
Computers and Mathematics with Applications 59 (2010) 2734–2742

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

Product structure of the fuzzy n-ary factor polygroup
Minghao Yin ∗, Tingting Zou, Wenxiang Gu, Jianan Wang
College of Computer Science, Northeast Normal University, ChangChun, 130024, China
Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, 130012, China

a r t i c l e i n f o

Article history:
Received 5 May 2009
Received in revised form 18 January 2010
Accepted 19 January 2010

Keywords:
n-ary polygroup
Fuzzy n-ary factor polygroup
Direct product of the fuzzy n-ary
polygroups
Inner product of the fuzzy n-ary polygroups

a b s t r a c t

Fuzzy n-ary hypergroups were introduced as suitable generalizations of fuzzy polygroups
and a special case of fuzzy n-ary hyper groups. The aim of this paper is to introduce the
notion of fuzzy n-ary factor polygroups of a polygroup. Based on the fuzzy n-ary factor
group, we also study the product structures of the generating fuzzy factor n-ary groups. At
the end of the paper, we prove the fundamental theorem of isomorphism of fuzzy n-ary
groups.
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1. Introduction

Since the concept of hypergroups was first introduced by Marty in his pioneering paper [1] in 1934, the properties of
hypergroups have been studied by many scholars around the world. Moreover, over the past decades hypergroups have
been widely used in the fields of algebra, geometry, convexity and computer science [2–4]. Polygroups, as an important
subclass of hypergroups, were introduced by Ghadiri andWaphare [5] and Comer [6,7]. Researches in polygroups have also
produced a large number of papers. The concepts ofmatrix representations of polygroups over hyperrings and the polygroup
hyperring were introduced by Davvaz and Pousalavati [8], and the concept of fuzzy rough polygroups was introduced in [9].
Up to now, n-ary operations have been investigated by many authors, and the applications of n-ary systems in the

theory of automata [10] and quantum groups [11]. The concept of n-ary polygroups, which was a suitable generalization
of polygroups, was first introduced by Ghadiri and Waphare [12]. Based on n-ary polygroups, the concept of a fuzzy n-ary
subgroup was introduced by Davvaz [13]. In this paper, we propose the notion of fuzzy n-ary factor polygroups. By using
the concept of fuzzy n-ary factor polygroups, we then study the product structures of fuzzy n-ary polygroups. Additionally,
we prove the fundamental theorem of isomorphism of fuzzy n-ary groups.
The remainder of the paper is structured as following. In Section 2, we review some results about fuzzy n-ary polygroups.

In Section 3 we introduce the concept of the fuzzy n-ary factor group. In Section 4, we study the product structures of
fuzzy n-ary polygroups, their properties, and the homomorphism image of the fuzzy n-ary polygroups. In the last section, a
conclusion is presented.

2. Preliminaries

First, we recall some basic definitions and propositions, which will be used in our paper. In this paper, A[α] will denote
the set {x : A(x) ≥ α}.
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Definition 2.1 ([5]). An n-ary polygroup is a multivalued system 〈P, f , e, −1〉, where e ∈ P, −1 is a unitary operation on P , f
is an n-ary hyperoperation on P , and the following axioms hold for all i, j ∈ 1, . . . , n, x1, . . . , x2n−1, x ∈ P:
(1)

f
(
xi−11 , f (xn+i−1i ), x2n−1n+i

)
= f

(
xj−11 , f (xn+j−1i ), x2n−1n+j

)
.

(2) e is a unique element, such that f (e, . . . , e︸ ︷︷ ︸
i

, x, e, . . . , e︸ ︷︷ ︸
n−i

) = x.

(3) x ∈ f (xn1) implies xi ∈ f (x
−1
i−1, . . . , x

−1
1 , x

−1
n , . . . , x

−1
i+1).

Below we present an example of 2-ary polygroups.

Example 2.1. Let P = {e, x, y, z} be a set endowed with a 2-ary hyper-operation f as follows:

f (e, e) = e f (e, x) = x f (e, y) = y f (e, z) = z
f (x, e) = x f (x, x) = {x, y, z} f (x, y) = P f (x, z) = P
f (y, e) = y f (y, x) = P f (y, y) = {x, y, z} f (y, z) = P
f (z, e) = z f (z, x) = P f (z, y) = P f (z, z) = {x, y, z}.

