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We consider several infinite games involving a given k-complete ideal over a regular 
uncountable cardinal K. We give a new characterization of precipitous ideals and introduce the 
class of weakly precipitous and pseudo-precipitous ideals. We also define the notion of degree 
of functions and functionals and compare it with the Galvin-Hajnal norm. 

0. Introduction 

In [7], K. Prikry and the present author introduced a class of ideals, called 
precipitous, which the subsequent work of W. Mitchell and others proved to be the 
correct generalization of ~-complete ultrafilters for successor cardinals. In [5], this 
author observed that precipitous ideals can be characterized in terms of an infinite 
game, due to F. Galvin (which was a generalization of Banach’s game [O]). 
Galvin’s game is investigated in the paper [3]. 

The present paper has three parts. In Section 1, we modify Galvin’s game and 
obtain a related game which, unlike Galvin’s game, is always determined, and 
show that precipitous ideals can be characterized in terms of the modified game. 
We also address ourselves to the question what relation there is between the 
Galvin-Hajnal norm of an ordinal function f, and the ordinal represented by f in 
the generic ultrapower. We obtain new equivalences for precipitous ideals, and 
raise some new questions. 

Section 2 is devoted to a related game, invented by S. Shelah for his work on 
arithmetic of singular cardinals. We call the ideals characterized in terms of 
Shelah’s game weakly precipitous. 

In Section 3 we introduce a new related game, and the corresponding class of 
ideals, which we call pseudo-precipitous. We show that like the precipitous ideals, 
pseudo-precipitous ideals can be defined in terms of generic ultrapowers. 
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The relations between the three classes of ideals known to us are as follows: 

precipitous 

\ 

/ 

weakly precipitous. 

pseudo-precipitous 

It is known that ‘precipitous’ is equiconsistent with ‘measurable cardinals’. Al- 
though we show that ‘pseudo-precipitous’ is at least as strong as ‘measurable’, we 
have only been able to prove its consistency from something stronger, namely 
‘K+-saturated’. Weakly precipitous ideals are weaker; by Shelah’s result they 
follow from ‘Ramsey’. Although we believe that ‘weakly precipitous’ is a large 
cardinal property, we were unable to prove it. 

1. Precipitous ideals 

Throughout the paper, let K be a regular uncountable cardinal, and let I be a 
nontrivial K-complete ideal over K ; i.e. IC P(K) and 

(1.1) (i) if XCY and YEI, then XE~, 
(ii) if y <K and {X, : 5 C-y} c I, then UECv X, E 1, 

(iii) {(Y} E I for all (Y < K. 

Let I’ denote the set {S c K : S# I}; we call the elements of If sets of positive 

measure. (We often use the measure theoretic terminology; e.g. “for almost all 
a! ES” means that the set of all contrary (Y E S belongs to I). I is called normal if 
for every S E I+ and every function f on S, if f(a) < a! for all (Y E S, then f is 
constant on some set TE S of positive measure. 

Let S EI+. A collection W of subsets of S is an I-partition of S if 

(1.2) (i) XEI+ for every XE W, 
(ii) if X, YEW and X# Y, then X~YEI, 

(iii) W is maximal: if XE S has positive measure, then X n YE It for 
some YE W. 

If h is a cardinal, then I is h-saturated if there is no I-partition of K of size A. 
We denote by sat(I) the least h such that I is A-saturated. 

If W and 2 are two partitions of S, then W GZ means that 

(1.3) for every X E Z there is YE W such that Y c X. 

An ordinal function is a function whose values are ordinal numbers. An 
I-function is a function whose domain is a set SE If. If S is a set of positive 
measure, a functional on S is a collection F of ordinal I-functions such that 

(1.4) (i) W, ={dom(f> :f~ F} is an I-partition of S, 
(ii) if f, g E F and ff g, then dam(f) # dam(g). 
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If F and G are two functionals on S, then F< G means that 

(1.5) (i) WFs W,, 
(ii) if fe F and g E G are such that dom(f) c dam(g), then f(a) < g(a) for 

all (Y E dam(f) 

Let PI denote the set I+ of all sets of positive measure partially ordered by 
inclusion, and consider PI as a notion of forcing. (Equivalently, we may consider 
the Boolean valued model via the completion of the Boolean algebra s(K)/r). A 
generic set G c PI is an ultrafilter over the ground model and so we consider the 
ultrapower Ult,(V) of V by G. We call this ultrapower a generic ultrapower. 

