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Abstract

Using the quark–meson coupling model, we calculate the form factors atσ - andω-nucleon strong-interaction vertices
nuclear matter. The Peierls–Yoccoz projection technique is used to take account of center of mass and recoil correc
also apply the Lorentz contraction to the internal quark wave function. The form factors are reduced by the nuclear
relative to those in vacuum. At normal nuclear matter density andQ2 = 1 GeV2, the reduction rate in the scalar form fact
is about 15%, which is almost identical to that in the vector one. We parameterize the ratios of the form factors in sy
nuclear matter to those in vacuum as a function of nuclear density and momentum transfer.
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The change of hadron properties in a nucl
medium is of fundamental importance in understa
ing the implication of QCD for nuclear physics. On
of the most famous nuclear medium effects may be
nuclear EMC effect [1], and it has stimulated theor
ical and experimental efforts to seek nuclear qua
gluon effects for almost two decades.

Recently, the search for modification of the ele
tromagnetic form factors of bound protons has b
performed in polarized (�e, e′ �p) scattering experiment
on 16O and4He nuclei [2]. The experiments measur
the ratio of transverse to longitudinal polarization
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the ejected proton, which is proportional to the ra
of electric to magnetic form factors of a proton. Ho
ever, conventional calculations including free-pro
form factors, appropriate optical potentials and bou
state wave functions as well as relativistic correctio
meson-exchange currents (MEC), isobar contributi
and final-state interactions, fail to reproduce the
served results in4He [2,3]. Indeed, full agreement wit
the experimental data was only obtained when, in
dition to the standard nuclear calculation, a chang
the form factors which is caused by the structure m
ification of bound proton [2,4], was taken into accou

Recent inclusive neutrino experiments on12C at
Los Alamos [5] also suggest that the measured t
cross section is about a half of the standard, relati
tic shell model calculation including final-state inte
 license.
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actions within the distorted wave impulse approxim
tion [6]. In the neutrino reaction, the charged-curr
vector form factors of bound nucleons are sligh
enhanced, while the axial form factors are quenc
by the nuclear medium [7]. Finally, the effect of th
bound nucleon form factors reduces the total cross
tion by about 8% relative to that calculated with t
free form factors [8]. We stress that this correction
caused by the change of the internal quark wave fu
tion at the mean-field level and hence there is no
vious double counting with MEC etc. This is a ne
effect which should be taken into account additiona
to the standard nuclear corrections.

Furthermore, the measurements of polarizat
transfer observables in exclusive (�p, 2�p) proton knock-
out reactions from various nuclei [9,10] again indic
that it is difficult to account for the measured pola
ization transfers within the conventional, relativis
distorted wave impulse approximation [11]. To rep
duce the measured spin observables, it is necessa
simultaneously reduce the scalar (σ ) and vector (ω)
coupling constants and the meson masses by abou
20% [11]. In particular, the analyzing power (Ay ), po-
larization (P ) and spin transfer coefficient (Dss ′) are
very sensitive to the change ofσ - andω-nucleon cou-
pling constants and their masses in a nuclear med
These may again imply the change in the inter
structure of bound nucleons.

If the quark substructure of the nucleon is modifi
depending on the nuclear environment, it would le
traces in a variety of processes and observab
including various form factors. These modifications
bound nucleons can be successfully described wi
the context of the quark–meson coupling (QM
model [12]. In the model, the medium effects ar
through the self-consistent coupling ofσ and ω

mesons to confined quarks, rather than to the nucle
As a result, the internal structure of the bound nucl
is modified by the surrounding nuclear medium.

The electromagnetic form factors of bound nuc
ons [4] have been studied using an improved clo
bag model (ICBM) [13,14], together with the QM
model. In the ICBM, a simplified Peierls–Thoule
projection technique (the weight functionw( �p) ap-
pearing in the nucleon wave function is assumed to
unity) is used to account for center of mass (c.m.)
recoil corrections. In addition to it, a Lorentz contra
tion of the internal quark wave function is include
.

The axial form factor in nuclear matter has also be
calculated in a similar manner [7]. Furthermore,
form factors atσ - and ω-nucleon strong-interactio
vertices in a nuclear medium should also be inve
gated. The change of these form factors is very
nificant in understanding how the strong interaction
modified in nuclear matter. It is also expected to p
an important role in analyzing the polarization trans
observables in the exclusive (�p, 2�p) reactions [9,10].

