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Abstract

We study cyclic codes of length pk over GR(p2,m), or equivalently, ideals of the ring GR(p2,m)/

〈upk − 1〉. We derive a method of representing the ideals, and classify all ideals in the ring GR(p2,m)/

〈upk − 1〉. We also analyse the duals, and identify the self-dual ideals.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Cyclic codes are an important class of codes from both a theoretical and a practical viewpoint.
Traditionally, cyclic codes had been studied over finite fields. However, it was discovered that
some good non-linear codes over Z2 can be viewed as binary images under a Gray map of linear
cyclic codes over Z4, and this had motivated the study of cyclic codes over finite rings.

The key to describing cyclic codes of length N over a ring R, like in the case of a finite
field, is to view them as ideals of the polynomial ring R[X]/〈XN − 1〉. Hence, to describe cyclic
codes over Zpe , we examine the ideals of the ring Zpe [X]/〈XN − 1〉. By the Chinese Remainder
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Theorem, it is therefore natural to look at the factorization of XN − 1 over Zpe . Unfortunately,
polynomials in Zpe [X] do not necessarily have a unique factorisation. In particular, XN −1 does
not factor uniquely when p | N .

In [2], Blackford circumvented this problem when he examined cyclic codes of length 2n,
where n is odd, over Z4. He considered the polynomial ring R = Z4[u]/〈u2 − 1〉 and identified
cyclic codes of length 2n over Z4 with constacyclic codes of length n over R. Dougherty et al. [4]
then generalised the results further. A key result in [4] (in our context) was that Zpe [X]/〈XN −1〉
is isomorphic to the direct sum of rings of the form GR(pe,m)[u]/〈upk − 1〉, where GR(pe,m)

denotes the Galois ring of characteristic pe with (pe)m elements, and k is the largest integer such
that pk divides N . Hence, it suffices to look at the ideals of the ring GR(pe,m)[u]/〈upk − 1〉.

Unfortunately, to account for all ideals in the ring GR(pe,m)[u]/〈upk − 1〉 is a tedious
process. Hence, we examine only the case of characteristic p2. In [1] and [3], the case of charac-
teristic 4 is thoroughly examined. However, their methods are too cumbersome to our case. So,
we introduce a new approach to this problem. In the next section, we define a new representation
of ideals, and in Section 3, we account for all ideals in GR(p2,m)[u]/〈upk − 1〉 in the form of
the new representation. Finally, in Section 4, we analyse the duals of the ideals in question.

2. A unique representation of ideals in GR(pe,m)[u]/〈upk − 1〉

In [4], Dougherty et al. derived a representation of any ideal in GR(pe,m)[u]/〈upk − 1〉 in
terms of e polynomials in the ideal concerned. Unfortunately, the choice of those polynomi-
als is not unique. Here, we make some refinements and obtain a unique representation for any
such ideal in Theorem 2.5. This enables us to enumerate all ideals efficiently in GR(pe,m)[u]/
〈upk − 1〉 when e = 2. Indeed, it should be possible to use our representation to enumerate all
ideals when e is very small.

Let S be the finite ring GR(pe,m)[u]/〈upk − 1〉 and S be the ring Fpm [u]/〈upk − 1〉. We
define a map

μ :S → S

f (u) �→ f (u) (mod p).

It can be easily verified μ is a surjective ring homomorphism. With this map, we define the
following for any ideal C in S.

Definition 2.1. For 0 � i � e − 1, we define

Tori (C) = μ
({

v ∈ S
∣∣ piv ∈ C

})
.

Tori (C) is called the ith torsion code of C. Usually, Tor0(C) = μ(C) is called the residue code
and sometimes denoted by Res(C).

Next, we sum up some results from [4] and restate it as Theorems 2.2 and 2.4.

Theorem 2.2. Let i be an integer such that 0 � i � e − 1. Then Tori (C) is an ideal of S and
Tori (C) = 〈(u − 1)Ti 〉 for some 0 � Ti � pk . Moreover, we have the following:
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(i) |Tori (C)| = (pm)p
k−Ti .

(ii) If g(u) ∈ S and pi((u − 1)ti + pg(u)) ∈ C, then ti � Ti .
(iii) pk � T0 � T1 � · · · � Te−1 � 0.
(iv) |C| = (pm)ep

k−(T0+T1+···+Te−1).

Definition 2.3. Let C be an ideal in S. For each 0 � i � e − 1, define Ti(C) to be the Ti found in
Theorem 2.2. We say Ti(C) is the ith-torsional degree of C.