1.1. The game s(Z) 

We consider an infinite game between two players, One and Two. Player One 
moves first and chooses a set A,, of positive measure. Then Two chooses a set 
B, E A,, of positive measure. Then One chooses AI C_ B. of positive measure, and 
so on. Thus they produce a sequence 

of sets of positive measure. Player One wins if and only if 

fi A,=@ 
n=O 

Theorem 1.1. Let Z be a nontrivial ~-complete ideal over a regular uncountable 
cardinal K. The following properties are equivalent: 

(1) Zf S is a set of positive measure and if W. 2 WI 2 W, a. . . is a sequence of 
Z-partitions of S, then there exists a sequence X0 2 XI 2 X, 2 . . . of sets X0 E Wo, 
X, E W,, X, E W,, . . . , such that nr=,, X, # 8. 

(2) There is no infinite descending sequence F0 > F, > F,>. . . of functionals on 
S, for any SE I+. 

(3) Every condition S E P, forces that the generic ultrapower Ult,(V) is well- 
founded. 

(4) Player One does not have a winning strategy in the game %(I). 

(For the proof of Theorem 1.1 see [S] and [3].) If Z has these properties it is 
called precipitous. 

1.2. The games %,(I) and 5!&(Z) 

Again, we consider two players, One and Two. This time, One starts the game 
by choosing an ordinal Z-function fo. Then Two chooses a set Bog domCfo) of 
positive measure. Then One picks an ordinal Z-function fI such that dom(fi) E B,, 
and fl(cx) < fo(cw) for all cr E dom(f,). They continue in this fashion and produce a 
sequence f,), fi, . of Z-functions such that for every n, dom(f,,+,)~dom(f,,) and 



34 T.J. Jech 

f,,+l(~)<f,,(a) for all (Y ~dom(f,+~). If Player One can continue the play indefin- 
itely, he wins; otherwise, Two wins. 

Clearly, this game is determined: If Two does not have a winning strategy, then 
One does; he simply goes on and keeps making moves that witness that Two does 
not have a winning strategy. (The game is open is a suitable topology.) 

Theorem 1.2. Player One has a winning strategy in the game %,(I) if and only if 
Player One has a winning strategy in the game %(I>. 

Corollary. I is precipitous if and only if 
(5) Player Two has a winning strategy in the game Y&(I). 

Proof. It is easy to see that if One has a winning strategy in S1, then One has a 
winning strategy in 3: The winning moves of One in 3 are simply the sets 

A,,, Al,. . . which are the domains of the functions fO, fi, . . . , the winning moves 
of One in 3,. Clearly, the intersection nEzo A,, has to be empty as otherwise we 
would have a descending sequence of ordinals fo(a)> fl(a)>- . * for any a in the 
intersection. Thus let us assume that One has a winning strategy in the game S(l), 
and let us show that there is a winning strategy for One in the (more difficult) 
game S,(l). 

Let u be a winning strategy for One in 93. Let us consider the set T of all finite 
sequences 

(A,, B,, Al, B1,. . ., A,) 

of odd length (2n + 1) of sets of positive measure such that A0 = a(( )), B, G A,, 
A1 = a((A,, B,)), B1 G A,, A2 = a((Ao, BO, A,, B,)), etc.; i.e. of finite plays in the 
game % in which One uses the strategy cr. The set T ordered by extension of 
sequences is a tree. 

Every path in the tree T consitutes a play (A,, B,, A,, B1, . . .) in 3, and since 
the A,‘s are obtained by One’s winning strategy u, the intersection nzzO A,, is 
empty. Let (Y E K, and let TX consist of all those (A,, BO, . . . , A,)E T such that 
CY E A,. It follows that T, is a well-founded tree. Consequently, there is a rank 
function p, associated with the tree T,. Clearly, 

P,((A,, B,, . . . > A-,))>P,(L%,, Bo, . . . > A,-~,&-I, At)) 
for any (A,, B,,, . . . , A,) E T,. 

