rm (or a copy of the base)
for Eq. (4.11). That is, the graph of a continuous function Ĩ : Ω → Rm such that R → Rm , t �→ Ĩ(ω · t)
solves (4.11) for any ω ∈ Ω . This is the goal of the next result, which completes this section. Note also
that a possible stable situation for the immature population, as in the mature case, only makes sense
for the model if it corresponds to a nonnegative solution.
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Theorem 4.3. There exists a unique copy of the base for the flow defined on Ω × Rm by (4.11), K I =
{(ω, Ĩ(ω)) | ω ∈ Ω} ⊂ Ω × Rm, given by the strongly positive function

Ĩ(ω) =
0∫

−∞

( 0∫
s

U−1
ω (r)R(ω · r)dr

)
dμ(−s).

In addition, any orbit approaches exponentially K I in Ω × Rm as t → ∞.

Proof. Condition (4.7) for t = 0 and the boundedness of L(ω) ensure that the function Ĩ : Ω → Rm

given by

Ĩ(ω) =
0∫

−∞
U−1

ω (l)L(ω · l)dl (4.12)

is well defined and bounded. It is also easy to deduce that it is continuous on Ω . It is also well
known that it provides a solution of (4.11) when evaluated along the corresponding base orbit; in
other words, the map R → Rm , t �→ Ĩ(ω · t) = ∫ 0

−∞ U−1
ω·t(l)L((ω · t) · l)dl = ∫ t

−∞ Uω(t)U−1
ω (l)L(ω · l)dl

satisfies the equation. This means that the compact set K I = {(ω, Ĩ(ω)) | ω ∈ Ω} ⊂ Ω ×Rm is a copy of
the base for the flow defined on Ω × Rm by (4.11). In addition, due to the hyperbolic character of the
matrix A, any other solution of the equation approaches exponentially Ĩ in Rm (see Fink [10]); that is,
there exist real constants k > 0,� > 0 (the ones appearing in (4.7)) such that ‖̃I(ω · t) − zI (t,ω, c)‖ �
ke−�t ‖̃I(ω) − c‖ for every t � 0, where c ∈ Rm and zI (t,ω, c) represents the solution of (4.11) with
zI (0,ω, c) = c. This shows that K I attracts exponentially all the possible initial states in Ω × Rm as
time increases, and hence it is the unique copy of the base.

Now we follow the idea of Theorem 3.3 of Freedman and Wu [12] in order to check that Ĩ has the
expression stated, and hence it corresponds to a strongly positive immature population. Note to begin
that, from the definitions of U and L,

U−1
ω (l)L(ω · l) = U−1

ω (l)

(
R(ω · l) −

0∫
−∞

U−1
ω·l (s)R

(
ω · (l + s)

)
dμ(−s)

)

=
0∫

−∞

(
U−1

ω (l)R(ω · l) − U−1
ω (l + s)R

(
ω · (l + s)

))
dμ(−s)

=
0∫

−∞

(
d

dl

l∫
l+s

U−1
ω (r)R(ω · r)dr

)
dμ(−s).

Substituting in (4.12) and applying Fubini’s theorem, we obtain

Ĩ(ω) =
0∫

−∞

( 0∫
−∞

(
d

dl

l∫
l+s

U−1
ω (r)R(ω · r)dr

)
dl

)
dμ(−s).

Consequently,
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Ĩ(ω) =
0∫

−∞

( 0∫
s

U−1
ω (r)R(ω · r)dr − lim

l→−∞

l∫
l+s

U−1
ω (r)R(ω · r)dr

)
dμ(−s)

=
0∫

−∞

( 0∫
s

U−1
ω (r)R(ω · r)dr

)
dμ(−s),

as asserted. The last equality follows easily from (4.7) for t = 0. The positiveness of Ĩ(ω) follows then
from the one of R(ω) and from (4.6). The proof is complete. �
5. A theorem on global exponential stability

The results of Section 4 show that the compact set {(ω, M∗(ω), Ĩ(ω)) | ω ∈ Ω} ⊂ Ω × BUd × Rm is
the unique nonautonomous equilibrium for the semiflow induced in Ω × BU+ × Rm by the family of
2m-dimensional systems of equations composed by those of (4.9) and (4.10). The last section of the
paper is devoted to obtain the optimal result concerning the attractivity properties of this copy of the
base: not only does it attract asymptotically in Ω × BUd × Rm any semiorbit starting at a strongly
positive initial mature population, but in fact, the values in time t of the mature and immature
populations approach exponentially their corresponding values in the nonautonomous equilibrium.