For any xi ∈ P (i = 1, . . . , 3), we have

f (f (x1, x2), x3) = f (x1, f (x2, x3)),

i.e., f is associative. We suppose that −1 : P → P is the identity function on P . We have

e−1 = e, x−1 = x, y−1 = y, z−1 = z.

It is easy to see that a ∈ f (x1, x2) implies that

x1 ∈ f (a, x−12 ), x2 ∈ f (x−11 , a),

for every xi ∈ P (i = 1, . . . , 3). Therefore H = 〈P, f , e, −1〉 is a 2-ary polygroup.

Definition 2.2 ([13]). Let P be an n-ary polygroup. A fuzzy subset µ of P is called a fuzzy n-ary subpolygroup of P if the
following axioms hold:
(1)

min{µ(x1), . . . , µ(xn)} ≤ inf
z∈f (xn1)

{µ(z)}.

(2) µ(x) ≤ µ(x−1) for all x ∈ P .

Example 2.2. Let H be a fuzzy subpolygroup of a polygroup P . If for all x1, x2, . . . , xn ∈ P , we define f (xn1) = x1, . . . , xn then
(P, f ) is an n-ary polygroup with the same scalar identity, and H is a fuzzy n-ary polygroup.

Definition 2.3 ([13]). Let µ be a fuzzy n-ary subpolygroup of P . Then µ is said to be normal if, for all x, y ∈ P ,

µ(z) = µ(z ′), ∀z ∈ f (x, y, e∗), ∀z ′ ∈ f (y, x, e∗).

It is obvious that if µ is normal then, for all x, y ∈ P ,

µ(z) = µ(z ′), ∀z ∈ f (x, y, e∗), ∀z ′ ∈ f (y, x, e∗).

Definition 2.4 ([13]). Let µ be a fuzzy n-ary subpolygroup of P . Then the following conditions are equivalent:
(1) µ is normal.
(2) For all x, y ∈ P and for all z ∈ f (x, y, x−1, e∗), µ(z) = µ(y).
(3) For all x, y ∈ P and for all z ∈ f (x, y, x−1, e∗), µ(z) ≥ µ(y).
(4) For all x, y ∈ P and for all z ∈ f (x−1, y−1, x, y, e∗), µ(z) ≥ µ(y).

Proposition 2.1 ([13]). Let ϕ : P1 → P2 be a strong homomorphism.
(1) If µ is a fuzzy n-ary subpolygroup of P1, then ϕ(µ) is a fuzzy n-ary subpolygroup of P2.
(2) If λ is a fuzzy n-ary subpolygroup of P2, then ϕ−1(λ) is a fuzzy n-ary subpolygroup of P1.

Definition 2.5 ([13]). Let 〈P1, f , e1, −1〉 and 〈P2, f , e2, −1〉 be two n-ary polygroups. Let µ, λ be fuzzy n-ary subpolygroups
of P1, P2, respectively. Then the direct product µ× λ is the fuzzy subset of P1 × P2 defined by

(µ× λ)(x, y) = min{µ(x), λ(y)}, for all (x, y) ∈ P1 × P2.

Proposition 2.2 ([13]). Let 〈P1, f , e1, −1〉 and 〈P2, f , e2, −1〉 be two n-ary polygroups, andµ, λ be fuzzy n-ary subpolygroups of
P1, P2, respectively. Then µ× λ is the fuzzy n-ary subpolygroup of P1 × P2.
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3. Fuzzy n-ary factor polygroup

Definition 3.1. Let 〈P, f , e, −1〉 be an n-ary polygroup, and B be a fuzzy n-ary subpolygroup of P , and a ∈ P . Then f (a, B, e∗)
(f (B, a, e∗)) is called a left (right) fuzzy n-ary coset of B in P defined as follows:

f (a, B, e∗)(x) = B(f (a−1, x, e∗)), for any x ∈ P (f (B, a, e∗)(x) = B(f (x, a−1, e∗)), for any x ∈ P)
B(f (a−1, x, e∗)) = sup

z∈f (a−1,x,e∗)
{B(z)}.