Note that Ti is the smallest degree amongst all the degrees of non-zero polynomials
in Tori (C).

We have the following variation of Theorem 6.5 in [4].

Theorem 2.4. Let C be a non-zero ideal of S. Then

C = 〈
F0(u),F1(u), . . . ,Fe−1(u)

〉
,

where Fi(u) = pi((u − 1)Ti + pgi(u)) for some gi(u) ∈ S when Ti < pk and Fi(u) = 0 when
Ti = pk .

As in [4], it is reasonable to choose the e polynomials F0(u),F1(u), . . . ,Fe−1(u) to represent
the ideal C. However, the choice for Fi(u) is not unique. Moreover, the degree of the polyno-
mial Fi(u) is not necessarily Ti . Our aim is to impose extra conditions on Fi(u) so as to make
the choice of each Fi(u) unique.

First, observe that we can rewrite
∑N

j=0 aj (u − 1)j as 0, or, (u − 1)th(u), where h(u) is a
unit with coefficients belonging to Tm and t � N . For convenience, we shall define the set of
polynomials in u with coefficients belonging to Tm as Tm[u]. Hence, we say that we can rewrite
the expression

∑N
j=0 aj (u − 1)j as (u − 1)th(u), where h(u) ∈ Tm[u] and h(u) is either zero or

a unit, and vice versa.

Theorem 2.5. Let C be an ideal of S = GR(pe,m)[u]/〈upk − 1〉. Then C can be expressed as
being generated by e polynomials, say f0(u), f1(u), . . . , fe−1(u), where,

(i) when Ti(C) < pk ,

fi(u) = pi(u − 1)Ti + pi+1(u − 1)t1,i h1,i (u) + pi+2(u − 1)t2,i h2,i (u)

+ · · · + pe−1(u − 1)te−1−i,i he−1−i,i (u),

where hj,l(u) ∈ Tm[u], hj,l(u) is either zero or a unit and tj,l + deghj,l < Tj+l , or,
(ii) when Ti(C) = pk ,

fi(u) = 0.

Moreover, the e-tuple (f0(u), f1(u), . . . , fe−1(u)) is unique. In other words, if there is another
e-tuple of polynomials satisfying the conditions in the theorem, say (f ′

0(u), f ′
1(u), . . . , f ′

e−1(u)),
then the two e-tuples are equal.
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Proof. When C = {0}, the theorem holds trivially.
When C is non-zero, we rewrite the expression in (i) as:

fi(u) = pi(u − 1)Ti + pi+1
Ti+1−1∑

j=0

bj,1,i (u − 1)j + pi+2
Ti+2−1∑

j=0

bj,2,i (u − 1)j

+ · · · + pe−1
Te−1−1∑

j=0

bj,e−1−i,i (u − 1)j ,

where bj,l,i ∈ Tm, and proceed to prove the theorem in this form.
Since C is non-zero, there exists a smallest r such that Tr < pk . From Theorem 2.4, we

can express C as 〈F0(u), F1(u), . . . ,Fe−1(u)〉 where Fi(u) = pi((u − 1)Ti + pgi(u)) for some
gi(u) ∈ C for r � i � e − 1 and Fi(u) = 0 for 0 � i � r − 1. Hence, for each r � i � e − 1, we
rewrite

Fi(u) = pi(u − 1)Ti + pi+1
pk−1∑
j=0

aj,1,i (u − 1)j + pi+2
pk−1∑
j=0

aj,2,i (u − 1)j

+ · · · + pe−1
pk−1∑
j=0

aj,e−1−i,i (u − 1)j ,

where aj,l,i ∈ Tm.
Let fe−1(u) = Fe−1(u) = pe−1(u − 1)Te−1 .

Consider Fe−2(u) = pe−2(u − 1)Te−2 + pe−1 ∑pk−1
j=0 aj,1,e−2(u − 1)j . Since fe−1(u) =

pe−1(u − 1)Te−1 ∈ C, we see that by subtracting a suitable multiple of fe−1(u), we obtain
pe−2(u − 1)Te−2 + pe−1 ∑Te−1−1

j=0 bj,1,e−2(u − 1)j . This polynomial satisfies the condition in
the theorem and hence let the polynomial be fe−2(u). Moreover, we can easily check that
C = 〈F0(u),F1(u), . . . ,Fe−2(u), fe−1(u)〉 = 〈F0(u),F1(u), . . . , fe−2(u), fe−1(u)〉.