Throughout this section, for the semiflow given on Ω × BU by the family of Eqs. (4.9) we use
a notation similar to the one established in Section 2 for Eqs. (2.2): the semiflow is τM(t,ω, x) =
(ω · t, u(t,ω, x)), the solution in Rm of the equation is zM(t,ω, x) = u(t,ω, x)(0) (and hence
zM(s,ω, x) = x(s) for every s ∈ (−∞,0]), the linear differential operator with respect to x is
ux(t,ω, x) ∈ L(BU,BU) (with ux(0,ω, x)v = v), and y(t,ω, x, v) = (ux(t,ω, x)v)(0) is the solution of
the variational equation (2.3) satisfying y(s,ω, x, v) = v(s) for every s ∈ (−∞,0]. Recall that Theo-
rem 4.2 proves that all these functions are defined for any t > 0 in the case that x � 0.

Let us define Mδ(ω) = M∗(ω) − δ J for δ � 0, where M∗ is the continuous equilibrium obtained in
Theorem 4.2. Our main tool to prove the exponential stability will be the analysis of the solutions of
the linear systems

y′(t) = Fx
(
ω · t, Mδ(ω · t)

)
yt (5.1)

obtained from (4.9), with j component given by

y′
j(t) = −2γ j(ω · t)Mδ

j(ω)(t)y j(t) +
∑
k �= j

ε jk(ω · t)
(

yk(t) − y j(t)
) + H j(ω · t, yt). (5.2)

Given v ∈ BU, we denote by yδ(t,ω, v) the value in t of the solution of (5.1) satisfying yδ(s,ω, v) =
v(s) for s ∈ (−∞,0], and by wδ(t,ω)v the element of BU given by (wδ(t,ω)v)(s) = yδ(t + s,ω, v).
Note that yδ and wδ are linear in v . Therefore

φδ : R+ × Ω × BU → Ω × BU, (t,ω, v) �→ (
ω · t, wδ(t,ω)v

)
defines a linear skew-product semiflow, which is monotone since the coefficient function of (5.1)
satisfies the quasimonotone condition (C6). Note also that w0(t,ω)v = ux(t,ω, M∗(ω))v .

To complete the notation related to Eqs. (4.9) and (5.1), we define M̃ : Ω → Rm , ω �→ M∗(ω)(0)

and M̃δ : Ω → Rm , ω �→ Mδ(ω)(0). Recall that M̃ ′(ω · t) = F (ω · t, M∗(ω · t)) and note that t �→
M̃δ(ω · t) = M̃(ω · t) − δ J does not define a solution of (4.9) if δ �= 0. Finally we fix constants ε∗ > 0
and k∗ > 0 with

ε∗ J � M∗(ω) � k∗ J for every ω ∈ Ω. (5.3)
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Let us now consider the immature population. For (ω, x, c) ∈ Ω × BU × Rm given, we represent by
zI (t,ω, x, c) the solution of the ODE

I ′(t) = G
(
ω · t, I(t), u(t,ω, x)

)
with zI (0,ω, x, c) = c. Note that, for ω ∈ Ω fixed, this solution represents the immature population in
time t when the initial values of the mature and immature populations are x and c respectively. As
in Section 4, the former equation can be rewritten as

I ′(t) = A(ω · t)I(t) + L
(
τM(t,ω, x)

)
(5.4)

with

L j(ω, x) = α j(ω)x j(0) −
m∑

k=1

0∫
−∞

u jk(ω, s)αk(ω · s)xk(s)dμ(−s).

In particular, zI (t,ω, x, c) is defined whenever zM(t,ω, x) is, which is for any t ∈ R in the case that
x � 0. Recall that the continuous equilibrium (in Rm) obtained in Theorem 4.3 for Eq. (5.4) corre-
sponding to (ω, M∗(ω)) is represented by Ĩ(ω), with Ĩ(ω · t) = zI (t,ω, M∗(ω), Ĩ(ω)) for t ∈ R and
ω ∈ Ω .

The purpose of this section is to prove the following result.

Theorem 5.1. For any ε > 0 there exist constants ηε > 1 and ρ > 0 such that, if x � ε J , then

(i) ‖M̃(ω · t) − zM(t,ω, x)‖ � ηεe−ρt‖M∗(ω) − x‖∞ ,
(ii) ‖̃I(ω · t) − zI (t,ω, x, c)‖ � ηεe−ρt(‖M∗(ω) − x‖∞ + ‖̃I(ω) − c‖)

for any t ∈ R, ω ∈ Ω and c ∈ Rm.