It is clear that B is normal iff f (a, B, e∗) = f (B, a, e∗) for all a ∈ P .

Proposition 3.1. Let 〈P, f , e, −1〉 be an n-ary polygroup; if B is a fuzzy n-ary subpolygroup of P, then, for any a, b in P,
f (a, B, e∗) = f (b, B, e∗) iff B(f (a−1, b, e∗)) = B(e).

Proof. For any x ∈ P , let f (a, B, e∗)(x) = f (b, B, e∗)(x); then B(f (a−1, x, e∗)) = B(f (b−1, x, e∗)). Let x = b; then

B(f (a−1, b, e∗)) = B(f (b−1, b, e∗)).

Since e ∈ f (b−1, b, e∗), for any z ∈ f (b−1, b, e∗), we have B(e) ≥ B(z), so B(f (b−1, b, e∗)) = B(e). Hence

B(f (a−1, b, e∗)) = B(e).

Conversely, assume that B(f (a−1, b, e∗)) = B(e).
(1) For any z ∈ f (a−1, x, e∗) ⊆ f (a−1, b, b−1, x, e∗) = f (f (a−1, b, e∗), f (b−1, x, e∗), e∗), then

B(z) ≥ min{B(f (a−1, b, e∗)), B(f (b−1, x, e∗)), B(e)}.

Since B(f (a−1, b, e∗)) = B(e), we have B(z) ≥ B(f (b−1, x, e∗)); hence

B(f (a−1, x, e∗)) = sup
z∈f (a−1,x,e∗)

{B(z)} ≥ B(f (b−1, x, e∗)).

(2) For any z ∈ f (b−1, x, e∗) ⊆ f (b−1, a, a−1, x, e∗) = f (f (b−1, a, e∗), f (a−1, x, e∗), e∗), then

B(z) ≥ min{B(f (b−1, a, e∗)), B(f (a−1, x, e∗)), B(e)}.

Since B(f (b−1, a, e∗)) ≥ B(f (a−1, b, e∗)) = B(e), we have B(z) ≥ B(f (a−1, x, e∗)); hence

B(f (b−1, x, e∗)) = sup
z∈f (b−1,x,e∗)

{B(z)} ≥ B(f (a−1, x, e∗)).

So we have B(f (a−1, x, e∗)) = B(f (b−1, x, e∗)). Hence f (a, B, e∗) = f (b, B, e∗). �

Proposition 3.2. Let 〈P, f , e, −1〉 be an n-ary polygroup, and B be a fuzzy n-ary subpolygroup of P. For any a, b in P, if
f (a, B, e∗) = f (b, B, e∗) then f (a−1, B, e∗) = f (b−1, B, e∗).

Proposition 3.3. Let 〈P, f , e, −1〉 be an n-ary polygroup, and B be a fuzzy n-ary subpolygroup of P. For any a, b in P, let
X = {x : f (x, B, e∗) = f (a, B, e∗)}, Y = {x : f (x, B, e∗) = f (b, B, e∗)}, Z = {x : f (x, B, e∗) = f (a, b, B, e∗)}.
Then f (X, Y , e∗) = Z.

Proof. Clearly f (X, Y , e∗) is included in Z .
Let x ∈ Z; so f (x, B, e∗) = f (a, b, B, e∗). Then B(f (x−1, a, b, e∗)) = B(e) or B(f (f (a−1, x, e∗), b, e∗)) = B(e). Hence

f (a−1, x, e∗) ∈ Y .

Thus x ∈ f (a−1, a, x, e∗) ⊆ f (a, f (a−1, x, e∗), e∗) ∈ f (X, Y , e∗). Hence

f (X, Y , e∗) = Z .

We consider the fuzzy n-ary factor polygroup as a fuzzy set. Let 〈P, f , e, −1〉 be an n-ary polygroup, and B be a fuzzy n-ary
normal subpolygroup of P . For f (a1, B, e∗), . . . , f (an, B, e∗) in P/B, we define

P/B = {f (a, B, e∗) | a ∈ P},
F : P/B× P/B× · · · × P/B︸ ︷︷ ︸

n

→ ϑ∗(P/B).