Proceeding inductively, suppose we have chosen fi+1(u), . . . , fe−1(u) satisfying the condi-
tions in the theorem and that C = 〈F0(u),F1(u), . . . ,Fi(u), fi+1(u), . . . , fe−1(u)〉.

Again, by subtracting suitable multiples of fi+1(u), . . . , fe−1(u), we can obtain the polyno-
mial fi(u) of the form

fi(u) = pi(u − 1)Ti + pi+1
Ti+1−1∑

j=0

bj,1,i (u − 1)j + pi+2
Ti+2−1∑

j=0

bj,2,i (u − 1)j

+ · · · + pe−1
Te−1−1∑

j=0

bj,e−1−i,i (u − 1)j .

We can also check that C = 〈F0(u),F1(u), . . . ,Fi(u), fi+1(u), . . . , fe−1(u)〉 = 〈F0(u),F1(u),

. . . ,Fi−1(u), fi(u), . . . , fe−1(u)〉.
Hence, we have obtained e polynomials f0(u), f1(u), . . . , fe−1(u) such that C = 〈f0(u),

f1(u), . . . , fe−1(u)〉.



838 H.M. Kiah et al. / Finite Fields and Their Applications 14 (2008) 834–846
To prove the uniqueness, we suppose that C = 〈f ′
0(u), f ′

1(u), . . . , f ′
e−1(u)〉 such that

f ′
0(u), f ′

1(u), . . . , f ′
e−1(u) satisfy the conditions in the theorem. From the definition of f ′

e−1(u)

and fe−1(u), we can see that fe−1(u) = f ′
e−1(u) = pe−1(u − 1)Te−1 .

Next, let f ′
e−2(u) = pe−2(u − 1)Te−2 + pe−1 ∑Te−1−1

j=0 cj,e−1−i,e−2(u − 1)j where
cj,e−1−i,e−2 ∈ Tm. Consider

fe−2(u) − f ′
e−2(u) = pe−1

Te−1−1∑
j=0

(bj,e−1−i,e−2 − cj,e−1−i,e−2)(u − 1)j .

We rewrite the difference as pe−1(u−1)Kh(u) where h(u) is a unit or zero, and K � Te−1 −1 <

Te−1. If h(u) is a unit, then pe−1(u−1)K ∈ C implies that K � Te−1, a contradiction. Therefore,
h(u) = 0 and so fe−2(u) = f ′

e−2(u). Proceeding inductively, we have that fi(u) = f ′
i (u) for all i

and so the expression is unique. �
Note that in Theorem 2.5, C is generated by the polynomials f0(u), . . . , fe−1(u) as an

ideal, i.e. C = 〈f0(u), f1(u), . . . , fe−1(u)〉. However, as we would like to stress that these
e-polynomials also satisfied conditions in Theorem 2.5, we define the following notation.

Definition 2.6. Let C be an ideal of S. We define the unique e-tuple obtained from Theorem 2.5
to be the representation of C. In that case, we also say that C = 〈〈f0(u), f1(u), . . . , fe−1(u)〉〉.

Remark 2.7. We illustrate the differences between the representation given in Theorem 2.5 and
those given in [4] and [3]. Let us consider the ideals in Z4[X]/〈X4 − 1〉.

(i) Let C be the ideal generated by (X − 1)2. Theorem 2.5 gives the representation as
〈〈(X − 1)2,2(X − 1)2〉〉. However, Theorem 6.5 in [4] yields the following as possible
representations 〈(X − 1)2,0〉, 〈(X − 1)2 + 2(X − 1)2,0〉, 〈(X − 1)2 + 2(X − 1)3,0〉 and
〈(X − 1)2 + 2(X − 1)3 + 2(X − 1)2,0〉. Thus, the representation obtained by using [4, The-
orem 6.5] is not unique in general. However, it is interesting to note that [4, Theorem 6.5]
gives explicitly the torsional degrees.

(ii) Let C be the ideal generated by (X − 1)3. Theorem 2.5 gives the representation as
〈〈(X − 1)3,2(X − 1)2〉〉, while the representation will be 〈(X − 1)3〉 in [3]. From the last
representation, we see that the ideal is generated by one element. However, we cannot im-
mediately know all the torsional degrees of the ideal from the representation. Whereas in our
representation, we know all the torsional degrees.