Now we construct a winning strategy 7 for One in Se,: As for the first move 
f0 = T(( )), let A0 = a(( )), and let f0 be the following function on A,: for (Y E A0 

let fdc-r) = P, (MO)). 
By induction on n, let us assume that we have constructed T for all plays 

(fo, B,, . . . , fkpl, Bk_-l) in 3, of all lengths 2k <2n, and let (fO, BO, . . . , fn--l, B,-,) 
be a play of length 2n. Let A,, = o((A,, BO, . . . , B,_,)), where Ai = dam(J) for all 
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i <n, and let f,, be the following function on A,,: for (Y E A,, let- f,,(a) = 

P,((A,, B,, . . . , BnP1, A,,)). It follows that f,,(a)<f,-r(a) for all (Y ~dom(f,), and 

hence fn is a legal move for Player One. Consequently, r is a winning strategy for 

One in the game %r. q 

Next we consider the following game &(I); later on in this section we shall 

look at its refinement. The moves of Player One are the same as in the game ?&, 

namely his nth move is an I-function f,, such that domCf,)c B,_, and f,,(a)< 

f,-r(a) for all Q ~dom(J,). Player Two’s nth move is again a set of positive 

measure B, g domCf,-,), but he also has to choose an ordinal number (Y,, such 

that (Y, <%_1. Clearly, not both players can make legal moves indefinitely; 

whoever makes the last move wins. 

Theorem 1.3. Player Two has a winning strategy in the game &(I) if and only if 
Player Two has a winning strategy in the game 3&(I). 

Corollary. I is precipitous if and only if 
(6) Player Two has a winning strategy in $(I). 

Proof. Since the game +& is more difficult for Player Two than %i, it suffices to 

prove that if Two has a winning strategy in %r, then Two has a winning strategy 

in 59,. 

Thus assume that Two has a winning strategy in %,. By Theorem 1.2, I is a 

precipitous ideal and so the generic ultrapower is well-founded. We shall now 

describe a winning strategy for Two in B 2: When Player One plays an I-function 

f,, every condition S s dom(f,,) in Pr forces that f,, represents an ordinal number. 

Let cy, be the least ordinal forced by some condition to be represented by f,,, and 

let B, E dom(f,,) be such a condition. It is clear that B,, It-[f,,]d <[fn-Jc and so 

CK, <a,-,. Hence Two is assured to have the last move. 0 

(We remark in passing that one can directly produce a winning strategy for Two 

in 95, from a winning strategy for Two in 9, by considering the well founded tree 

of finite plays in 3, in which Two employs his winning strategy.) 

1.3. Degrees of functionals 

In [2], Galvin and Hajnal defined the norm of an ordinal function on K. If f and 

g are ordinal functions, let f <r g mean that {a : f(a) 2 g(a)} E I. The relation <I is 

well-founded, and 

llfll = llflll = SUP~lldlI + 1 : g <IfI 

is the rank of f in this well-founded relation. 

For SEI+, let 

Ilf Ils = Ilf III 1 s 
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where I 1 S is the ideal defined by (I 1 S)’ = I+ n P(S). Clearly, \lflls ?=/fll for all 
SEII. 

If (Y is an ordinal number, then the cvth function, if it exists, is the unique 
(mod I) function f, such that llfclIls = iy f or all S E I+. It is clear that for every (Y < K 

the ath function exists, namely the constant function with value (Y. If I is normal, 
then the ath function exists for each cw < K+ (by induction: use diagonalization at 
stages of cofinality K). A result of A. Hajnal[4] states that if V= L, then the K+th 
function does not exist for the dual of the filter of closed unbounded sets. 

It is easy to see that if the ath function exists for all (Y, then I is precipitous and 
that for every (Y and every SE P,, S forces that fa represents (Y in the generic 
ultrapower. It is not known whether the functions fa exist for every precipitous 
ideal (probably not). (It has been observed by Levinski [lo] that the precipitous 
ideal on w1 constructed by Mitchell in [6] does have this property.) 

Let f be a function of norm a, and assume that Sl!-f respresents an ordinal 
number. Then, as one can easily verify, SE-f represents an ordinal greater than or 
equal to (Y. There does not seem to be however any further relation between the 
norm and the ordinal represented by the function (except in case of normed ideals 

to be discussed in 1.5). Thus we define the degree of an ordinal function, and 
more generally, the degree of a functional. 