F(f (a1, B, e∗), . . . , f (an, B, e∗)) = {f (a, B, e∗) | a ∈ f (an1)},

and
−I
: P/B→ P/B

f (a, B, e∗)−I = f (a−1, B, e∗). �
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Proposition 3.4. Let 〈P, f , e, −1〉 be an n-ary polygroup, and B be a fuzzy n-ary subpolygroup of P. 〈P/B, F , B, −I〉 is an n-ary
polygroup.

Proof. For all i, j ∈ 1, . . . , n, a1, . . . , a2n−1 ∈ P , f (a1, B, e∗), . . . , f (a2n−1, B, e∗) ∈ P/B,

(1) F(f (a1, B, e∗), . . . , f (ai−1, B, e∗), F(f (ai, B, e∗), . . . , f (an+i−1, B, e∗)), f (an+i, B, e∗), . . . , f (a2n−1, B, e∗))

= {F(f (a1, B, e∗), . . . , f (ai−1, B, e∗), f (a, B, e∗), f (an+i, B, e∗), . . . , f (a2n−1, B, e∗)) | a ∈ f (an+i−1i )}

= {f (a′, B, e∗) | a ∈ f (an+i−1i ), a′ ∈ f (ai−11 , a, a2n−1n+i )}

= {f (a′, B, e∗) | a′ ∈ f (ai−11 , f (an+i−1i ), a2n−1n+i )}.

We can also get

F(f (a1, B, e∗), . . . , f (aj−1, B, e∗), F(f (aj, B, e∗), . . . , f (an+j−1, B, e∗)), f (an+j, B, e∗), . . . , f (a2n−1, B, e∗))

= {f (a′′, B, e∗) | a′′ ∈ f (aj−11 , f (an+j−1j ), a2n−1n+j )}.

Since P is an n-ary polygroup, f (ai−11 , f (an+i−1i ), a2n−1n+i ) = f (a
j−1
1 , f (an+j−1j ), a2n−1n+j ). Hence

F(f (a1, B, e∗), . . . , f (ai−1, B, e∗), F(f (ai, B, e∗), . . . , f (an+i−1, B, e∗)), f (an+i, B, e∗), . . . , f (a2n−1, B, e∗))
= F(f (a1, B, e∗), . . . , f (aj−1, B, e∗), F(f (aj, B, e∗), . . . , f (an+j−1, B, e∗)), f (an+j, B, e∗), . . . , f (a2n−1, B, e∗)).

(2) F(B, . . . , B︸ ︷︷ ︸
i−1

, f (a, B, e∗), B, . . . , B︸ ︷︷ ︸
n−i

) = F(f (e, B, e∗), . . . , f (e, B, e∗)︸ ︷︷ ︸
i−1

, f (a, B, e∗), f (e, B, e∗), . . . , f (e, B, e∗)︸ ︷︷ ︸
n−i

)

=

f (a′, B, e∗) | a′ ∈ f (e, . . . , e︸ ︷︷ ︸
i−1

, a, e, . . . , e︸ ︷︷ ︸
n−i

)

 .
Since f (e, . . . , e︸ ︷︷ ︸

i−1

, a, e, . . . , e︸ ︷︷ ︸
n−i

) = a, we have

F(B, . . . , B︸ ︷︷ ︸
i−1

, f (a, B, e∗), B, . . . , B︸ ︷︷ ︸
n−i

) = f (a, B, e∗).

(3) F(f (a1, B, e∗), . . . , f (an, B, e∗)) = {f (a, B, e∗) | a ∈ f (an1)}. Since P is an n-ary polygroup, then

ai ∈ f (a−1i−1, . . . , a
−1
1 , a, a

−1
n , . . . , a

−1
i+1).

Hence

f (ai, B, e∗) ∈ F(f (a−1i−1, B, e
∗), . . . , f (a−11 , B, e

∗), f (a, B, e∗), f (a−1n , B, e
∗), . . . , f (a−1i+1, B, e

∗))

= F(f (ai−1, B, e∗)−I , . . . , f (a1, B, e∗)−I , f (a, B, e∗), f (an, B, e∗)−I , . . . , f (ai+1, B, e∗)−I).