Corollary 2.8. If 〈〈f0(u), f1(u), . . . , fe−1(u)〉〉 is the representation of C, then Ti(C) is the de-
gree of fi(u) when fi(u) 	= 0, and Ti(C) = pk when fi(u) = 0.

Here, we state some results which can be easily be deduced from Theorem 2.5. These corollar-
ies will describe the relation between Ti and polynomials with leading coefficient pi . Analogous
to the case over Zp , Ti is the lowest degree amongst the polynomials in C with leading coeffi-
cient pi .

Corollary 2.9. Suppose Ti < pk and let fi(u) be the polynomial constructed in Theorem 2.5.
Then fi(u) is a polynomial of degree Ti with leading coefficient pi .
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Proof. Clear from Theorem 2.5. �
Corollary 2.10. Suppose Ti < pk . Then the lowest degree amongst the polynomials in C with
leading coefficient pi is Ti .

Proof. Let the lowest degree amongst the polynomials in C with leading coefficient pi be ti .
From the above corollary, since fi(u) has degree Ti , it is clear that Ti � ti .

Conversely, let f (u) be the polynomial with leading coefficient pi and degree ti . Write
f (u) = pi(u − 1)ti + piti−1ζti−1(u − 1)ti−1 + · · · + pi0ζ0, where ζj is zero or a unit in S for
j = 0,1, . . . , ti − 1. In the case where ζj = 0, we let ij = e.

We claim that ij � i for all j . Suppose otherwise, then min{ij | j = 0,1, . . . , ti − 1} < i.
Then let r be the largest integer such that ir = min{ij | j = 0,1, . . . , ti − 1}. Hence, we can
write f (u) = pir (g(u) + ph(u)) where g(u), h(u) are polynomials in S and g(u) is of degree r

and has a leading coefficient not divisible by p. We note also that r = degg < ti . Therefore,
μ(g(u)+ph(u)) = μ(g(u)) ∈ Torir (C). Now, degμ(g) = degg and so degg � Tir . From above,
we have Ti � ti . Therefore,

Tir � degg < ti � Ti,

which contradicts Theorem 2.2(ii). Hence, min{ij | j = 0,1, . . . , ti − 1} � i.
Consequently, ij � i for all j and we can write f (u) as pi((u− 1)ti + z) for some z ∈ S. This

means that μ((u − 1)ti + z) = (u − 1)ti + μ(z) ∈ Tori (C). We note that degμ(z) < ti and hence
(u − 1)ti + μ(z) is non-zero. Therefore, ti � Ti .

Combining both inequalities, we have the result. �
When Ti = pk , it is not difficult to follow the above argument and conclude that there are no

polynomials in C with leading coefficient pi .

3. Ideals in GR(p2,m)[u]/〈upk − 1〉

In Section 2, we have found a way to represent an ideal uniquely by a set of e polynomials
in it. In this section, we will apply those results to determine all ideals in the ring S when e = 2.
In fact, the idea used in this section can be applied to the general case but the calculation involved
is much more tedious.

From now on, we will restrict ourself to the case when e = 2. Let S be GR(p2,m)[u]/
〈upk − 1〉 and let I be the set of all ideals in S. The objective of this section is to determine
all ideals in the ring S by using their representations.

Lemma 3.1. In S, (u − 1)p
l = upl − 1 − p(u − 1)p

l−1 ∑p−1
j=1

1
p

(
p
j

)
(u − 1)p

l−1(j−1) for all inte-
gers l.

For convenience, we denote
∑p−1

j=1
1
p

(
p
j

)
(u − 1)p

l−1(j−1) by Ωp,l . In case k = l, we have the
following:

Lemma 3.2. In S, for all integers k, (u − 1)p
k = −p(u − 1)p

k−1
Ωp,k .
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Suppose 〈f0(u), f1(u)〉 is a representation of an ideal C in S. If f0(u) = 0 and f1(u) =
p(u − 1)i1 , it is not difficult to verify that 〈〈f0(u), f1(u)〉〉 is indeed a representation of C. On
the other hand, suppose f0(u) = (u − 1)i0 + p(u − 1)th(u) and f1(u) = p(u − 1)i1 , where h(u)

is either zero or a unit in S. From Corollary 2.8 and Definition 2.6, to check if 〈〈f0(u), f1(u)〉〉
is indeed a representation of C, it suffices to show that Tj (C) = ij for j = 0,1. Therefore, the
crux of the problem is to compute the torsional degrees of the ideal C. To do so, we introduce
the notion of the annihilator ideal.