This theorem will follow as a corollary of several results. The first one describes a basic and fun-
damental property of uniformity in the asymptotical approach to the set K M .

Proposition 5.2. Given δ > 0 and ε > 0 with ε J � M∗(ω) for every ω ∈ Ω , there exists t0 = t0(δ, ε) such
that zM(t,ω, x) � M̃δ(ω · t) for every t � t0 and (ω, x) ∈ Ω × BU with x � ε J .

Proof. The proof is basically a consequence of Theorem 2.6. As a first step, we prove the follow-
ing uniformity property: given � > 0 and ε > 0 there exists t1 = t1(�, ε) such that d(u(t,ω, ε J ),
M∗(ω · t)) < � for every ω ∈ Ω and t � t1. We can assume that ε is small enough to guarantee that
F (ω,ε J ) � 0 (see the proof of Theorem 4.2). Remark 2.5(2) and the monotonicity of the semiflow
then ensure that

ε J � u(t,ω, ε J ) � u
(
t,ω, M∗(ω)

) = M∗(ω · t) � k∗ J (5.5)

for every t � 0 and ω ∈ Ω , with k∗ satisfying (5.3). Consequently, any sequence (u(tn,ωn, ε J )) is
uniformly bounded. From here, equality u(tn,ωn, ε J )(s) = zM(tn + s,ωn, ε J ), and condition (C3) on
the coefficient function F of Eq. (4.9), we deduce that the sequence is also equicontinuous (see the
proof of Theorem 2.6 for a similar argument). Arzelà–Ascoli theorem shows that any sequence has a
subsequence which converges in metric, and it is easily checked that the limit remains in BU. Now
we define

K =
{
(ω, x) ∈ Ω × BU

∣∣∣ ∃(tn) ↑ ∞ and (ωn) ⊂ Ω with (ω, x) = limd τM(tn,ωn, ε J )
}
.

n→∞



C. Núñez et al. / J. Differential Equations 246 (2009) 3332–3360 3353
By using the existence of convergent subsequences one proves that K is compact in Ω × BUd , that
it is positively τM -invariant, and that the semiflow restricted to it admits a flow extension. In addi-
tion, (5.5) shows that x � ε J for every (ω, x) ∈ K . This means that K satisfies all the conditions of
Theorem 2.6 with respect to the strong lower solution ã : Ω → Rm , ω �→ ε J . Hence, by uniqueness,
K = KM .

We complete the proof of the mentioned property by contradiction. Assume the existence of se-
quences (tn) ↑ ∞ and (ωn) ⊂ Ω with d(u(tn,ωn, ε J ), M∗(ωn · tn)) � �. We can assume (by taking
a new subsequence if needed) that (ωn · tn) converges to a point ω∗ ∈ Ω . And, as asserted before,
there exists a subsequence of (u(tn,ωn, ε J )) which converges in metric to a point x∗ . So that we
find a point (ω∗, x∗) which is in K but at a positive distance of KM : d(x∗, M∗(ω∗)) � �. And this is
impossible since both sets agree.

Now, given δ > 0 we define � = δ/(2 + 2k∗) and t0(δ, ε) = t1(�, ε). Then, for t � t0 and ω ∈ Ω ,

� > d
(
M∗(ω · t), u(t,ω, ε J )

) =
∞∑

n=1

1

2n

|M∗(ω · t) − u(t,ω, ε J )|n
1 + |M∗(ω · t) − u(t,ω, ε J )|n

� 1

2(1 + k∗)
∣∣M∗(ω · t) − u(t,ω, ε J )

∣∣
1 � 1

2 + 2k∗
∥∥M̃(ω · t) − zM(t,ω, ε J )

∥∥,

and hence necessarily zM(t,ω, ε J ) � M̃(ω · t) − δ J . The monotonicity of the semiflow guarantees the
same property for zM(t,ω, x) for t � t0 if x � ε J . This completes the proof of the proposition. �

The next result, Proposition 5.3, shows that it makes sense to consider the semiflow induced by
the family of Eqs. (5.1) on spaces which are larger than Ω × BU. Given ς > 0, we define

Cς =
{

v ∈ C
(
(−∞,0],Rm) ∣∣∣ there exists lim

s→−∞
∥∥v(s)

∥∥eς s
}
,

a Banach space for the norm ‖v‖ς = sups∈(−∞,0] ‖v(s)‖eς s . On the fading memory phase space Cς we
consider the same pointwise partial order relation as in BU, defined by (2.1).