Let F be a functional on K. We say that F has a degree if the relation < 
(defined in (1.5)) is well-founded below F, i.e. on the set {G : G <F}. The degree of 
F 

deg(F) = deg, (F) = sup{deg, (G) + 1: G < F} 

is the length of this well-founded relation. If f is an ordinal function on K, then 
degCf) = deg((f}) (as cf} is a functional on K), if the right hand side is defined. We 
also define 

degs (F) = deg, t s 0% 

for all SE I+. 

deg, cf> = de I s V> 

It follows from Theorem 1.1(2) that I is precipitous if and only if every 
functional on every S E It has a degree. Similarly we have: 

Proposition. Every functional has a degree if and only if I r S is precipitous for 

some SEI+. 

Proof. Let S E I” be such that I 1 S is precipitous. There can be no descending 
sequence of functionals on K since the same sequence (restricted to S) would be a 
descending sequence with respect to the ideal I 1 S, contradicting the precipitous- 
ness of I r S. Hence every functional has a degree. 

Conversely, if no I r S is precipitous, then the set {S E I’: there is a descending 
sequence of functionals on S}, is dense. Thus there is an I-partition W such that 
for each S E W we have a descending sequence Fl> Ff >. * . on S. Now it is easy 
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to build up a descending sequence of functionals on K. Hence not every functional 
has a degree. q 

Theorem 1.4. The degree of a functional F is the least ordinal (Y such that for some 

f E F and some set S c dam(f) of positive measure, S It f represents a! in the generic 

ultrapower. 

Proof. We shall prove the theorem by induction on CX. Let a! be an ordinal and let 
F be a functional on K. First note that the set of all SE I’ with the following 
property is dense: either S c dam(f) for some f E F and S forces that f represents 
an ordinal in Ult,, or there is a descending sequence of functionals on S below F. 
Thus there exists an I-partition W. < W, such that for each SE W either there is 

an (us such that Slkf represents as (where f E F is such that S g dam(f)>, or there 
is a descending sequence Fz > Ff >. . . of functionals on S below F. 

If there is no S E W of the first kind, then F does not have a degree as we can 
use the Fz to build up a descending sequence of functionals below F. If there is 
such S, let (Y be the least value of all such czs. It suffices to prove that deg(F) = (Y. 

If G<F, let SEW be such that CX~=Q! and let ggG be such that T= 
dam(g) n S has positive measure. Then T forces that g represents an ordinal less 
than (Y, and by the induction hypothesis we have deg(G) <a. It follows that 
deg(F) < cy. 

To show that deg(F) 2 (Y, let p < cy. For each S E W of the first kind, let Gs be a 
functional on S such that for each g E Gs, dam(g) II-g represents B. For each S E W 
of the second kind, let Gs = F,“. Let G be the functional built up from the G,, 
SE W. Then p is the least p for which some S forces an element of G to 
represent /3; by the induction hypothesis, deg(G) = p. Since G < F, we have 
deg(F) > p. Consequently, deg(F) 5 (Y. 0 

Let (Y be an ordinal. The ath functional, it if exists, is a functional F, such that 
degs(F,) = (Y for all SE I+. It is easy to see that F, is unique (mod I) in the sense 
that if F, and FL are both such functionals then, whenever f E F, and f’E Fh, 

(6 E dom(f > n dom(f’) : f (6) # f’M1 E I. 

The following proposition is an immediate corollary of Theorem 1. 

Proposition. F is the ath functional if and only if for every f E F, dam(f) I1f 
represents (Y. 0 

One consequence of this is that if CY <p and if Fp exists, then F, exists. 
Another consequence is: 

Corollary. I is precipitous if and only if 

(7) For every CX, the ath functional exists. 
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1.4. The game S3(1, f, a) 

We shall now consider a refinement of the game ‘$(I). Let f be an ordinal 
function on K, and let (Y be an ordinal number. The game s3 is played as follows: 

One Two 

Each f,, is an I-function, and each B, is a set of positive measure and dom(fo) 2 
B,zdom(fi)zB,z. **. Moreover, ao>cw,>* *. , and f,,+r(.$)<f,,(~) for all n 
and all .$ E dom(f,,+r). In addition to these rules (as in %J, the first moves have to 
be such that cyo < cy and fo([) <f(e) f or all 5 E dom(fo). Whichever player makes 
the last legal move wins. 