Definition 3.3. Let C be an ideal of S. We define the annihilator of C, denoted by Ann(C), to
be the set {f (u) ∈ S | f (u)g(u) = 0 for all g(u) ∈ C}.

Using standard argument, it is easy to verify the following:

Theorem 3.4. Let C be an ideal of S. Then Ann(C) is an ideal of S.

Theorem 3.5. Let C be an ideal of S and |C| = (pm)d . Then |Ann(C)| = (pm)(2·pk−d).

Theorem 3.6. Let C be an ideal of S. Then Ann(Ann(C)) = C. Furthermore, let A = {C ∈ I |
T0(C) + T1(C) � pk} and A′ = {C ∈ I | T0(C) + T1(C) � pk}. Then the map φ :A → A′;C �→
Ann(C) is a bijection.

Recall that our objective is to determine all ideals in S. In view of Theorem 3.6, it suffices to
account for the ideals in the set A = {C ∈ I | T0(C) + T1(C) � pk}.

As before, we assume C = 〈〈f0(u), f1(u)〉〉 in A. We note that if f0(u) = 0 then T0(C) = pk ,
and hence, T1(C) = 0. Therefore, the only ideal in A with f0(u) = 0 is of the form 〈〈0,p〉〉. Thus,
from now on, we may assume f0(u) 	= 0.

Theorem 3.7. 〈〈(u − 1)i0 + p(u − 1)th(u),p(u − 1)i1〉〉 is a representation of an ideal C in A if
and only if i0, i1, t are integers and h(u) ∈ Tm[u] such that 0 � i0 < pk , 0 � i1 � min{pk−1, i0},
t � 0, t + degh < i1 and h(u) is either zero or a unit in S.

Proof. Suppose 〈〈(u− 1)i0 +p(u− 1)th(u),p(u− 1)i1〉〉 is a representation of C in A. We shall
first show that i1 � pk−1.

Otherwise, we have i1 > pk−1. Since i0 + i1 � pk , we obtain pk−1 < pk − i0. As (u − 1)i0 +
p(u − 1)th(u) ∈ C, after multiplying it by (u − 1)p

k−i0 , we obtain

−p(u − 1)p
k−1

Ωp,k + p(u − 1)p
k−i0+t h(u) ∈ C.

Note that pk − i0 > pk−1. Hence,

−p(u − 1)p
k−1

Ωp,k + p(u − 1)p
k−i0+t h(u)

= p(u − 1)p
k−1(−Ωp,k + (u − 1)p

k−i0−pk−1+t h(u)
)
.

Now, (−Ωp,k +(u−1)p
k−i0−pk−1+t h(u)),−Ωp,k are units and (u−1)p

k−i0−pk−1+t h(u) is nilpo-

tent. Hence, p(u − 1)p
k−1 ∈ C. Therefore, i1 � pk−1. This contradicts our assumption.
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To finish our proof we only need to apply Theorem 2.5.
Conversely, we assume C = 〈(u−1)i0 +p(u−1)th(u),p(u−1)i1〉. To show C = 〈〈(u−1)i0 +

p(u − 1)th(u),p(u − 1)i1〉〉 and it suffices to show T0(C) = i0 and T1(C) = i1. We note the
following:

(
(u − 1)i0 + p(u − 1)th(u)

)(
(u − 1)p

k−i1 + p(u − 1)p
k−1−i1Ωp,k

− p(u − 1)p
k−i0−i1+t h(u)

) = 0,(
(u − 1)i0 + p(u − 1)th(u)

)(
p(u − 1)p

k−i0
) = 0 and(

p(u − 1)i1
)(

(u − 1)p
k−i1 + p(u − 1)p

k−1−i1Ωp,k − p(u − 1)p
k−i0−i1+t h(u)

) = 0.

Let D be the ideal 〈(u − 1)p
k−i1 + p(u − 1)p

k−1−i1Ωp,k − p(u − 1)p
k−i0−i1+t h(u),

p(u − 1)p
k−i0〉. Clearly, D ⊆ Ann(C). By Theorem 2.2(i), we have Tj (C) � ij and Tj (D) �

pk − i(1−j). Hence, |C| � (pm)2·pk−i0−i1 and |Ann(C)| � |D| � (pm)i0+i1 . However, by The-

orem 3.5, we have |C| · |Ann(C)| = (pm)2·pk
. Combining all three inequalities, we have

T0(C) = i0, T1(C) = i1 and Ann(C) = D. �
For convenience, we sum up the above results as follows:

Theorem 3.8. 〈〈(u− 1)i0 +p
∑i1−1

j=0 hj (u− 1)j ,p(u− 1)i1〉〉 is a representation of an ideal in A
if and only if i0, i1 are integers such that 0 � i0 < pk , 0 � i1 � min{pk−1, i0}, and i0 + i1 � pk

and hj ∈ Tm for all j .