In this Letter, we study the scalar and vector fo
factors atσ - and ω-nucleon strong-interaction ve
tices in symmetric nuclear matter. We shall calc
late these form factors using a relativistic constitu
quark model with a harmonic oscillator (HO) [15]
a linearly rising (LR) confining potential [16] and th
Peierls–Yoccoz (PY) projection technique. If we u
the “minimax” principle (or the saddle point varia
tional principle) [16,17], it is easy to obtain an appro
imate solution to the Dirac equation withany poten-
tial. Since we choose a Gaussian wave function fo
confined quark as ansatz, it is possible to calculate
form factors analytically and thus transparent to
how the PY projection and the Lorentz contraction
the quark wave function work in the form factors. I
stead, in this exploratory study, we do not include
pion cloud effect which can explicitly be treated in t
ICBM. (We will study this effect in a forthcoming pa
per.)

In the QMC model, the mean-field approximati
is applied to theσ andω meson fields, which coupl
to confined (u or d) quarks in nuclear matter. Eac
quark then satisfies the Dirac equation

(1)
[−i �α · �∇ + γ 0m∗

q + Uconf(r)
]
ψ(�r) = Eqψ(�r),

wherem∗
q = mq − g

q
σ σ̄ andEq = εq − g

q
ωω̄ with εq

the quark energy. We take the free quark massmq to
be 300 MeV. The mean-field values ofσ andω mesons
are respectively denoted bȳσ and ω̄, and g

q
σ and

g
q
ω are the corresponding quark and meson coup

constants. We use a confining potential of HO ty
Uconf(r) = (c/2)(1+βγ 0)r2, or a LR one,Uconf(r) =
(λ/2)(1 + βγ 0)r, whereβ (0 � β � 1) controls the
strength of the Lorentz vector-type potential. T
potential strength is taken to bec = 0.04 GeV3 or
λ = 0.2 GeV2 [18].

Although for the LR potential the Dirac equatio
cannot be solved analytically, the minimax princip
allows us to obtain an approximate solution very e
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ily and accurately [17]. Since the Dirac Hamiltoni
does not have a lower bound for the energy spectr
the usual variational method cannot be applied. T
minimax principle amounts to minimizing (maximiz
ing) the energy expectation value of the upper (low
component of the quark wave function with respec
variational parameters. A trial wave function for t
lowest-energy state is usually chosen as

(2)ψ(�r) = N0

(
u(r)

iξb�σ · �ru(r)

)
χs,

with N0 a normalization constant,u(r) = e−b2r2/2 and
b andξ the variational parameters. These parame
are determined so as to minimize the quark energεq

with respect tob and maximize it with respect toξ .
Note that for the HO potential withβ = 1 this gives
the exact solution [19].

First, we fix the parameters of the model in vacuu
The nucleon mass in vacuum (σ̄ = ω̄ = 0) is given
by MN = 3εq − ε0, whereε0 accounts for correction
of c.m. and gluon fluctuations. The parameterε0 is
fitted so as to obtain the free nucleon massMN

(= 939 MeV). The minimax principle then determin
the parametersb and ξ . These values are given
Table 1.

In matter, the scalar field couples to the confin
quark and hence the quark mass changes depen
on the nuclear environment. The nucleon mass
matterM∗

N is then reduced because theσ exchange
induces an attractive force between nucleons. In
isosymmetric nuclear matter, the total energy (
nucleon) at nuclear densityρB is given by the usua
expression in the QMC model [12]

Etot = 4

ρB(2π)3

kF∫
d �k

√
M∗2

N + �k2
g

(3)+ m2
σ

2ρB

σ̄ 2 + g2
ω

2m2
ω

ρB,

wheremσ (= 550 MeV) andmω (= 783 MeV) are re-
spectively theσ andω meson masses, andgω (= 3g

q
ω)

is theω-nucleon coupling constant. The values of
scalar and vector mean fields are, respectively, de
mined by self-consistency conditions:(∂Etot/∂σ̄ ) = 0
and (∂Etot/∂ω̄) = 0. The latter condition ensure
baryon number conservation, while the former giv
a transcendental equation for the scalar field in ma

The coupling constants are fitted so as to rep
duce the nuclear saturation property (Etot − MN =
−15.7 MeV) at normal nuclear matter densityρ0
(= 0.17 fm−3). Note that for each value ofρB one has
to use the minimax principle to obtain the in-mediu
parametersb and ξ . The coupling constants and n
clear properties atρ0 are listed in Table 1. Theσ -
nucleon coupling constantgσ is defined in terms of the
quark scalar densitySN : gσ = 3g

q
σ SN (σ̄ = 0), where

SN (σ̄ ) = ∫
d�r ψ̄(r)ψ(r).

