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We consider several infinite games involving a given k-complete ideal over a regular
uncountable cardinal «. We give a new characterization of precipitous ideals and introduce the
ciass of weakly precipitous and pseudo-precipitous ideals. We aiso define ihe notion of degree
of functions and functionals and compare it with the Galvin-Hajnal norm.

0. Introduction

In [7], K. Prikry and the present author introduced a class of ideals, called
precipitous, which the subsequent work of W. Mitchell and others proved to be the
correct generalization of «-complete ultrafilters for successor cardinals. In [5], this
author observed that precipitous ideals can be characterized in terms of an infinite
game, due to F. Galvin (which was a generalization of Banach’s game [0]).
Galvin’s game is investigated in the paper [3].

The present paper has three parts. In Section 1, we modify Galvin’s game and
obtain a related game which, unlike Galvin’s game, is always determined, and
show that precipitous ideals can be characterized in terms of the modified game.
We also address ourselves to the question what relation there is between the
Galvin-Hajnal norm of an ordinal function f, and the ordinal represented by f in
the generic ultrapower. We obtain new equivalences for precipitous ideals, and
raise some new questions.

Section 2 is devoted to a related game, invented by

arithmetic of singular cardinals. We call the ideals

Shelah’s game weakly precipitous.

In Section 3 we introduce a new related game, and the corresponding class of
ideals, which we call pseudo-precipitous. We show that like the precipitous ideals,
pseudo-precipitous ideals can be defined in terms of generic ultrapowers.
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The relations between the three classes of ideals known to us are as follows:

precipitous
weakly precipitous.

pseudo-precipitous

It is known that ‘precipitous’ is equiconsistent with ‘measurable cardinals’. Al-
though we show that ‘pseudo-precipitous’ is at least as strong as ‘measurable’, we
have only been able to prove its consistency from something stronger, namely
‘k T-saturated’. Weakly precipitous ideals are weaker; by Shelah’s result they
follow from ‘Ramsey’. Although we believe that ‘weakly precipitous’ is a large
cardinal property, we were unable to prove it.

1. Precipitous ideals

Throughout the paper, let k be a regular uncountable cardinal, and let I be a
nontrivial kx-complete ideal over k; i.e. I<%(k) and

(1.1) (@) if X<Y and Yel, then Xel,
() if y<k and {X,:£<vy}<I then U,., X, €1,
(iii) {a}e [ for all a <k.

Let I denote the set {S<k:S¢I}; we call the elements of I sets of positive
measure. (We often use the measure theoretic terminology; e.g. “for almost all
a € S means that the set of all contrary a € S belongs to I). I is called normal if
for every SeI” and every function f on S, if fla)<a for all a €S, then f is
constant on some set T< S of positive measure.

Let SeI*. A collection W of subsets of S is an I-partition of S if

(1.2) () XeI" for every Xe W,
(i) if X, YeW and X#Y, then XNYel,
(iti) W is maximal: if X< S has positive measure, then XNYeI" for
some YeW.

If A is a cardinal, then I is A-saturated if there is no I-partition of x of size A.
We denote by sat(I) the least A such that I is A-saturated.
If W and Z are two partitions of S, then W =2 means that

(1.3) for every X e Z there is Ye W such that Y& X

An ordinal function is a function whose values are ordinal numbers. An
I-function is a function whose domain is a set SeI™. If S is a set of positive
measure, a functional on S is a collection F of ordinal I-functions such that

(1.4) (i) We={dom(f):feF} is an I-partition of S,
(i) if f, ge F and f+# g, then dom(f) # dom(g).
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If F and G are two functionals on S, then F<<G means that

(1.5) (@) WesWg,
(ii) if fe F and g e G are such that dom(f) = dom(g), then f(a)<g(«) for
all o e dom(f)

Let P; denote the set I™ of all sets of positive measure partially ordered by
inclusion, and consider P; as a notion of forcing. (Equivalently, we may consider
the Boolean valued model via the completion of the Boolean algebra P (x)/I). A
generic set G < P; is an ultrafilter over the ground model and so we consider the
ultrapower Ultg (V) of V by G. We call this ultrapower a generic ultrapower.