By Theorem 1.3, I is precipitous if and only if for every f there is (Y such that 
Two has a winning strategy in $(I, f, a). The following theorem gives a more 
detalied correlation: 

Theorem 1.5. Player Two has a winning strategy in the game Y&(1, f, a> if and only 

if degs(f) G cy for all S E If. 

Proof. First let us assume that deg,(f) SQ~ for all SE I’. We shall describe a 

winning strategy for Two in &. When One plays an I-function f. with domain Ao, 
then because deg&(f) 5 (Y we have deg&(f,) < a. Therefore there is, by Theorem 
1.4, a set B, z A0 of positive measure, and an ordinal a0 such that B. forces that 
f. represents CY_~. In other words, deg,(f,) = a0 for all S s B. in I+. Let Two play 

Bo, ao. Then when One plays fi, we can similarly find B,c_dom(f,) and (pi <a, 
such that deg,(f,) = CX~ for all S G B1, and so on. This way, Two can keep making 
legal moves and therefore Two wins. 

Conversely, let us assume that for some SE I+, it is not the case that 
deg,(f) so. We shall describe a winning strategy for One in 92,. Let S E I+ be 
such that degs(f)$a. If deg,(f) does not exist, there is a descending sequence 
F,>F,>. . . of functionals on S below f. So let One choose f. E F,, and then let 
him play as follows: whenever Two plays B,, (Y,, One picks some g E F,,+l such 
that dam(g) n B, E I’, and plays f,, = g 1 B,. This strategy wins. If deg,(f) >cz, 
there is a functional F on S such that deg,F = a, and by Theorem 1.4 there is 
go E F and A0 s dom(g,) such that A, forces that go represents (Y. Let One play 
f. = go 1 Ao. Now deg,(f,) = (Y for all S G A0 and when Two plays B, c A0 and 
a0 < (Y, One can similarly find f1 with domain A1 G B. such that degs(fi) = a0 for 
all S c Al. And so on: when Two plays B,, CY,, One responds by playing f,,+r such 
that B, 2 dom(f,,+J Itf,,+r represents (Y,. Thus One has a winning strategy. q 
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1.5. Norrned ideals 

Let f be an ordinal function. If deg(f) exists, then clearly llflj <deg(f). The ideal 

I is nonned if for every ordinal function f, deg(f) = I\f I(. 

Lemma. Let I be a normal ideal. For every I-function f, if dom(f> = S, then 

deg&f) = Ilflls. 

Proof. Let S =dom(f) and assume that -S EI+. Let (Y = Ijflls. Let g be the 

extension of f to K defined by g(t) = a+ for all 5 E -S. Clearly, llgll= CK, and hence 

deg(g) = (Y. By Theorem 1.4, there is TE 1” which forces that g represents (Y. Now 

it is clearly impossible that TE -S (too many constant functions); hence we may 

assume that TG S and so T forces that f represents (Y. By Theorem 1.4 again we 

have that deg, (f) =G cy. And so deg,(f) = Ilflls. 0 

If F is a functional on a set SE I+, then 

degs (F) = min{deg,,,&f) : f E F). 

Hence if I is normed, every functional on every set in I’ has a degree and so we 

have 

Corollary. If I is normed, then I is precipitous. 

We don’t know whether every precipitous ideal is normed (probably not). Also, 

it is easy to prove that if the cuth function exists for every (Y, then I is normed, but 

we don’t know if the converse is true (again probably not). 

In [lo], Levinski calls I ‘norm6 if 

(1.6) for every ordinal function f on K there is SE I+ such that llfjlT = llfll for all 

TzS. 

The reason why I call the ideal normed is that Levinski’s condition is equivalent 

to my definition: 

Proposition. I is nomed if and only if it satisfies the condition (1.6). 