In order to find the values of ς for which (5.1) defines a semiflow on Ω × Cς , we recall rela-
tion (4.7), which provides k > 1 and � > 0 such that, for s � 0,∥∥U−1

ω (s)
∥∥ � ke�s and hence u jk(ω, s) � ke�s. (5.6)

Proposition 5.3. For δ � 0 and ς � �, the family of Eqs. (5.1) defines a linear continuous semiflow in Ω × Cς ,
namely

φδ
ς : R+ × Ω × Cς → Ω × Cς , (t,ω, v) �→ (

ω · t, wδ(t,ω)v
)
,

which is monotone: if v1 � v2 in Cς then wδ(t,ω)v1 � wδ(t,ω)v2 for every t � 0.

Proof. First of all, let us check that the coefficient function of (5.1) is well defined on Ω × Cς . Having
a look at Eq. (5.2), we see that it is enough to apply (5.6) in order to check that, for v ∈ Cς ,

∣∣H j(ω, v)
∣∣ =

∣∣∣∣∣
m∑

k=1

0∫
−∞

u jk(ω, s)αk(ω · s)vk(s)dμ(−s)

∣∣∣∣∣
� kα∗‖v‖ς

0∫
e(�−ς)s dμ(−s) � kα∗‖v‖ς , (5.7)
−∞
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where α∗ � α j(ω) for j = 1, . . . ,m and ω ∈ Ω . That is, H j : Ω × Cς → R is well defined and contin-
uous for j = 1, . . . ,m. The linearity of the family (5.1) ensures that the semiflow φδ

ς is well defined
and continuous (see [14] and [16]).

The quasimonotone condition (C6) satisfied by F ensures the same property for the coefficient
function of Eq. (5.1) also on the space Ω × Cς . This is enough to guarantee the monotonicity of the
semiflow φδ

ς . The proof is complete. �
The next technical result shows the equivalence of different topologies in the omega limit set of a

φδ
ς -semiorbit satisfying a boundedness condition.

Lemma 5.4.

(i) If a sequence (vn) ⊂ Cς converges to v ∈ Cς in ‖ · ‖ς , then it converges uniformly on the compact subsets
of (−∞,0].

Let us fix ς � � and assume the existence of a point (ω̃, ṽ) ∈ Ω × Cς and a constant l > 0 such that
‖yδ(t, ω̃, ṽ)‖ � l for every t � 0. Then,

(ii) the sequence (wδ(tn, ω̃)̃v) with (tn) ↑ ∞ converges to v∗ ∈ Cς in ‖ · ‖ς if and only if it converges uni-
formly on the compact subsets of (−∞,0]. In addition, in this case, v∗ ∈ BU.

(iii) The omega limit set D of (ω̃, ṽ) for the semiflow φδ
ς is a well-defined compact subset of Ω × Cς contained

in Ω × BU. In addition, the restriction to D of the topologies of Ω × Cς and Ω × BUd agree.

Proof. The proof of (i) is very easy. In order to prove the reciprocal property in (ii), assume that
(wδ(tn, ω̃)̃v) converges to v∗ uniformly on the compact subsets of (−∞,0]. Note first that ‖v∗(s)‖ =
limn→∞ ‖yδ(tn + s, ω̃, ṽ)‖ � l. Now, given ε > 0, we look for s0 ∈ (−∞,0] such that 2leς s0 � ε and n0
such that ‖(wδ(tn, ω̃)̃v)(s) − v∗(s)‖ � ε for every s ∈ [s0,0] and n � n0. Then, for these values of n,
‖(wδ(tn, ω̃)̃v)(s) − v∗(s)‖eς s � ε for s ∈ (−∞,0], which proves the convergence in Cς . In order to
check that v∗ ∈ BU, note that supt�0 ‖(yδ)′(t, ω̃, ṽ)‖ < ∞, which in turn follows from the assumption
‖yδ(t, ω̃, ṽ)‖ � l for t � 0 (and hence ‖(yδ)t(·, ω̃, ṽ)‖ς = ‖wδ(t, ω̃)̃v‖ς � l +‖̃v‖ς for every t � 0), the
form of Eq. (5.2), and relation (5.7).