The wave function for a nucleon moving wi
momentum�p can be constructed by the PY projecti
technique [13,20]:

(4)

Ψ (�r1, �r2, �r3; �p) = N( �p)

∫
d �x ei �p·�xΦ(�r1, �r2, �r3; �x),

whereN( �p) is a momentum-dependent normalizati
constant

(5)
[
N( �p)

]−2 =
∫

d�r e−i�r · �p[
ρ(�r)

]3
,

with

(6)ρ(�r) =
∫

d �k
(2π)3

ei�k·�r ∣∣φ(�k)
∣∣2.

Here φ is the quark wave function in momentu
space. The localized stateΦ is simply given by a
st

92
44
16
27
81
52
Table 1
Coupling constants,ε0, b, ξ , MN and nuclear incompressibilityK . The parametersε0, b andξ are fixed in vacuum, whileb∗ , ξ∗ andM∗

N
are calculated at normal nuclear matter density. Hereε0, b andK are quoted in GeV. The value ofβ is specified in the parenthesis in the fir
column

g2
σ g2

ω ε0 b ξ b∗/b ξ∗/ξ M∗
N /MN K

HO(0) 88.64 120.8 1.08 0.380 0.288 0.941 1.12 0.649 0.3
HO(0.5) 75.38 91.88 1.38 0.425 0.351 0.946 1.14 0.720 0.3
HO(1) 65.12 69.65 1.63 0.464 0.401 0.955 1.15 0.774 0.3
LR(0) 93.95 133.0 1.30 0.364 0.249 0.932 1.11 0.619 0.4
LR(0.5) 85.21 113.5 1.75 0.418 0.304 0.934 1.13 0.667 0.3
LR(1) 76.78 95.16 2.15 0.464 0.349 0.939 1.13 0.712 0.3
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product of the three individual quark wave function

(7)Φ(�r1, �r2, �r3; �x) = ψ(�r1 − �x)ψ(�r2 − �x)ψ(�r3 − �x),

where �x refers to the location of the center of th
nucleon and�rj (j = 1, 2, 3) specifies the position o
thej th quark.

Because the nucleon consists of three point-
quarks, the expectation value of an operator w
respect to the nucleon wave function Eq. (4) may
given by a sum of the individual quark expectati
values [20]. In the Breit frame, where the initial (fina
momentum of the nucleon is taken to be−�q/2 (�q/2)
with �q the momentum transfer, the scalar and vec
form factors are respectively given by

(8)

Γ(s
v)

(
Q2) = 3

[
N

(
Q2)]2

∫
d�r ei �q·�r ψ̄(�r)

(
1

γ 0

)
ψ̃(�r, �q),

whereQ2 ≡ −q2
0 + �q 2 = �q 2, and we ignore a sma

tensor term at theω-nucleon coupling.̃ψ in Eq. (8) is
represented by

(9)ψ̃(�r, �q) =
∫

d �k
(2π)3ei�k·�rφ(�k)W(�k, �q),

where

(10)W(�k, �q) =
∫

d�r e−i(�q/2+�k)·�r[ρ̄(�r)
]2

,

and

(11)ρ̄(�r) =
∫

d �k
(2π)3e−i�k·�r φ̄(�k)φ(�k).