Proof. Let I be normed and let f be an ordinal function on K. Let Ilf I\= (Y. Since 

deg(f) = (Y, there is S E I+ such that S I1f represents (Y. Hence deg,(f) = (Y for all 

TG S and so Ilf IjT = llf\l for all T G S. 
Let I satisfy the condition (1.6). First note that (1.6) implies a somewhat 

stronger condition: 

(1.7) for every I-function f there is S E dam(f) such that llfllT = IlflldornCfj for all 

TcS. 
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(To see this, extend f to K by letting f(t) = Ilfl\’ for all ,$$ dam(f) and apply 

(1.6)) 
1 claim that (1.7) implies that I is precipitous. If not, there is a descending 

sequence of functionals F0 > F, > - . . on some S E If. Pick f0 E F, and let S, G 
dom(f,J be such that llf&- = Ijf&, for all TG S,. Then pick f1 E F1 and S, G 
dom(fr) such that S, G S, and that l\frljr = I(fr(& for all T c S1, and so on. Then we 

have Ilf&, = Ilfolls, >llfills, = llflllS,~llf211S2 = * . . , a descending sequence of ordinals, 
a contradiction. 

Now let’s prove that (1.7) implies that I is normed. We shall prove, by 
induction on cy, that if f is an I-function if S = dam(1) and if deg,(f) = CX, then 
jlfl\s = CY. Let f be an I-function such that domCf) = S and deg,(f) = (Y. Assume 
that \lflls = @ < CY. Let T G S be such that II& = p for all U G T. Since deg,(f) = CX, 
there is an I-function g with domain U E T such that deg,(g) = p and g(e) <f(e) 
for all 5 E U. By the induction hypothesis, llg\lu = /3, a contradiction since j\gllu < 

llfll = 6. 0 

2. Weakly precipitous ideals 

2.1. Shelah’s game %,(I) 

Let I be a normal K-compiete ideal over K. In this game, the moves of Player 
One and Player Two are as follows: 

One Two 

f0 is an ordinal I-function. I, is a normal (K-complete) ideal over K such that 
I,, 2 I 1 dom(fJ. Then fi is an ordinal &,-function such that fl(a)<fo(a> for all 
(Y E dom(fJ. I1 2 I,, 1 dom(fr) is a normal ideal, fi<fl is an I,-function and so on. 
Player One wins if and only if he can continue making legal moves indefinitely. 

The game s4 is determined. Note that this game is a generalization of the game 
%,, as the moves of player Two in %I1 are in fact moves of Two in 3, with the 
additional specification that each I, is equal to I r B, for some B, E I+. Thus if 
Two has a winning strategy in 3,, Two has a winning strategy in s4. Thus 

Definition. I is weakly precipitous if Player Two has a winning strategy in the 
game s4(I). 

And we have 

Proposition. If I is precipitous, then I is weakly precipitous. 
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In Section 1 I have shown how the game 3, is related to Galvin’s game 
(Theorem 1.2). One can prove a similar theorem for Shelah’s game: 

2.2. The game &(I) 

The moves of Players One and Two are as follows: 

One Two 

Ao I 
A, ; 
AZ I1 

2 

Each A, is such that A,, E A,_, and A,, E I:_, (and A”E I+). Each 1, is a normal 
ideal such that I,, 2 I,_, r A,, (and 1,~ I f A,). Player One wins if and only if 

Theorem 2.1. Player One has a winning strategy in the game S5(I) if and only if 

One has a winning strategy in the game g4(I). 

Proof. The argument is exactly as in the proof of Theorem 1.2. 0 

The following is an unpublished theorem of S. Shelah [12]. 

Theorem 2.2. If there is a Ramsey cardinal h > K, then there exists a normal 

K-COW&& ideal I over K such that Player Two has a winning strategy in the game 

%(I). 

Proof (sketch). First we define a certain filter % (due to Magidor [ll]). Let E be 
the set of all P c h such that lP( = A and q, = P fl K is an initial segment of K. For 
every F: [A]‘” + h be the set of all PEE closed under F (i.e. F([P]‘“) c P). 

Since h is Ramsey, each AF is nonempty. Let 9 be the filter over E generated by 
the sets AF for all F: [A]‘” + A. By Magidor, 9 is ~-complete and is normal in 
the sense that if f(P) E P holds on a set of positive measure then f is constant on a 
set of positive measure. Let 9 be the dual of Magidor’s filter. 