Let us now concentrate on (iii). The fact that supt�0 ‖(yδ)′(t, ω̃, ṽ)‖ < ∞, statement (ii), and a
standard application of Arzelà–Ascoli theorem ensure the relative compactness in Ω × Cς of the set
{wδ(t, ω̃)̃v | t � 0}. This guarantees the existence and compactness in Ω × Cς of the omega limit
set D , which, according to (ii), is contained in Ω × BU. Now consider the map (D,‖ · ‖ς ) → (D,d),
(ω̃, ṽ) �→ (ω̃, ṽ). Statement (i) ensures its continuity, so that the image is also a compact set; and
hence the (bijective) map is bicontinuous. This means that both topologies are equivalent over D , as
asserted. �

The previous results are fundamental tools in the proof of the following theorem, which describes
several properties of the semiflows φδ and φδ

ς . In turn, these properties will allow us to prove The-
orem 5.1. We point out that, although a specific monotone theory for semiflows on fading memory
phase spaces exists (see [37]), the proof of Theorem 5.5 is based on the results for the semiflow on
Ω × BU obtained in Section 2, without any requirement on strong monotonicity.

Theorem 5.5. Let δ � 0 satisfy M∗(ω) − 2δ J � 0 for every ω ∈ Ω . Then,

(i) K0 = Ω × {0} is the only positively φδ-invariant compact subset of Ω × BUd which admits a flow ex-
tension, and all the semiorbits approach asymptotically K0 in Ω × BUd; i.e., limd

n→∞ wδ(t,ω)v = 0 for
every (ω, v) ∈ Ω × BU.
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(ii) There exists θ < ρ such that for every ς with θ < ς � � the continuous function N : Ω → Cς given by
N(ω)(s) = M̃(ω · s)e−θ s for s ∈ (−∞,0] satisfies yδ(t,ω, N(ω)) � M̃(ω · t) for t � 0 and ω ∈ Ω . In
particular, ∥∥yδ

(
t,ω, N(ω)

)∥∥ � k∗ and
∥∥wδ(t,ω)N(ω)

∥∥
ς

� k∗ for t � 0,

where k∗ satisfies (5.3).
(iii) Let us take ς with θ < ς � �. For any ω ∈ Ω , there exists the omega limit set in Ω × Cς of (ω, N(ω))

for the semiflow φδ
ς , and it agrees with K0 .

(iv) For any ω ∈ Ω , the norm in Cθ of the linear operator wδ(t,ω), namely∥∥wδ(t,ω)
∥∥

θ
:= sup

‖v‖θ �1

∥∥wδ(t,ω)v
∥∥

θ
,

converges to 0 as t → ∞.
(v) The solutions in Cθ of the linear equations (5.1) converge exponentially to 0 as time increases. That is,

there exist constants κ > 1 and ρ > 0 such that, for every t � 0, ω ∈ Ω and v ∈ Cθ , ‖wδ(t,ω)v‖θ �
κe−ρt‖v‖θ and ‖yδ(t,ω, v)‖ � κe−ρt‖v‖θ .

Proof. (i) In order to apply Theorem 2.6, let us check that the function −M̃ : Ω → Rm , ω �→
−M∗(ω)(0) defines a strong lower solution for the linear equations (5.1). We know that −M̃ ′(ω) =
−F (ω, M∗(ω)), so that we only have to check that

−F
(
ω, M∗(ω)

) − Fx
(
ω, Mδ(ω)

)(−M∗(ω)
)  0.

The j-component of this difference is given by

γ j(ω)
(
M̃ j(ω)

)2 − 2γ j(ω)M̃δ
j (ω)M̃ j(ω) = γ j(ω)M̃ j(ω)

(
2δ − M̃ j(ω)

)
,

which is strictly negative by the choice of δ. In addition, Eq. (5.1) satisfies the concavity hypothe-
sis (C7), since it is linear. Applying Theorem 2.6 to the positively φδ-invariant set K0 = Ω ×{0} (a com-
pact in Ω ×BUd) and the strong lower solution −M̃ we conclude that all the semiorbits starting above
−KM approach K0 asymptotically in metric: limt→∞ d(wδ(t,ω)v,0) = 0 for any (ω, v) ∈ Ω × BU with
v � −M∗(ω). By linearity the same property holds for every (ω, v) ∈ Ω × BU, since there exists l ∈ R
with lv � −M∗(ω). The uniqueness of K0 follows immediately, and completes the proof of (i).

(ii) We assume that θ < � to define N . Note first that N(ω) ∈ Cς if ς > θ , since ‖N(ω)(s)‖eς s =
‖M̃(ω · s)‖e(ς−θ)s tends to zero as s → −∞. In addition, ‖N(ω)‖ς � k∗ .

Let us fix ω̃ ∈ Ω and j ∈ {1, . . . ,m}, define n(t) = M̃ j(ω̃ ·t)− yδ
j(t, ω̃, N(ω̃)), and note that n(0) = 0.