Next, we count the number of ideals in S.

Corollary 3.9. In S, the number of distinct ideals with T0 + T1 = d , where d � pk , is

pm(K+1) − 1

pm − 1

where K = min{� d
2 �,pk−1}.

Proof. We fix T1 = i1, so, i0 = T0 = d − T1 is fixed.
We first assume d < pk . Hence, i0 < pk . By Theorem 3.8, 〈〈(u − 1)i0 + p

∑i1−1
j=0 hj (u − 1)j ,

p(u − 1)i1〉〉 is a representation, and we have (pm)i1 choices for
∑i1−1

j=0 hj (u − 1)j . By Theo-

rem 3.8, we have T1 � min{pk−1, T0}. But T0 + T1 = d means that T1 � min{pk−1, � d
2 �} = K .

We vary T1 from 0 to K , and we have 1 + (pm) + · · · + (pm)K = pm(K+1)−1
pm−1 ideals with

T0 + T1 = d .
Next, let d = pk . When i0 = pk , the only ideal with T0 + T1 = pk is the ideal represented by

〈〈0,p〉〉. When i0 < pk , we apply a similar argument as before. �
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4. Duals in GR(p2,m)[u]/〈upk − 1〉
In S = GR(p2,m)[u]/〈upk − 1〉, we define the dot product such that for all f (u) =∑pk−1
j=0 fju

j , g(u) = ∑pk−1
j=0 gju

j ∈ S,

f (u) · g(u) =
pk−1∑
j=0

fjgj .

With respect to the dot product, we define the dual of an ideal C, denoted by C⊥ as{
f (u) ∈ S

∣∣ f (u) · g(u) = 0 for all g(u) ∈ C
}
.

It can be shown that C⊥ is an ideal of S.
Next, we define the conjugate map as ¯ : GR(p2,m)[u]/〈upk −1〉 → GR(p2,m)[u]/〈upk −1〉,∑pk−1
j=0 aju

j �→ ∑pk−1
j=0 aju

−j , and we write the image as
∑pk−1

j=0 ajuj . For any ideal C of S,

we denote C to be the image of the conjugate map restricted to C. It can be shown that C is
also an ideal of S. In particular, we have the following theorem which describes the relation be-
tween Ann(C) and C⊥. The proof of which can be derived from a similar theorem, Theorem 7.37
in [5].

Theorem 4.1. Let C be an ideal of S. Then C⊥ = Ann(C).

From Theorem 3.8, we have the representation of an ideal C in A and from the proof, we have
the description of Ann(C). Hence, it is not difficult to determine Ann(C). We have the following
theorem.

Theorem 4.2. Let C be an ideal in A and C = 〈〈(u − 1)i0 + p
∑i1−1

j=0 hj (u − 1)j ,p(u − 1)i1〉〉
where hj ∈ Tm. Then C⊥ has the representation

〈〈
(u − 1)p

k−i1 − p(u − 1)p
k−i0−i1

i1−1∑
r=0

(
r∑

j=0

hj

(
i0 − j

r − j

))
(u − 1)r

+
K∑

r=1

( min{r,p−1}∑
j=1

(
p

j

)(
p − j

r − j

))
(u − 1)r·pk−1−i1,p(u − 1)p

k−i0

〉〉
,

where K = �pk−i0+i1−1
pk−1 �. In the case where K = 0, we regard the sum as zero.

Proof. As shown in the proof of Theorem 3.8, we have

Ann(C) =
〈
(u − 1)p

k−i1 − p(u − 1)p
k−i0−i1

i1−1∑
j=0

hj (u − 1)j

+ p(u − 1)p
k−1−i1Ωp,k,p(u − 1)p

k−i0

〉
.
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Hence, C⊥ = Ann(C) contains the elements, p(u − 1)p
k−i0 and

(u − 1)p
k−i1 − p(u − 1)p

k−i0−i1

i1−1∑
j=0

hj (u − 1)jui0−j +
p−1∑
j=1

(
p

j

)
(u − 1)j ·pk−1−i1upk−j ·pk−1

.