Thus 〈P/B, F , B, −I〉 is an n-ary polygroup.
Let A be a fuzzy n-ary subpolygroup of P , 〈P, f , e, −1〉 be an n-ary polygroup, and B be a fuzzy n-ary subpolygroup of P;

then A/B is a fuzzy n-ary set on P/B defined as follows:

A/B : P/B→ [0, 1] satisfying
A/B(f (a, B, e∗)) = sup

f (x,B,e∗)=f (a,B,e∗)
A(x), for any f (a, B, e∗) in P/B. �

Theorem 3.5. The above A/B is a fuzzy n-ary subpolygroup of P/B.
Proof. (1) For any f (a, B, e∗) ∈ F(f (a1, B, e∗), . . . , f (an, B, e∗)), a ∈ f (an1), we have

inf{A/B(f (a, B, e∗))} = inf
{

sup
f (x,B,e∗)=f (a,B,e∗)

A(x)
}
= sup
f (x,B,e∗)=f (a,B,e∗)

{
inf
x∈f (xn1)

A(x)

}
.

By Definition 2.2,

inf{A/B(f (a, B, e∗))} ≥ sup
f (x1,B,e∗)=f (a1,B,e∗),...,f (xn,B,e∗)=f (an,B,e∗)

min{A(x1), A(x2), . . . , A(xn)}

= min

{
sup

f (x1,B,e∗)=f (a1,B,e∗)
A(x1), . . . , sup

f (xn,B,e∗)=f (an,B,e∗)
A(xn)

}
= min{A/B(f (a1, B, e∗)), . . . , A/B(f (an, B, e∗))}.
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(2) For any f (a, B, e∗) ∈ P/B, by Definition 2.2, for any x ∈ P , we have A(x−1) ≥ A(x). Hence

A/B(f (a, B, e∗)−I) = A/B(f (a−1, B, e∗))
= sup
f (x−1,B,e∗)=f (a−1,B,e∗)

A(x−1)

≥ sup
f (x,B,e∗)=f (a,B,e∗)

A(x)

= A/B(f (a, B, e∗)).

Hence A/B is a fuzzy n-ary subpolygroup of P/B. �

Definition 3.2. The above fuzzy n-ary subpolygroup A/B is called the fuzzy n-ary factor polygroup of Awith respect to B.

Example 3.1. Consider Example 2.1 and let G be a fuzzy n-ary polygroup; then H/G is a fuzzy n-ary factor polygroup of H
with respect to G.

4. The structure of product fuzzy n-ary factor polygroups

Definition 4.1. Let 〈P, f , e, −1〉 be an n-ary polygroup, and A be a fuzzy n-ary set of P . A is said to have the sup property if,
for any nonempty subset X ⊂ P , there is a x′ ∈ X such that A(x′) = supx∈X A(x).

Proposition 4.1. If A has the sup property, then (A/B)[α] = A[α]/B for any α ∈ [0, 1].

Proof. (1) For any f (a, B, e∗) ∈ A/B[α], we have

A/B(f (a, B, e∗)) = sup
f (x,B,e∗)=f (a,B,e∗)

A(x).

Since A has the sup property, there exists x′ ∈ P such that f (x′, B, e∗) = f (a, B, e∗) and A(x′) = supx∈X A(x). Hence

A/B(f (a, B, e∗)) = A(x′) ≥ α,

which implies that x′ ∈ A[α]. Therefore f (x′, B, e∗) ∈ A[α]/B, f (a, B, e∗) ∈ A[α]/B. Hence

(A/B)[α] ⊆ A[α]/B.

(2) For any f (a, B, e∗) ∈ A[α]/B, which implies A[a] ≥ α,

A/B(f (a, B, e∗)) = sup
f (x,B,e∗)=f (a,B,e∗)

A(x).

Since f (x, B, e∗) = f (a, B, e∗) ∈ A[α]/B, A[x] ≥ α. Hence

A/B(f (a, B, e∗)) = sup
f (x,B,e∗)=f (a,B,e∗)

A(x) ≥ α.

So f (a, B, e∗) ∈ A/B[α]. By the above result, we obtain A[α]/B ⊆ (A/B)[α].