Our next purpose is to find θ small enough to get n′(0) > 0. Eqs. (4.9) and (5.1) respectively satisfied
by M̃(ω̃ · t) and yδ(t, ω̃, N(ω̃)) show that

n′(0) = −γ j(ω̃)M̃ j(ω̃)
(
M̃ j(ω̃) − 2M̃δ

j (ω̃)
)

+
m∑

k=1

0∫
−∞

u jk(ω̃, s)αk(ω̃ · s)M̃k(ω̃ · s)
(
1 − e−θ s)dμ(−s).

The choice of δ ensures the existence of l > 0 such that

−γ j(ω̃)M̃ j(ω̃)
(
M̃ j(ω̃) − 2M̃δ

j (ω̃)
) = −γ j(ω̃)M̃ j(ω̃)

(
2δ − M̃ j(ω̃)

)
> l.
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On the other hand, by the boundedness of α̃k(ω̃) and M̃k(ω̃) and relation (5.6), the function

h(s, θ) :=
m∑

k=1

u jk(ω̃, s)αk(ω̃ · s)M̃k(ω̃ · s)
(
1 − e−θ s)

satisfies limθ→0+ h(s, θ) = 0 for every s ∈ [−∞,0] and∣∣h(s, θ)
∣∣ � k1e�s(e−θ s − 1

)
� k1e(�−θ)s � k1

for s ∈ (−∞,0]. Applying dominated convergence theorem we conclude that

lim
θ→0+

0∫
−∞

h(s, θ)dμ(−s) = 0.

So that there exists θ such that

m∑
k=1

0∫
−∞

u jk(ω̃, s)αk(ω̃ · s)M̃k(ω̃ · s)
(
1 − e−θ s)dμ(−s) > −l/2,

from where our assertion follows. Consequently, n(t) > 0 for t > 0 small enough. Note also that θ can
be chosen independent of ω̃ and j.

Let us now define

J = {
t0 � 0

∣∣ M̃(ω̃ · t) − yδ
(
t, ω̃, N(ω̃)

)
� 0 for every t ∈ [0, t0]

}
and t∗ = sup J . The property previously proved shows that t∗ > 0. The first assertion in (ii) is equiv-
alent to show that, in fact, t∗ = ∞, what we do in what follows. We assume by contradiction that
t∗ < ∞. We first check that

N(ω̃ · t∗) � wδ(t∗, ω̃)N(ω̃): (5.8)

for s ∈ [−t∗,0], by definition of t∗ ,

N(ω̃ · t∗)(s) = M̃
(
ω̃ · (t∗ + s)

)
e−θ s � M̃

(
ω̃ · (t∗ + s)

)
� yδ

(
t∗ + s, ω̃, N(ω̃)

) = (
wδ(t∗, ω̃)N(ω̃)

)
(s),

and, for s ∈ (−∞,−t∗),

N(ω̃ · t∗)(s) = M̃
(
ω̃ · (t∗ + s)

)
e−θ s � M̃

(
ω̃ · (t∗ + s)

)
e−θ(t∗+s)

= N(ω̃)(t∗ + s) = (
wδ(t∗, ω̃)N(ω̃)

)
(s).

Now, by reasoning as before for the point ω̃ · t∗ we find t1∗ > 0 with M̃(ω̃ · (t∗ + t)) � yδ(t, ω̃ · t∗,
N(ω̃ · t∗)) for t ∈ (0, t1∗]. Hence relation (5.8) and the monotonicity of the semiflow φδ

ς guaranteed by
Proposition 5.3 show that

M̃
(
ω̃ · (t∗ + t)

)
� yδ

(
t, ω̃ · t∗, wδ(t∗, ω̃)N(ω̃)

) = yδ
(
t∗ + t, ω̃, N(ω̃)

)
for t ∈ (0, t1∗], impossible by definition of t∗ .
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The last assertions in (ii) follow immediately from the first one.
(iii) Let us fix ω̃ ∈ Ω . Statement (ii) allows us to apply Lemma 5.4(iii) in order to conclude that

the omega limit set D ⊂ Ω × Cς of (ω̃, N(ω̃)) for the semiflow φδ
ς exists and is a compact subset also

in Ω × BUd . Since the semiflows φδ
ς and φδ agree when restricted to D , the restriction of φδ to D

admits a flow extension, and by (i) we conclude that D = K0, as asserted.
(iv) We work again for a fixed point ω̃ ∈ Ω . As a consequence of (iii) and Lemma 5.4(i), we

know that wδ(t, ω̃)N(ω̃) converges to 0 uniformly on the compact subsets of (−∞,0] as t → ∞.
The definition of N(ω̃) then shows that −ε−1∗ N(ω̃) � v � ε−1∗ N(ω̃) whenever ‖v‖θ � 1, where ε∗
satisfies (5.3). The monotonicity ensured by Proposition 5.3 leads us to