1.1. The game 4(I)

We consider an infinite game between two players, One and Two. Player One
moves first and chooses a set A, of positive measure. Then Two chooses a set
B, < A, of positive measure. Then One chooses A, < B, of positive measure, and
so on. Thus they produce a sequence

A()QBO;A]QBlQ" -

of sets of positive measure. Player One wins if and only if

A, =0.

=
o

Theorem 1.1. Let I be a nontrivial «-complete ideal over a regular uncountable
cardinal k. The following properties are equivalent:

(1) If S is a set of positive measure and if Wy=W,=W,=- - - is a sequence of
I-partitions of S, then there exists a sequence X,2X,2X,2- - of sets Xoe W,
X, eW,, X,eW,, ..., such that (Vi_o X, # 0.

(2) There is no infinite descending sequence F,> F,>F,>- - - of functionals on
S, for any SeI”.

(3) Every condition Sc P, forces that the generic ultrapower Ultg(V) is well-
founded.

(4) Player One does not have a winning strategy in the game 4(I).

(For the proof of Theorem 1.1 see [8] and [3].) If I has these properties it is
called precipitous.

1.2. The games 4,(I) and 94,(I)

Again, we consider two players, One and Two. This time, One starts the game
by choosing an ordinal I-function f,. Then Two chooses a set B,< dom(f,) of
positive measure. Then One picks an ordinal I-function f; such that dom(f;) < B,
and f;(a) <fy(a) for all a e dom(f,). They continue in this fashion and produce a
sequence f,, f1, ... of I-functions such that for every n, dom(f,.,) < dom(f,) and
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fori(a) <f.(a) for all @ edom(f, . ). If Player One can continue the play indefin-
itely, he wins; otherwise, Two wins.

Clearly, this game is determined: If Two does not have a winning strategy, then
One does; he simply goes on and keeps making moves that witness that Two does
not have a winning strategy. (The game is open is a suitable topology.)

Theorem 1.2. Player One has a winning strategy in the game 4,(I) if and only if
Player One has a winning strategy in the game 4(I).

Corollary. I is precipitous if and only if
(5) Player Two has a winning strategy in the game 4,(I).

Proof. 1t is easy to see that if One has a winning strategy in %, then One has a
winning strategy in %§: The winning moves of One in ¥ are simply the sets
Ag, Ay, ... which are the domains of the functions f,, fi, ..., the winning moves
of One in ¥,. Clearly, the intersection (o A, has to be empty as otherwise we
would have a descending sequence of ordinals fy(a)> f,(a)>- - - for any « in the
intersection. Thus let us assume that One has a winning strategy in the game 4(I),
and let us show that there is a winning strategy for One in the (more difficult)
game 4,(I).

Let o be a winning strategy for One in %. Let us consider the set T of all finite
sequences

<A05 B07 Al, Bl, LR An)

of odd length (2n+1) of sets of positive measure such that Ag=0( )), Bo< A,,
A;=0(Ay, By), Bi= Ay, A, =0(Ay, By, Ay, By)), etc.; i.e. of finite plays in the
game 9 in which One uses the strategy ¢. The set T ordered by extension of
sequences is a tree.

Every path in the tree T consitutes a play (A, By, A}, By, ...) in 4, and since
the A,’s are obtained by One’s winning strategy o, the intersection (|- A, is
empty. Let a €k, and let T, consist of all those (A, B, ..., A,)e T such that
ac A,. It follows that T, is a well-founded tree. Consequently, there is a rank
function p, associated with the tree T,. Clearly,

p(x(<A07 B()’ L] An71>)>pa(<A0’ BO: e Anfl’ anla An))
for any (Ag, Bg, ..., A e T,.

Now we construct a winning strategy 7 for One in %,: As for the first move
fo=1{ ), let Ag=0c(()), and let f, be the following function on A,: for a € A,
let fo(@) = p ((Ap)).