Now we can calculate the scalar and vector fo
factors in nuclear matter analytically:

Γ(s
v)

(
Q2, ρB

)
(12)=

(
Z0(ξ2)

Y v
0 (ξ2)

)
e−x2/6

∑2
i=0(x2)iY

(s
v)

i (ξ2)∑3
i=0(x2)iZi(ξ2)

,

wherex2 = Q2/b2,

(13)Z0
(
ξ2) = 1+ 3ξ2 + 7

2
ξ4 + 25

18
ξ6,

(14)Z1
(
ξ2) = 1

12
ξ2 + 1

9
ξ4 + 13

216
ξ6,

(15)Z2
(
ξ2) = 1

432
ξ4 + 1

1296
ξ6,

(16)Z3
(
ξ2) = 1

ξ6,

46656
and

(17)Y
(s

v)
0

(
ξ2) = 1−

(
3

1

)
ξ2 +

( 7
2

−7
6

)
ξ4 ∓ 25

18
ξ6,

(18)Y
(s

v)
1

(
ξ2) =

( 9
−7

)
32

ξ2 +
(−69

67

)
128

ξ4 ± 335

1152
ξ6,

(19)Y
(s

v)
2

(
ξ2) = ± 1

128
ξ4.

Recall that the variational parametersξ and b (thus
x2), which appear in the quark wave function, depe
onρB . We have renormalized the vector form factor
thatΓv = 1 is maintained at zero momentum transf
The scalar form factor is also rescaled by the sa
factor as in the vector case [20].

In contrast, if the c.m. correction is ignored, t
form factors are given by

(20)

Γ 0
(s

v)

(
Q2, ρB

) = e−x2/4(
1+ 3

2ξ2
)[

1∓ 3

2
ξ2

(
1− 1

6
x2

)]
.

Becausex2 is small andξ � 0.5 (for ρB/ρ0 � 2.0)
at small momentum transfer, we can expand the f
factors. Up toO(x2) or O(ξ2), we find thatΓ 0

(s
v)

=
1 − (3

0

)
ξ2 − x2/4, while Eq. (12) givesΓ(s

v)
= 1 −(2

0

)
ξ2 − x2/6. The c.m. correction thus moderates

reduction of the form factors.
Apart from the c.m. correction, it is also vita

to include the Lorentz contraction of the intern
quark wave function at moderate or large moment
transfer [13,21]. The full form factors̃Γ(s

v)
can be

obtained through a simple rescaling [4,13]

(21)Γ(s
v)

(
Q2) → Γ̃(s

v)

(
Q2) = η∗Γ(s

v)

(
η∗Q2),

whereη∗ = (M∗
N /E∗

N )2 with E∗
N =

√
M∗2

N + Q2/4.
The scaling factor in the argument arises from
coordinate transformation of the struck quark and
prefactorη∗ comes from the reduction of the integr
measure of two spectator quarks in the Breit frame
13]. Thus, the scaling factorη∗ (in vacuumη with
MN ) should appear in any nucleon(baryon)–me
form factors if the nucleon (baryon) is assumed to h
a three-quark cluster structure.

To illustrate the effects of the c.m. correction a
Lorentz contraction on the form factors, we show
Fig. 1 the vector form factor in vacuum. The c.
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Fig. 1. Vector form factor in vacuum (for the HO case withβ = 0.5).
The full result is denoted by the solid curve, while the dot-das
curve shows the result with the c.m. correction but without
Lorentz contraction. The result without both corrections (Eq. (2
is denoted by the dotted curve.

correction considerably enhances the form facto
comparison with the result without both effects (s
the dotted and dot-dashed curves in the figure).
effect of Lorentz contraction is also important. If th
Lorentz contraction is ignored, the form factor dro
away like ∼ e−x2/6 at large Q2. The inclusion of
the Lorentz contraction removes this objectiona
exponential falloff. Because of the factorη, the form
factor is proportional to 1/(1 + Q2/Λ2) and x2 is
modified tox2/(1+ Q2/Λ2) with Λ = 2MN (see also
Eq. (21)). As a result, the inclusion of the Loren
contraction enhances the form factor at largeQ2 (see
the dot-dashed and solid curves).

Because our aim is to study the density depende
of the form factors in nuclear matter, we consid
the ratios of the in-medium form factors to those
vacuum:

(22)R(s
v)

(
Q2, ρB

) = Γ̃(s
v)

(Q2, ρB)

Γ̃(s
v)

(Q2, ρB = 0)
.