Let n : E + K be defined as follows: n(P) = q,. If 9 is a normal ideal over E, 

then ~[dp] is a normal ideal over K. For any function f: K -+ A, let f:E +E 

denote the function p(P) = f(m(P))th element of P. 
Let I = T$.%]. We claim that Player Two has a winning strategy in the game 

s4(l). An elementary submodel argument shows that it is enough to prove this 
only in the case when the first move of One is a function f,) with values less than h. 
Now the strategy is as follows. When One plays f,,, let .%n = ~~(1~_~ 1 dom(f,,)). 
.59,, is a normal filter over E and so the function f,, is constant on a set B, ~9, 
(where 4, is the dual of .Y%,,). Moreover, its constant value Y,, is less than TV-,. So 
let Two play the ideal ‘rr[$, p B,,]. This strategy wins, as yo> y1 > y2>. . . . 0 
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Remark. The filter r[S] is the closed unbounded filter over K. 

Proof. Let F: [A]‘” + A. We shall show that the set n[AF] contains a closed 
unbounded set C. We construct C as follows: C ={cyp, :5-C K} where OLP, is a 
normal sequence: Let P,, be any element of E closed under F. Given PC, let P,,, 
be some element of E closed under F such that ape+, > apE. If 5 is a limit ordinal, 
let P* = U ,,<< P, ; clearly, P< is closed under F. q 

Corollary. If there is a Ramsey cardinal h > K, then the ideal of thin subsets of K is 
weakly precipitous. 0 

To carry a weakly precipitous ideal is probably a large cardinal property of K, 

but it is unknown even whether it contradicts V= L. 

3. Pseudo-precipitous ideals 

We shall now generalize the games 5~9~ and S5_ Let I be a normal K-complete 
ideal over K. 

3.1. The game %,(I> 

One Two 

The I,, and J,, are normal K -complete ideals over K such that I c_ IO E Jo c Ii c J, S 
. . . . Each f,, is an ordinal I”-function, and each .I,, satisfies J,, z I,, r dom(f,). 
Moreover, f,,+i(a) < f,,(a) for each n and each (Y E dom(f,,+i). Player One wins if 
and only if he can continue making legal moves indefinitely. The game Y& is 
determined. 

Definition. 1 is pseudo-precipitous if Player Two has a winning strategy in the 
game F&(I). 

3.2. The game $,(I) 

One Two 

lo,Ao J 

II,AI Jo 
12, A2 ’ 

J .2 
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The I,, and J,, are normal K-COmplete ideals over K such that 1~ I0 c Jo G II g 

Jt - . . . Each A,, a subset of K such that A,+1 E J,’ (and A0 E I+), and each I,, 

satisfies I ,,+r 25, 1 A,+1 (and lo 2 I 1 A,). Player One wins if and only if 

nyzO A,, = 8. 
First we notice that the proof of Theorem 1.2 easily generalizes to the present 

situation and we have: 

Theorem 3.1. Player One has a winning strategy in the game %,(I) if and only if 
Player One has a winning strategy in the game Y&(I). Cl 

Secondly, the game 3, can be considered a modification of the game ‘34 by 

making the rules easier for Player One. This if Two has a winning strategy in 

%&(I), Two also has a winning strategy in Y4(1) and we have: 

Proposition. Every pseudo-precipitous ideal is weakly precipitous. 

We want to determine how strong is the property “K carries a pseudo- 

precipitous ideal”. The vehicle for our investigations is the use of generic 

ultrapowers. 

Let Qr be the following notion of forcing. Foring conditions are normal 

~-complete ideals J extending I, and Jr is stronger than J2 just in case Jr 2 J2. 

Let G be a generic subset of Qr. The union of all J E G is a normal ideal and is 

prime with respect to the ground model (an easy argument using genericity). Thus 

let % be the dual of this prime ideal; % is an ultrafilter for the ground model and 

we can form the ultrapower Ult,( V). We call % a Qt-generic ultrafilter, and 

Ult, (V) a Qt-generic ultrapower. 

Theorem 3.2. The ideal I is pseudo-precipitous if and only if every condition JE Q, 
forces that the Qt-generic ultrapower is well founded. 