−ε−1∗ wδ(t, ω̃)N(ω̃) � wδ(t, ω̃)v � ε−1∗ wδ(t, ω̃)N(ω̃). (5.9)

This shows that wδ(t, ω̃)v converges to 0 as t → ∞ uniformly on the compact subsets of (−∞,0],
being this convergence uniform in the set ‖v‖θ � 1. Using now Lemma 5.4(ii), we conclude that
limt→∞ wδ(t, ω̃)v = 0 in Cθ , and the argument there used shows that this convergence is uniform in
‖v‖θ � 1, which proves (iv).

(v) Once proved (iv), the spectral theory for infinite-dimensional linear skew-product semiflows of
Chow and Leiva [6,7] and Sacker and Sell [30] shows the existence of constants κ � 1 and ρ > 0 such
that ‖wδ(t,ω)‖θ � κe−ρt for every t � 0 and ω ∈ Ω . Consequently, ‖wδ(t,ω)v‖θ � κe−ρt‖v‖θ and
hence, evaluating at s = 0, ‖yδ(t,ω, v)‖ � κe−ρt‖v‖θ . This completes the proof of the theorem. �

We are finally in a position to prove the main result of the section.

Proof of Theorem 5.1. (i) We can assume without restriction that ε � ε∗ (the constant appearing
in (5.3)). Let us fix (ω, x) ∈ Ω × BU with x � ε J . Assume first that x � M∗(ω). The monotonicity and
concavity of the semiflow τM (see Lemma 2.1) show that

0 � zM(t,ω, x) − M̃(ω · t) � ux
(
t,ω, M∗(ω)

)(
x − M∗(ω)

)
(0) = y0(t,ω, x − M∗(ω)

)
,

and Theorem 5.5(v) for δ = 0 gives the searched inequality for ηε = κ (recall that ‖v‖θ � ‖v‖∞ for
v ∈ BU).

Let us now consider the case ε J � x < M∗(ω). We fix δ > 0 with M∗(ω) − 2δ J � 0 and take
the minimum time t1 = t1(x) � 0 satisfying zM(t,ω, x) � M̃δ(ω · t) for every t � t1. Proposition 5.2
guarantees the existence of t0(ε) (δ is fixed) independent of x such that t1 � t0(ε). As before, the
monotonicity and concavity of the semiflow ensure

0 � M̃
(
ω · (t + t1)

) − zM(t + t1,ω, x) � y
(
t + t1,ω, x, M∗(ω) − x

)
for any t � 0. According to the notation established in Section 2, the function

t �→ y
(
t + t1,ω, x, M∗(ω) − x

) = (
ux(t + t1,ω, x)

(
M∗(ω) − x

))
(0)

satisfies the variational equation obtained by linearizing (4.9) along the τ -semiorbit (ω · t, u(t,ω, x)),
whose jth component is

y′
j(t) = −2γ j

(
ω · (t + t1)

)
(zM) j(t + t1,ω, x)y j(t)

+
∑
k �= j

ε jk
(
ω · (t + t1)

)(
yk(t) − y j(t)

) + H j
(
ω · (t + t1), yt

)
. (5.10)

On the other hand, system (5.1) for ω · t1 has jth component
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y′
j(t) = −2γ j

(
ω · (t + t1)

)
M̃δ

j

(
ω · (t + t1)

)
y j(t)

+
∑
k �= j

ε jk
(
ω · (t + t1)

)(
yk(t) − y j(t)

) + H j
(
ω · (t + t1), yt

)
.

Since zM(t + t1,ω, x) � M̃δ(ω · (t + t1)) for t � 0, a standard argument of comparison of solutions
shows that, if v = ux(t1,ω, x)(M∗(ω) − x), then

y
(
t + t1,ω, x, M∗(ω) − x

) = y
(
t,ω · t1, u(t1,ω, x), v

)
� yδ(t,ω · t1, v)

for t � 0. Consequently, 0 � M̃(ω · (t + t1)) − zM(t + t1,ω, x) � yδ(t,ω · t1, v). Theorem 5.5(v) hence
proves that ∥∥M̃

(
ω · (t + t1)

) − zM(t + t1,ω, x)
∥∥ � κe−ρt‖v‖∞ for t � 0. (5.11)