The form factors in symmetric nuclear matterF(s
v)

are
thus given by

(23)F(s
v)

(
Q2, ρB

) = R(s
v)

(
Q2, ρB

) × F
emp
(s

v)

(
Q2),
where F
emp
(s

v)
are the form factors empirically dete

mined in vacuum [22]. In Fig. 2, the ratio of th
in-medium scalar (vector) form factor to that in va
uum is illustrated as a function ofQ2 and ρB . (Be-
cause the ratios for the LR potential are similar
those for the HO potential, we focus on the HO ca
for a while.) At ρB/ρ0 = 1 andQ2 = 1.0 GeV2, the
in-medium scalar (vector) form factor is reduced
15 (14)% relative to that in vacuum. The reduction r
depends onβ very weakly. By contrast, atρB/ρ0 = 2
andQ2 = 1.0 GeV2, the scalar form factor decreas
by 35 (29) [24]% for β = 0 (0.5) [1.0], while the
vector form factor diminishes by 28(26) [22]% for
β = 0 (0.5) [1.0]. At high density the dependence
the reduction onβ is thus rather strong, and the redu
tion rate is correlated withM∗

N (see Table 1).
As in the case of vacuum (see Fig. 1), the eff

of Lorentz contraction is again seen at largeQ2. For
example, atρB/ρ0 = 2 and Q2 = 1 GeV2, the vector
form factor with the Lorentz contraction is about 7
larger than that without it. We also note that, in the H
case withβ = 0.5, the full vector form factor gives th
root-mean-square radius of 0.53 fm. If we neglect
Lorentz contraction effect, it is 0.46 fm.

Finally, we parameterize the ratios for the sca
and vector form factors in Eq. (23). Such parame
izations are very useful in analyzing the experimen
results, e.g., for the exclusive (�p, 2�p) proton knock-
out reactions [9,10]. With an error less than 0.2%,
ratios can be represented by

R(s
v)

(
Q2, ρB

) = 1+ A(s
v)

(
Q2)(ρB/ρ0)

(24)+ B(s
v)

(
Q2)(ρB/ρ0)2,

where

(25)

As(y) = −
(

0.06829

0.06323

)
−

(
0.2302

0.2464

)
y +

(
0.1845

0.1711

)
y2

−
(

0.04613

0.04072

)
y3,

(26)

Av(y) = −
(

0.3856

0.3738

)
y +

(
0.3021

0.2668

)
y2

−
(

0.07763

0.06494

)
y3,
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Fig. 2. Ratios for the scalar (left panel) and vector (right panel) form factors in the case of the HO potential withβ = 0.5.
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(27)

Bs(y) =
(

0.005071

0.003569

)
−

(
0.02499

0.03304

)
y

+
(

0.09473

0.1167

)
y2 −

(
0.1070

0.1245

)
y3

+
(

0.03914

0.04474

)
y4,

(28)

Bv(y) = −
(

0.04296

0.05500

)
y +

(
0.2081

0.2271

)
y2

−
(

0.2380

0.2509

)
y3 +

(
0.08967

0.09337

)
y4.

In Eqs. (25)–(28), the upper (lower) numbers are
the case of the HO (LR) potential withβ = 0.5 (1.0),
which provides the effective nucleon massM∗

N /MN =
0.71–0.72 at ρ0 (see Table 1). The in-medium form
factors are thus given by Eqs. (23) and (24).

In summary, using the QMC model we have c
culated the form factors atσ - andω-nucleon strong-
interaction vertices in symmetric nuclear matter.
have applied both the PY projection technique a
the Lorentz contraction of the internal quark wa
function. The form factors are reduced by the nucl
medium relative to those in vacuum. The c.m. corr
tion moderates the reduction of the form factors
matter, and the Lorentz contraction is vital at lar
momentum transfer. We have found that the reduc
in the scalar form factor is about 15% atρB/ρ0 = 1
andQ2 = 1 GeV2. This rate is almost identical to tha
for the vector form factor. In contrast, the scalar a
vector form factors are respectively reduced by ab
30% and 25% atρB/ρ0 = 2 and Q2 = 1 GeV2. The re-
duction of the form factors is expected better to rep
duce the polarization transfer observables measur
 t

RCNP and iThemba laboratory [9,10]. We have
rameterized the ratios of the form factors in symm
ric nuclear matter to those in vacuum. This provid
a convenient formula to estimate the in-medium fo
factors. It is very intriguing to reanalyze the data
polarization transfer observables for exclusive (�p, 2�p)
proton knockout reactions [9,10] including the mo
fication of both the form factors and meson masse
matter [23].
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