By using a similar argument as in the proof of Theorem 3.7 in calculating the number of elements
in C⊥ and Ann(C), C⊥ is indeed generated by the two elements. Hence, to obtain the desired
representation, we write u = (u − 1) + 1 and remove all terms p(u − 1)j with j � pk − i0. �

Next, we examine self-dual codes in S. Let C be an ideal of S. We say, C is self-dual if
C = C⊥. It is clear that if C is self-dual, then |C| = (pm)p

k
. Therefore, if C = 〈〈(u − 1)i0 +

p
∑i1−1

j=0 hj (u − 1)j ,p(u − 1)i1〉〉, where hj ∈ Tm, then we have i0 + i1 = pk . We rewrite the
representation of C as

〈〈
(u − 1)p

k−i1 + p

i1−1∑
j=0

hj (u − 1)j ,p(u − 1)i1

〉〉
.

By Theorem 4.2, C⊥ has the representation,

〈〈
(u − 1)p

k−i1 − p

i1−1∑
r=0

(
r∑

j=0

hj

(
pk − i1 − j

r − j

))
(u − 1)r ,p(u − 1)i1

〉〉
,

when i1 < �pk−1+1
2 �, or,

〈〈
(u − 1)p

k−i1 − p

i1−1∑
r=0

(
r∑

j=0

hj

(
pk − i1 − j

r − j

))
(u − 1)r + p(u − 1)p

k−1−i1 ,p(u − 1)i1

〉〉
,

when i1 � �pk−1+1
2 �.

By the uniqueness of the representation, if C = C⊥, then for r = 0,1, . . . , i1 − 1,

phr = p

(
−

(
r∑

j=0

hj

(
pk − i1 − j

r − j

))
+ cr

)
,

where cr = 1 when r = pk−1 − i1 and cr = 0 otherwise.
Therefore, our objective is to find the number of i1-tuples (ph0,ph1, . . . , phi1−1)

t such that

p

⎛
⎜⎜⎜⎜⎜⎜⎝

2 0 0 . . . 0(
pk−i1

1

)
2 0 . . . 0(

pk−i1
2

) (
pk−i1−1

1

)
2 . . . 0

...
...

...
. . .

...(
pk−i1

) (
pk−i1−1) (

pk−i1−2)

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

h0
h1
h2
...

hi1−1

⎞
⎟⎟⎟⎟⎠ = p

⎛
⎜⎜⎜⎜⎝

c0
c1
c2
...

ci1−1

⎞
⎟⎟⎟⎟⎠ .
i1−1 i1−2 i1−3 . . . 2
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We denote the i1 × i1 matrix to be M(pk, i1), and the last column �c. For convenience, we
regard the first column as the 0th column, the first row as the 0th row, and so on and so forth.

As all hi are in Tm, solutions exist if and only if

M
(
pk, i1

)
(x0, . . . , xi1−1)

t = (c0, . . . , ci1−1)
t

in Fpm . Let κ be the nullity of M(pk, i1) over Fpm . Then the number of solutions (h0, . . . ,

hi1−1) mod p is (pm)κ .
Since we are only interested in the i1-tuples (ph0, . . . , phi1−1)

t , the number of such i1-tuples
is still (pm)κ . We thus obtain the following result.

Theorem 4.3. Let N(pk, i1) denote the number of self-dual ideals in S with T1 = i1. Then,

N
(
pk, i1

) =
{

(pm)κ , when there is a solution for (x0, . . . , xi1−1)
t ,

0, otherwise.

In particular, when p is odd, M(pk, i1) is an upper triangular matrix with non-zero diagonal
entries in Fpm . Therefore, M(pk, i1) is invertible and hence the nullity is zero and the solution
for the matrix equation is always unique.

Therefore, we have the following corollary.

Corollary 4.4. Let p be odd. Then the number of self-dual ideals in S is pk−1 + 1. Furthermore,
let C be a self-dual ideal in S, and fix T1(C) = i1. Then C has the representation,

〈〈
(u − 1)p

k−i1,p(u − 1)i1
〉〉
, when i1 <

⌊
pk−1 + 1

2

⌋
, or,

〈〈
(u − 1)p

k−i1 + pa(u − 1)p
k−1−i1,p(u − 1)i1

〉〉
, when i1 �

⌊
pk−1 + 1

2

⌋
,

where a is the inverse of 2 in Tm (identifying pTm with Fpm ).