Proof. First suppose that some condition J forces that the Qr-generic ultrapower 

is not well-founded. We shall produce a winning strategy for Player One in the 

game %,(I) thus showing that I is not pseudo-precipitous. J forces that there is a 

sequence 7 (in V[G]) of ordinal functions (in V) on K, descending mod 0%. Let 

I, E Q and f,-, (the opening move of Player One) be such that I, 2 J 1 dom(fJ and 

that I0 forces that f. is the 0th term of the sequence f: For each n, when Two 

plays J,, let I,+, and fntl be such that I,,+, 2 J, 1 dodf,,+J, that f,,+l(a) <f,,(a) 
for all cy ~dom(f,,+,) and that I,,,, forces that f,,+r is the (n+ 1)st term of the 

sequence f Clearly, this strategy wins for Player One. 

Now suppose that every condition J E Q, forces that Ult,(V) is well-founded. 

We shall show that Player One does not have a winning strategy in Y&(I), and 

thus I is pseudo-precipitous. Let u be a strategy for One in $7,. Let I,, f0 be the 

opening move of Player One (using a). Let G be Qr-generic over V such that 
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1,)~ G; let us work in V[G]. Let % be the corresponding Q,-generic ultrafilter 
and let Ult be the Q,-generic ultrapower; let j : V + Ult be the corresponding 
elementary embedding. Since Ult is well-founded, we identify it with a transitive 
class in V[G]. 

Let us assume that o is a winning strategy; we shall reach a contradiction. Let 
Jo E G be such that Jo 2 I,,; such Jo exists by the genericity of G. Let II, f1 be the 
move by One using cr against J,. Let J, E G be such that J1 2 I1 and let I,, f2 be 
One’s move using u against Jo, J1. And so on. This produces a sequence 
I,EJOGIIG... of conditions in G. It follows that for every n, dom(f,,) E %. Since 
% is normal, we have K E dom(j(f,,)) for all n. But this is a contradiction because 
we would have 

j(f&) > j(f)(K) > j(fZ)(K) >. . - . 

Hence CT is not a winning strategy and therefore I is pseudo-precipitous. q 

The equivalence proved in Theorem 3.2 can be used to prove the following 
result: 

Theorem 3.3. If K carries a pseudo-precipitous ideal, then K is measurable in an 
inner model. 

Proof. Kunen’s technique from [9] is applicable in this situation, as it is in the 
analogous case of precipitous ideals. In fact, the proof of Theorem 2 in [6] can be 
repeated here almost word by word, with appropriate changes. I suggest that the 
reader looks at the proof of Lemma 2.2 in [6]. Using the same notation as there, 
the proof boils down to showing that for every X E L[A], X E I’ implies K - X E 1. 
This is established by the following chain of arguments: 

I I XIFXE%, 

I 1 XII-K E j(X) (% is normal), 

1 1 xk(L[AlItcp(~, E,A)), 

UAlkdK, -CA), 

.II~(L[Al~&,E, A)), 
III-XE %, 

K-XEI. 

The rest of the proof is more or less like in [6]. Cl 

We don’t know how strong property it is for K to carry a pseudo-precipitous 
ideal. The only result in the opposite direction is the following result: 

Theorem 3.4. If I is a normal K+-saturated K-Coinp~t?~e ideal over K, then I is 
pseudo-precipitous. 
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Proof. By Theorem 3.1 of [l], every normal J 2 1 is equal to I / S for some S E I+. 
The game +&(I) is thus reduced to the game %(I), and as I is precipitous, One 
does not have a winning strategy. Hence 1 is pseudo-precipitous. 0 

4. Open problems 

[l. Is every precipitous ideal normed?] 

[2. If I is normed, does the ath function exist for every CX?] 

3. If there is a weakly precipitous ideal 
(a) Is V# L? 

(b) Does O# exist? 
[(c) Is there a Ramsey cardinal in K?] 

4. How strong is the consistency of “there is a pseudo-precipitous idealon K,“? 

Problems 1 and 2 are solved (Fall 1980). The answer is “not necessarily”. See 
the paper by Jech and Mitchell in this Journal [13]. 

With regard to Problem 3 Levinski (Fall 1980) showed that the following 
partition property, whose strength is between Ramsey and O# suffices for a 
weakly precipitous ideal: 

K + ((2*“‘)+)‘” 
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