By induction on n, let us assume that we have constructed 7 for all plays
{fo, Bos - -« » f—1, Br—1) in %, of all lengths 2k <<2n, and let {(f,, B, . . ., fa_1, Ba_1)
be a play of length 2n. Let A, = a({Ag, By, . .., B._1)), where A; =dom(f;) for all
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i<n, and let f, be the following function on A,: for a€A, let f.(a)=
P ({Aq, Bo, - . ., Bo_1, An)). It follows that f,(a)<f,_,(a) for all a € dom(f, ), and
hence f, is a legal move for Player One. Consequently, T is a winning strategy for
One in the game 4;. [

t we consider the following game %,(I); later on in this section we shall
look at its refinement. The moves of Player One are the same as in the game %,
namely his nth move is an I-function f, such that dom(f,)< B,_; and f,(a)<
fa_1(a) for all a edom(f,). Player Two’s nth move is again a set of positive
measure B, = dom(f,_,), but he also has to choose an ordinal number «,, such
that a, <a,_;. Clearly, not both players can make legal moves indefinitely;

whoever makes the last move wins.

.

ﬂ;

Pl
-

Theorem 1.3. Player Two has a winning strategy in the game %,(I) if and only if
Player Two has a winning strategy in the game 4,(I)

Corollary. I is precipitous if and only if
(6) Player Two has a winning strategy in 4,(I).

Proof. Since the game ¥, is more difficult for Player Two than 4,, it suffices to
prove that if Two has a winning strategy in 4,, then Two has a winning strategy
in 4,.

Thus assume that Two has a winning strategy in %,. By Theorem 1.2, I is a
precipitous ideal and so the generic ultrapower is well-founded. We shall now
describe a winning strategy for Two in %,: When Player One plays an I-function
f., every condition S = dom(f,) in P, forces that f, represents an ordinal number.

Tat ~ haothal ot s 1 ¥, dh A3t +~ ha mtad by £ A
iet o, Oc the ieast orainai 101ced Oy some condition to be representea oy j,, ana

let B, =dom(f,) be such a condition. It is clear that B, [f,]lg <[f.-1]lc and so
a, <a,_,. Hence Two is assured to have the last move. [

(We remark in passing that one can directly produce a winning strategy for Two
in ‘gl from a winning strategy for Two in %, by considering the well founded tree

f finite plays in %, in which Two employs his winning s trategy.)
1.3. Degrees of functionals

In [2], Galvin and Hajnal defined the norm of an ordinal function on k. If f and
........ o oo thos [

g arc ordinal Luuuluub, let ] <y g miean that (a f(a) = g(a)}e 1. The relation <y is
well-founded, and

is the rank of f in this well-founded relation.
For SeI*, let

"f”s = ”f“l s



wher:
el”.
If a is an ordinal number, then the ath function, if it exists, is the unique
(mod I function f, such that ||f,|ls = « for all SeI". It is clear that for every a <«
the ath function exists, namely the constant function with value o. If I is normal,

then the oth function exists for each o <« (hv induction: use diacsonalization at

........................................................................

stages of cofinality ). A result of A. Hajnal [4] states that if V =L, then the «"th
function does not exist for the dual of the filter of closed unbounded sets.

It is easy to see that if the ath function exists for all «, then I is precipitous and
that for every a and every Se€ P, S forces that f, represents « in the generic
ultrapower. It is not known whether the functions f, exist for every precipitous
ideal (probably not). (It has been observed by Levinski [10] that the precipitous
ideal on w, constructed by Mitchell in [6] does have this property.)

Let f be a function of norm «, and assume that Si-f respresents an ordinal
number. Then, as one can easily verify, SI-f represents an ordinal greater than or
equal to «a. There does not seem to be however any further relation between the
norm and the ordinal represented by the function (except in case of normed ideals
to be discussed in 1.5). Thus we define the degree of an ordinal function, and
more generally, the degree of a funciional.

Let F be a functional on k. We say that F has a degree if the relation <
(defined in (1.5)) is well-founded below F, i.e. on the set {G : G < F}. The degree of
F

“ g

deg(F) =deg;(F)=sup{deg;(G)+1:G<F}

is the length of this well-founded relation. If f is an ordinal function on «, then
deg(f) = deg({f}) (as {f} is a functional on ), if the right hand side is defined. We
also define

degs(F) = deg; 'S (F), degs(f) =deg; ts 63

for all SeI".
It follows from Theorem 1.1(2) that I is precipitous if and only if every
functionai on every Sei” has a degree. Similariy we have:

Proposition. Every functional has a degree if and only if I} S is precipitous for
some SeI*.