Proof. We note that when p is odd, 2 is a unit in Fpm . Hence, M(pk, i1) is an invertible matrix
and its nullity is zero. So for each i1 = 0,1, . . . , pk−1, the matrix equation has a unique solution.

When i1 < �pk−1+1
2 �, �c is a zero column vector, and hence h0 = h1 = · · · = hi1−1 = 0.

When i1 � �pk−1+1
2 �, �c is a column vector with 1 at the (pk−1 − i1)th coordinate with zeros

elsewhere. We note that, the (pk−1 − i1)th column consists of 2 at the (pk−1 − i1)th coordi-

nate. The (pk−1 − i1 + j)th coordinate is
(
pk−pk−1

j

)
when 1 � j � 2i1 − pk−1 − 1. Moreover,(

pk−pk−1

j

) = 0 when 1 � j � 2i1 − pk−1 − 1. Hence, we check that hpk−1−i1
= a and hj = 0,

when j 	= pk−1 − i1, is indeed the unique solution. We thus obtain the above representations. �
Unfortunately, when p = 2, M(2k, i1) is a lower triangular matrix with the leading coeffi-

cient 0. Hence, the calculation is more involved, and so we restrict our analysis to small k. We
have the following corollary.
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Corollary 4.5. For k ∈ {1,2,3,4} and C is a self-dual ideal in S if and only if C is one of the
following:

(i) (k = 1) 〈〈0,2〉〉;
(ii) (k = 2) 〈〈0,2〉〉, or, 〈〈(u − 1)3 + 2h0,2(u − 1)〉〉;

(iii) (k = 3) 〈〈0,2〉〉, 〈〈(u− 1)7 + 2h0,2(u− 1)〉〉, or, 〈〈(u− 1)6 + 2(h1(u− 1)+h0),2(u− 1)2〉〉;
(iv) (k = 4) 〈〈0,2〉〉, 〈〈(u − 1)15 + 2h0,2(u − 1)〉〉, 〈〈(u − 1)14 + 2(h1(u − 1) + h0),2(u − 1)2〉〉,

〈〈(u − 1)13 + 2(h2(u − 1)2 + h1(u − 1)),2(u − 1)3〉〉, 〈〈(u − 1)12 + 2(h3(u − 1)3 +
h2(u−1)2 +h0),2(u−1)4〉〉, 〈〈(u−1)11 +2(h4(u−1)4 +h3(u−1)3 + (1−h1)(u−1)2 +
h1(u − 1)),2(u − 1)5〉〉, 〈〈(u − 1)10 + 2(h5(u − 1)5 + h4(u − 1)4 + h2(u − 1)2 +
(1−h0)(u−1)+h0),2(u−1)6〉〉, or, 〈〈(u−1)9 +2(h6(u−1)6 +h5(u−1)5 +h3(u−1)4 +
h3(u − 1)3 + h1(u − 1) + 1),2(u − 1)7〉〉,

where hj ∈ Tm.
Moreover, the number of self-dual ideals in S is

(i) (k = 1) 1;
(ii) (k = 2) 1 + 2m;

(iii) (k = 3) 1 + 2m + 2(2m)2;
(iv) (k = 4) 1 + 2m + 2(2m)2 + 2(2m)3 + 2(2m)4.

Remark 4.6. We note that: the results of Corollary 4.5(i), (ii) and (iii) agree with Corollaries 5.6
and 5.7 in [3]. However, in (iv), we note that authors in [3] has left out the case where i1 = 7.

5. Conclusion

We have introduced a method of representing the ideals in GR(pe,m)[u]/〈upk − 1〉. The
method enabled us to classify all ideals in the ring GR(p2,m)/〈upk − 1〉. We also analysed the
duals, and identified all the self-dual ideals when p is odd. When p = 2, we analysed for the
case where k is small. An open problem is to derive a closed formula for the number of self-dual
ideals for all k when p = 2.

Another problem is to classify all ideals in GR(pe,m)[u]/〈upk − 1〉 for e � 3 and for
any prime p. Here, one could follow an approach similar to that in Theorem 3.7. To verify
if 〈〈f0(u), f1(u), . . . , fe−1(u)〉〉 is the representation of an ideal in GR(pe,m)[u]/〈upk − 1〉,
one could construct polynomials g0(u), g1(u), . . . , ge−1(u) such that fi(u)gj (u) = 0 for all
i, j = 0,1, . . . , e − 1 and

∑e−1
i=0 degfi(u) + deggi(u) = e · pk . However, such a constructive

approach gets unwieldy with large e.
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