Hence (A/B)[α] = A[α]/B for any α ∈ [0, 1]. �

Proposition 4.2. Let 〈P, f , e, −1〉, 〈P ′, f ′, e′ ,−1〉 be an n-ary polygroup, and A, B be fuzzy n-ary subpolygroups of P and P ′,
respectively. If A has the sup property and there is a mapping g such that g(A[α]) = B[α] for any α ∈ [0, 1], then g(A) = B.

Proof. Let y ∈ P ′ and α = B(y). Then y ∈ B[α] = g(A[α]). Thus there exists x′ ∈ A[α] such that g(x′) = y. Hence

g(A)(y) = sup
g(x)=y

A(x) ≥ A(x′) ≥ α = B(y).

Suppose that B(y) < supg(x)=y A(x). Since A has the sup property, there exists x′′ ∈ P ′ such that

sup
g(x)=y

A(x) = A(x′′), g(x′′) = y.

Let β = A(x′′), then x′′ ∈ A[β]. Hence y = g(x′′) ∈ g(A[β]) and y is not in B[β], which is a contradiction. Hence
B(y) = g(A)(y). Thus g(A) = B. �

Proposition 4.3. Let A, B be separately fuzzy n-ary subpolygroups of P, P ′. For any α ∈ [0, 1], (A× B)[α] = A[α] × B[α] holds.
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Proof. For any (x, y) ∈ (A× B)[α], we have (A× B)(x, y) = min{A(x), B(y)} ≥ α. Hence A(x) ≥ α, B(y) ≥ α, which implies
that x ∈ A[α] and y ∈ A[α]. Therefore (x, y) ∈ A[α] × B[α].
By the above result, we obtain

(A× B)[α] ⊆ A[α] × B[α].

Similarly we can also get A[α] × B[α] ⊆ (A× B)[α]. Hence

(A× B)[α] = A[α] × B[α]. �

Proposition 4.4. Let 〈P, f , e, −1〉 be an n-ary polygroup, A be a fuzzy n-ary subpolygroup of P, and B be a fuzzy n-ary normal
subpolygroup of P. If A has the sup property, then A/B has the sup property.

Proof. For any X included in A/B,

sup
f (x,B,e∗)⊆X

A/B(f (x, B, e∗)) = sup
f (x,B,e∗)⊆X

sup
f (y,B,e∗)=f (x,B,e∗)

A(y).

Since A has the sup property, then, for every f (x, B, e∗) in X , there is yx such that

A/B(f (x, B, e∗)) = sup
f (y,B,e∗)=f (x,B,e∗)

A(y) = A(yx)

holds.
Hence

sup
f (x,B,e∗)⊆X

A/B(f (x, B, e∗)) = sup
f (x,B,e∗)⊆X

A(yx) = sup
yx∈Yx

A(yx).

Hence Yx is the collection of all yx as above. Still by A having the sup property, there exists a y∗ in Yx such that

sup
yx∈Yx

A(yx) = A(y∗) = sup
x∗∈X
A/B(f (x∗, B, e∗)).

Hence

sup
f (x,B,e∗)⊆X

A/B(f (x, B, e∗)) = A(y∗) = A/B(f (x∗, B, e∗)).

Thus A/B has the sup property. �

Theorem 4.5. Let 〈P, f , e, −1〉, 〈P ′, f ′, e′, −1〉 be an n-ary polygroup. Suppose that A, B are fuzzy n-ary subpolygroups of P and P ′,
respectively,with the sup property. Suppose that A′, B′ are separately fuzzy n-ary normal subpolygroups of P and P ′, A′(e) = B′(e′).
Then A× B/A′ × B′ is isomorphic to A/A′ × B/B′.

Proof. In [13], Davvaz et al. have proved that A× B is a fuzzy n-ary subpolygroup of P × P ′. We can also prove that A′ × B′
is a fuzzy n-ary normal subpolygroup of P × P ′.
Consider any nonempty set T = X × Y ⊆ P × P ′. Since A, B have the sup property, there exists x′ ∈ X , y′ ∈ Y such that

A(x′) = sup
x∈X
A(x), B(y′) = sup

y∈Y
B(y).