Proof. Let ScI' be such that I | S is precipitous. There can be no descending
sequence of functionals on k since the same sequence (restricted to S) would be a
descending sequence with respect to the ideal I | S, contradicting the precipitous-
ness of I | S. Hence every functional has a degree.

Conversely, if no I | S is precipitous, then the set {S e I': there is a descending

caaniance of function ale on QU iq denge Thic thara T_nartition W/ cuch that
O \alu\-/ AL Uk 1Ull\4L1UllalD wil LJJ’ lb uuuo « LIIUD LiIVI v 10 au i~ ycu LILIVIL YV Ouwidl uiaau

or each S W we have a descending sequence F3>F;>- - - on S. Now it is easy



Some properties of k-complete ideals 37

to build up a descending sequence of functionals on k. Hence not every functional
has a degree. UJ

Theorem 1.4. The degree of a functional F is the least ordinal a such that for some
feF and some set S < dom(f) of positive measure, SI-f represents o in the generic
ultrapower.

Proof. We shall prove the theorem by induction on a. Let a be an ordinal and let
F be a functional on k. First note that the set of all SeI" with the following
property is dense: either S =€ dom(f) for some fe F and S forces that f represents
an ordinal in Ultg, or there is a descending sequence of functionals on S below F.
Thus there exists an I-partition W= W such that for each S € W either there is
an ag such that SI-f represents ag (where f e F is such that § = dom(f)), or there
is a descending sequence F3>F;>- - - of functionals on S below F.

If there is no S € W of the first kind, then F does not have a degree as we can
use the F?$ to build up a descending sequence of functionals below F. If there is
such S, let a be the least value of all such ag. It suffices to prove that deg(F) = a.

If G<F, let SeW be such that ag=« and let g€ G be such that T=
dom(g)N S has positive measure. Then T forces that g represents an ordinal less
than «, and by the induction hypothesis we have deg(G)<a. It follows that
deg(F)=a.

To show that deg(F) = «, let 8 < a. For each S ¢ W of the first kind, let G be a
functional on S such that for each g € G5, dom(g) I-g represents . For each Se W
of the second kind, let Gg = Fj. Let G be the functional built up from the G,
SeW. Then B is the least 3 for which some S forces an element of G to
represent (3; by the induction hypothesis, deg(G)= 8. Since G <F, we have
deg(F)> B. Consequently, deg(F)=a. I

Let o be an ordinal. The ath functional, it if exists, is a functional F, such that
degs(F,)=a for all SeI*. It is easy to see that F, is unique (mod I) in the sense
that if F, and F., are both such functionals then, whenever fe F, and f' € F!,

{¢ edom(f) Ndom(f'): f(&) # f'(&)}e L

The following proposition is an immediate corollary of Theorem 1.

Proposition. F is the ath functional if and only if for every fe F, dom(f)I-f
represents . [

One consequence of this is that if @« << and if F; exists, then F, exists.
Another consequence is:

Corollary. I is precipitous if and only if
(7) For every a, the ath functional exists.
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1.4. The game %45(I, f, o)

We shall now consider a refinement of the game %,(I). Let f be an ordinal
function on «, and let « be an ordinal number. The game %; is played as follows:

One Two

fo
i

B09 Qg
Bl7 23]

Each f, is an I-function, and each B, is a set of positive measure and dom(f,) 2
Bo2dom(f)) 2B, 2. Moreover, ag>a;>:'-, and f,,1(§)<f.(§) for all n
and all ¢ edom(f, ). In addition to these rules (as in %,), the first moves have to
be such that ag<a and fu(&) <f(£) for all £ edom(f,). Whichever player makes
the last legal move wins.

By Theorem 1.3, I is precipitous if and only if for every f there is & such that
Two has a winning strategy in 9(I, f, a). The following theorem gives a more
detalied correlation:

Theorem 1.5. Player Two has a winning strategy in the game 4,(L, f, a) if and only
if degs(f)<a forall SeI”.

Proof. First let us assume that degg(f)<a for all SeI*. We shall describe a
winning strategy for Two in 9;. When One plays an I-function f, with domain A,
then because deg, (f) <a we have deg, (fo) <a. Therefore there is, by Theorem
1.4, a set Bo< A, of positive measure, and an ordinal «, such that B, forces that
f, represents ag. In other words, degg(f,) = o for all S B, in I'". Let Two play
By, ap. Then when One plays f,, we can similarly find B, = dom(f;) and o; <ay
such that degg(f;) = a, for all S € B;, and so on. This way, Two can keep making
legal moves and therefore Two wins.