In the case that t1 = 0, v = M∗(ω) − x and the statement of the theorem holds for ηε = κ . Assume
now that t1 > 0. Then, on the one hand, there exists ηε , independent of ω and x with t1(x) > 0, such
that ‖M∗(ω)−x‖∞ � ηε: just take ηε such that if ‖M∗(ω)−x‖∞ � ηε then ‖M∗(ω ·t)−u(t,ω, x)‖∞ �
δ/2 for t ∈ [0, t0(ε)] and ω ∈ Ω (see Proposition 4.2 of [27]). Therefore,∥∥M̃(ω · t) − zM(t,ω, x)

∥∥ � k∗η−1
ε eρ(t0(ε)−t)

∥∥M∗(ω) − x
∥∥∞ (5.12)

for t ∈ [0, t1]. And, on the other hand, Eqs. (5.10), the monotonicity of τM and a new argument of
comparison of solutions show that 0 � ux(t1,ω, x) J � ux(t1,ω,0) J . Hence, since 0 � M∗(ω) − x �
‖M∗(ω)− x‖∞ J , we have by monotonicity and linearity that ‖v‖∞ � ‖ux(t1,ω,0) J‖∞‖M∗(ω)− x‖∞ .
This and relations (5.11) and (5.12) show that statement (i) holds for every x with 0 � x � M∗(ω) for
ηε = κε , with

κε = max
(

k∗η−1
ε eρt0(ε), κeρt0(ε) max

t∈[0,t0(ε)],ω∈Ω

∥∥ux(t,ω,0) J
∥∥∞

)
.

Finally, in the general case, given any x � ε J we look for x1, x2 ∈ BU with ε J � x1 � x � x2, x1 �
M∗(ω) � x2 and ‖M∗(ω) − x1‖∞ � ‖M∗(ω) − x2‖∞ = ‖M∗(ω) − x‖∞ . This can be done, for instance,
by taking x2 = M∗(ω) + ‖M∗(ω) − x‖∞ J , and x1 = max(ε J , M∗(ω) − ‖M∗(ω) − x‖∞ J ) (defining the
maximum component by component). An easy application of the monotonicity of the semiflow and
the previously proved properties shows the stated inequality for ηε = max(κ,κε) and completes the
proof of the first assertion of the theorem.

(ii) Let us now analyze the evolution of the immature population. Note that we can assume with-
out restriction that ρ < �, where ρ is the constant satisfying (i) and � is the one of (4.7) and (5.6).
Once zM(t,ω, x) is known, the solution of the linear equation (4.2) is given by

zI (t,ω, x, c) = Uω(t)

(
c +

t∫
0

U−1
ω (l)L

(
τ (l,ω, x)

)
dl

)
,

and hence

Ĩ(ω · t) = zI
(
t,ω, M∗(ω), Ĩ(ω)

) = Uω(t)

(̃
I(ω) +

t∫
0

U−1
ω (l)L

(
τ
(
l,ω, M∗(ω)

))
dl

)
.

According to (5.6), ∥∥Uω(t)
(

Ĩ(ω) − c
)∥∥ � ke−ρt

∥∥̃I(ω) − c
∥∥. (5.13)
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Let α∗ satisfy α∗ � α j(ω) for every ω ∈ Ω and j ∈ {1, . . . ,m}. By using statement (i) of the theorem
and relation (5.6), one checks that, for l � 0,

∥∥L
(
τ
(
l,ω, M∗(ω)

)) − L
(
τ (l,ω, x)

)∥∥ � α∗

(
κεe−ρl + kκε

0∫
−∞

e�se−ρ(l+s) ds

)∥∥M∗(ω) − x
∥∥∞

� κ̃εe−ρl
∥∥M∗(ω) − x

∥∥∞,

for a large enough constant κ̃ε independent of l. Consequently, using (4.7),

∥∥∥∥∥Uω(t)

t∫
0

U−1
ω (l)

(
L
(
τ
(
l,ω, M∗(ω)

)) − L
(
τ (l,ω, x)

))
dl

∥∥∥∥∥ � kκ̃εe−�t

( t∫
0

e(�−ρ)l dl

)∥∥M∗(ω) − x
∥∥∞

<
kκ̃ε

� − ρ
e−ρt

∥∥M∗(ω) − x
∥∥∞.

This relation, (5.13), and the expressions of zI (t,ω, x, c) and Ĩ(ω · t) show that the statements of the
theorem hold for ρ and a large enough ηε . The proof is complete. �
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