For any (x, y) in T ,

(A× B)(x, y) = min{A(x), B(y)} ≤ min{A(x′), B(y′)},

such that

(A× B)(x′, y′) = sup
(x,y)∈T

(A× B)(x, y).

Hence A× B has the sup property.
Now we come to prove that A[α] × B[α]/A′ × B′ is isomorphic to A[α]/A′ × B[α]/B′ for any α ∈ [0, 1]. It is clear that

A[α] × B[α]/A′ × B′ is empty iff A[α]/A′ × B[α]/B′ is empty. Suppose that both of them are nonempty. Let

f α : A[α] × B[α]/A′ × B′ → A[α]/A′ × B[α]/B′ satisfy
f α((f × f ′)((a, b), A′ × B′, (e, e′)∗)) = (f (a, A′, e∗), f ′(b, B′, e∗)), a ∈ A[α], b ∈ B[α].

If

(f × f ′)((a, b), A′ × B′, (e, e′)∗) = (f × f ′)((c, d), A′ × B′, (e, e′)∗), (1)
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then

A′ × B′((f × f ′)((a, b), (c, d), (e, e′)∗)) = A′ × B′(e, e′)
A′ × B′(f (a−1, c, e∗), f ′(b−1, d, e∗)) = A′ × B′(e, e′)
min{A′(f (a−1, c, e∗)), B′(f ′(b−1, d, e∗))} = min{A′(e)× B′(e′)}.

Since A′(e) = B′(e′), we have

A′(f (a−1, c, e∗)) = A′(e), B′{(f ′(b−1, d, e∗))} = B′(e′).

Therefore

f (a, A′, e∗) = f (c, A′, e∗), f ′(b, B′, e∗) = f ′(d, B′, e∗).

Hence

(f (a, A′, e∗), f ′(b, B′, e∗)) = (f (c, A′, e∗), f ′(d, B′, e∗)). (2)

Thus f α is an one-valued mapping.
It is clear that, if the formula (2) holds, then the formula (1) holds, so f α is a monomorphism. For any (f × f ′)((x, y), A′×

B′, (e, e′)∗), (f × f ′)((x′, y′), A′ × B′, (e, e′)∗) ∈ A[α] × B[α]/A′ × B′, we have

f α((f × f ′)((x, y), A′ × B′, (e, e′)∗)(f × f ′)((x′, y′), A′ × B′, (e, e′)∗))
= f α((f × f ′)(f (x, x′, e∗), f ′(y, y′, e∗), A′ × B′, (e, e′)∗))
= (f (x, x′, A′, e∗), f ′(y, y′, B′, e∗))
= ((f × f ′)((f (x, A′, e∗), f ′(y, B′, e∗)), (f (x′, A′, e∗), f ′(y′, B′, e∗)), (e, e′)∗))
= f α((f × f ′)((x, y), A′ × B′, (e, e′)∗)f α(f × f ′)((x′, y′), A′ × B′, (e, e′)∗)).

Hence f α is an isomorphism.
It is clear that the restriction of f0 on (A× B/A′ × B′)[α] is f α. For any α ∈ [0, 1], we have

(A× B/A′ × B′)[α] = (A× B/A′)[α] × B′

= A[α] × B[α]/A′ × B′

= A[α]/A′ × B[α]/B′

= (A/A′)[α] × (B/B′)[α]
= (A/A′ × B/B′)[α].

Hence A× B/A′ × B′ is isomorphic to A/A′ × B/B′ by Proposition 4.2. �

Definition 4.2. Let 〈P, f , e, −1〉 be an n-ary polygroup, and A, B be separately fuzzy n-ary subsets of nonempty set P . The
inner product AB is the fuzzy n-ary subset of P defined by

AB(x) = sup
x∈f (a,b,e∗)

{min{A(a), B(b)}}, x ∈ P.

Proposition 4.6. Let A, B be fuzzy n-ary subsets of P. If A, B have the sup property, then AB[α] = f (A[α], B[α], e∗).

Proof. It is clear that f (A[α], B[α], e∗) ⊆ (AB)[α]. Let x ∈ (AB)[α]; then

(AB)(x) = sup
x∈f (x,y−1,y,e∗)

min{A(f (x, y−1, e∗)), B(y)} ≥ α.