Conversely, let us assume that for some Sel”, it is not the case that
degs(f)=a. We shall describe a winning strategy for One in %;. Let SeI” be
such that deggs(f) #a. If degs(f) does not exist, there is a descending sequence
Fy,>F, > - - of functionals on S below f. So let One choose f,€ F,, and then let
him play as follows: whenever Two plays B,, a,, One picks some ge F, ., such
that dom(g) "B, eI, and plays f, =g | B,. This strategy wins. If degs(f)>a,
there is a functional F on S such that degsF = @, and by Theorem 1.4 there is
go€ F and A,=dom(g,) such that A, forces that g, represents «. Let One play
fo=80 | Ag. Now degg(fy) =a for all S A, and when Two plays Bo< A, and
ag<a, One can similarly find f, with domain A, < B, such that degs(f,) = o, for
all S < A,. And so on: when Two plays B,, a,, One responds by playing f,., such
that B, 2dom(f,. ) Ff.., represents «,. Thus One has a winning strategy. [
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1.5. Normed ideals
Let f be an ordinal function. If deg(f) exists, then clearly ||f|| <deg(f). The ideal

I is normed if for every ordinal function f, deg(f) = ||f|l.

Lemma. Let I be a normal ideal. For every I-

degs(f) = “f“s o

Proof. Let S=dom(f) and assume that —SeI*. Let a=|fls. Let g be the
extension of f to k defined by g(£)=a™ for all £€—S. Clearly, ||g|| = a, and hence

Aaslo)l =~ Ry Thanram 1 4 thara i T T which for
Qg \g) = &. DY 18O 1.4, UICIC 1S & © 1 Wililil 10T

it is clearly impossible that T<—S (too many constant functions); hence we may
assume that T< S and so T forces that f represents «. By Theorem 1.4 again we
have that degs(f) <a. And so degs(f) =|flls. O

that o renrecente o~ Now
ulal f 10piosiiis K. 18UV

If F is a functional on a set SeI”, then
degS (F) = min{degdom(f)(f) :fe F}

Hence if I is normed, every functional on every set in I has a degree and so we
have

Corollary. If I is normed, then I is precipitous.

We don’t know whether every precipitous ideal is normed (probably not). Also,
it is easy to prove that if the «th function exists for every «, then I is normed, but
we don’t know if the converse is true (again probably not).

In [10], Levinski calls I ‘normé’ if

o m

(1.6) for every ordinal function f on « there is S e I'* such that ||flir =|if]| for ali
TcS.

The reason why I cali the ideal normed is that Levinski’s condition is equivaient
to my definition:

Proposition. I is normed if and only if it satisfies the condition (1.6).

e . T At e

Ponof Tt T ho niaaad 1a -
I 1 K LECL

Proof. Let I be normed and let f ¢ an ordina il 7
deg(f) =, there is S € I'" such that SI-f represents «. Hence degr(f) =« for all
T<S and so ||fllr =||fl| for all T<S.

Let I satisfy the condition (1.6). First note that (1.6) implies a somewhat
stronger condition:

N 1 frmadina o
O 1 function orf
t

(1.7) for every I-function f there is S < dom(f) such that {|f|lr =|{fllaom, for all
TeS.
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(To see this, extend f to « by letting f(&) =||fl|* for all £¢dom(f) and apply
(1.6).)

I claim that (1.7) implies that I is precipitous. If not, there is a descending
sequence of functionals F,>F,>--- on some SeI". Pick foe F, and let S;<
dom(fy) be such that ||follr =llfolls, for all T< S, Then pick feF; and S,<
dom({,) such that S, = S, and that ||f,||+ =|lf,lls, for all T<S,, and so on. Then we
have il = Ifils, > 1fl, = s, > ks, = - -, @ descending sequence of ordinals,
a contradiction.