Since A, B have the sup property, we can get a y′ such that

min{A(f (x, y′
−1
, e∗)), B(y′)} ≥ α.

Hence

A(f (x, y′
−1
, e∗)) ≥ α, B(y′) ≥ α,

such that

f (x, y′
−1
, e∗) ∈ A[α], y′ ∈ B[α].

Therefore

x ∈ f (x, y′
−1
, y, e∗) = f (f (x, y′

−1
, e∗), y, e∗) ⊆ f (A[α], B[α], e∗),
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such that

AB[α] ⊆ f (A[α], B[α], e∗).

Thus

AB[α] = f (A[α], B[α], e∗). �

Proposition 4.7. Let A, B be fuzzy n-ary subpolygroups of P such that AB is the fuzzy n-ary subpolygroup of P. Let C be a fuzzy
n-ary normal subpolygroup of P. If A, B have the sup property, then AB/C = (A/C)(B/C).

Proof. It is easy to prove that AB has the sup property. For any α ∈ [0, 1],

(AB/C)[α] = (AB)[α]/C
= f (A[α], B[α], C, e∗)
= f (f (A[α], C, e∗), f (B[α], C, e∗), e∗)
= f ((A/C)[α], (B/C)[α], e∗)
= ((A/C)(B/C))[α].

Hence

AB/C = (A/C)(B/C). �

Theorem 4.8. Let A, B be fuzzy n-ary subpolygroups of P with the sup property such that AB is the fuzzy n-ary subpolygroup of
P. Let C be a fuzzy n-ary normal subpolygroup of P. Then AB/C is homomorphic to A× B/C × C.

Proof. For any α ∈ [0, 1],

(A× B/C × C)[α] = (A× B)[α]/C × C
= A[α] × B[α]/C × C
= A[α]/C × B[α]/C

(AB/C)[α] = (AB)[α]/C
= f (A[α], B[α], e∗)/C
= f (A[α], B[α], C, e∗).

Let gα : A[α]/C × B[α]/C → f (A[α], B[α], e∗)/C satisfy gα((f (a, C, e∗), f (b, C, e∗))) = f (a, b, C, e∗).
If

(f (a, C, e∗), f (b, C, e∗)) = (f (a′, C, e∗), f (b′, C, e∗)),

then

f (a, C, e∗) = f (a′, C, e∗), f (b, C, e∗) = f (b′, C, e∗),

such that

C(f (a−1, a′, e∗)) = C(e), C(f (b−1, b′, e∗)) = C(e).

For any x ∈ f (f (a, b, e∗)−1, a′, b′, e∗) = f (b−1, a−1, a′, b′, e∗), so

C(f (b−1, a−1, a′, b′, e∗)) = C(f (b′, b−1, a−1, a′, e∗))
= C(f (f (b′, b−1, e∗), f (a−1, a′, e∗), e∗)).

For any y ∈ f (f (b′, b−1, e∗), f (a−1, a′, e∗), e∗), we have

C(y) ≥ min{C(f (b′, b−1, e∗)), C(f (a−1, a′, e∗))}
= min{C(f (b−1, b′, e∗)), C(f (a−1, a′, e∗))}
= C(e).

Hence

C(f (b−1, a−1, a′, b′, e∗)) = C(f (f (a, b, a)−1, a′, b′, e∗)) = C(e).

Therefore f (a, b, C, e∗) = f (a′, b′, C, e∗); thus gα is an one-valued mapping.
It is clear that gα is a homomorphism. Hence f αgα is a homomorphism from (A× B/C × C)[α] onto (AB/C)[α], f α is as

in Theorem 4.5. �

It is easy to prove that the restriction of f0g0 on (A× B/C × C)[α] is f αgα. Hence AB/C is homomorphic to A× B/C × C .
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5. Conclusions

In this paperwe concentrate our study on the algebraic properties of fuzzy n-ary factor polygroups.We study the product
structures of fuzzy n-ary polygroups and present their properties. Our future work on this topic will be focused on other
algebraic structures such as the lattice, ring and field.
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