Now let’s prove that (1.7) implies that I is normed. We shall prove, by
induction on ¢, that if f is an I-function if S =dom(I) and if degs(f) =, then
liflls = . Let f be an I-function such that dom(f) =S and degg(f) = . Assume
that ||f]ls = 8 <a. Let T< S be such that ||f|ly = 8 for all U< T. Since deggs(f) = a,
there is an I-function g with domain U < T such that deg;;(g) = 8 and g(&) <f(£§)
for all £¢ U. By the induction hypothesis, ||g|l; =8, a contradiction since |jg|li; <

Ifl=8 O
2. Weakly precipitous ideals

2.1. Shelah’s game 4.(I)

Let I be a normal x-complete ideal over . In this game, the moves of Player
One and Player Two are as follows:

One Two

f() IO
fl I
f 1
:2 I

fo is an ordinal I-function. I is a normal (kx-complete) ideal over « such that
I,21 } dom(f,). Then f; is an ordinal I,-function such that f,(a)<fy(a) for all
a edom(f,). Iy 2 I, | dom(f,) is a normal ideal, f,<f; is an I;-function and so on.
Player One wins if and only if he can continue making legal moves indefinitely.
The game 9, is determined. Note that this game is a generalization of the game
%4,, as the moves of player Two in %, are in fact moves of Two in 4, with the
additional specification that each I, is equal to I } B, for some B, eI". Thus if
Two has a winning strategy in %, Two has a winning strategy in %,. Thus

Definition. I is weakly precipitous if Player Two has a winning strategy in the
game 4,(I).

And we have

Propesition. If I is precipitous, then I is weakly precipitous.
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In Section 1 I have shown how the game %, is related to Galvin’s game
(Theorem 1.2). One can prove a similar theorem for Shelah’s game:

2.2. The game 4s(I)

The moves of Players One and Two are as follows:

One Two
A

A(l) ; (8]
A, !

Each A, issuch that A, < A, , and A, eI, | (and A,eI"). Each I, is a normal
ideal such that I, 21, , |} A, (and I,21I} A,). Player One wins if and only if
i—0 An = 0.

Theorem 2.1. Player One has a winning strategy in the game 4s(I) if and only if
One has a winning strategy in the game 4,(I).

Proof. The argument is exactly as in the proof of Theorem 1.2. [
The following is an unpublished theorem of S. Shelah [12].

Theorem 2.2. If there is a Ramsey cardinal A >k, then there exists a normal
k-complete ideal I over k such that Player Two has a winning strategy in the game
G,(I).

Proof (sketch). First we define a certain filter % (due to Magidor [11]). Let E be
the set of all P< A such that |P|=A and a, = PNk is an initial segment of «. For
every F:[A]"“ — A be the set of all Pe E closed under F (i.e. F((P]™)< P).
Since A is Ramsey, each Ag is nonempty. Let & be the filter over E generated by
the sets Ag for all F:[A]"” — A. By Magidor, % is x-complete and is normal in
the sense that if f(P) e P holds on a set of positive measure then f is constant on a
set of positive measure. Let $ be the dual of Magidor’s filter.

Let 7v: E — « be defined as follows: w(P)=a,. If $ is a normal ideal over E,
then w[#] is a normal ideal over x. For any function f:x - A, let f:E—E
denote the function f(P) = f(ar(P))th element of P.

Let I=n[$]. We claim that Player Two has a winning strategy in the game
%,(I). An elementary submodel argument shows that it is enough to prove this
only in the case when the first move of One is a function f;, with values less than A.
Now the strategy is as follows. When One plays f,, let &, = a_((I,_, | dom(f,)).
%, is a normal filter over E and so the function f. is constant on a set B, €%,
(where £, is the dual of &,). Moreover, its constant value v, is less than v, ;. So
let Two play the ideal w[$, | B,]. This strategy wins, as yo>v,>v,>---. O
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Remark. The filter w[F] is the closed unbounded filter over k.

Proof. Let F:[A]™ — A. We shall show that the set w[Ag] contains a closed
unbounded set C. We construct C as follows: C={ap :£<k} where ap_is a
normal sequence: Let P, be any element of E closed under F. Given P, let P,
be some element of E closed under F such that ap > ap. If £ is a limit ordinal,
let P.=U, . P,; clearly, P; is closed under F. [J

Corollary. If there is a Ramsey cardinal A > k, then the ideal of thin subsets of k is
weakly precipitous. [

To carry a weakly precipitous ideal is probably a large cardinal property of «,
but it is unknown even whether it contradicts V =1L.
3. Pseudo-precipitous ideals

We shall now generalize the games ¥, and %;. Let I be a normal «-complete
ideal over «.

3.1. The game 4¢(I)

One Two

IO’ fO TI
Il, .fl ](l)
123 _f2 JZ

The I, and J, are normal x-complete ideals over « such that IcI,cJoc ;=S
.++. Each f, is an ordinal I,-function, and each J, satisfies J, 21, | dom(f,).
Moreover, f,,(a) <f.(a) for each n and each a € dom(f,.,). Player One wins if
and only if he can continue making legal moves indefinitely. The game % is
determined.

Definition. I is pseudo-precipitous if Player Two has a winning strategy in the
game 9g(I).

3.2. The game 94,(I)

One Two

I, A,

? J
Ila Al JO
12’ A2 !
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The I, and J,, are normal x-complete ideals over « such that IclycJ,c I, <=
Ji---. Each A, a subset of « such that A, .,eJ; (and AyeI"), and each I,
satisfies I,.,=2J, [ A..; (and I,=11 Ay). Player One wins if and only if
ﬂm o An =¢

Flrst we notice that the proof of Theorem 1.2 easily generalizes to the present

Theorem 3.1. Player One has a winning strategy in the game G¢(I) if and only if
Player One has a winning strategy in the game 4,(I). [

me 4. bv

making the rules easier for Player One This if Two has a winning strategy in
Ys(I), Two also has a winning strategy in 9,(I) and we have:

¢

¢

.

ue
D

Proposition. Every pseudo-precipitous ideal is weakly precipitous.

We want to determine how strong is the property “k carries a pseudo-
precipitous ideal”. The vehicle for our investigations is the use of generic
ultrapowers.

Let Q; be the following notion of forcing. Foring conditions are normal
x-complete ideals J extending I, and J, is stronger than J, just in case J, 2 J,.

Let G be a generic subset of Q;. The union of all J€ G is a normal ideal and is
prime with respect to the ground model (an easy argument using genericity). Thus
iet ¥ be the dual of this prime ideal; % is an uitrafiiter for the ground modei and
we can form the ultrapower Ulty (V). We call U a Q;-generic ultrafilter, and
Ulty (V) a Q;-generic ultrapower.

Py AP AP
the Q-generic

power is well founded.

Theorem 3.2. The ideal I is pseudo-precipitous if and only if every condition J € Q;
i

Py
Lr

Proof. First suppose that some condition J forces that the Q;-generic ultrapower
is not well-founded. We shall produce a winning strategy for Player One in the

game @6(1 ) thus showing that I is not pseudo-precipitous. J forces that there is a
cequance f (‘ /rf‘1\ of ordinal functions (in VY an . deccends mand 5)1. T Tet

sequence f (in VIG)) of ordinal functions (in V) on «, descending mod %
IL,eQ and fo (the opening move of Player One) be such that I,=J | dom(f,) and
that I, forces that f, is the Oth term of the sequence f. For each n, when Two
plays J,, let I,,, and f,,, be such that I,,, 2J, | dom(f,,,), that f, ,(a)<f.(a)
for all « edom(f,,,) and that I,., forces that f,,; is the (n+1)st term of the
sequence f. Clearly, this strategy wins for Player One.

Now suppose that every condition J € Q; forces that Ulte (V) is well-founded.
We shall show that Player One does not have a winning strategy in 9(I), and
thus [ is pseudo-precipitous. Let o be a strategy for One in 4. Let I, f, be the
opening move of Player One (using o). Let G be Qy-generic over V such that
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and let Ult be the OQ;-generic ultrapower; let j: V— Ult be the corresponding
elementary embedding. Since Ult is well-founded, we identify it with a transitive
class in V[G].

Let us assume that ¢ is a winning strategy; we shall reach a contradiction. Let
Jo€ G be such that J; 2 I;; such J; exists by the genericity of G. Let I, f; be the
move by One using o against J,. Let J,€ G be such that J; 21, and let I, f, be
One’s move using ¢ against J,, J;. And so on. This produces a sequence
Iy=Jyc I, < - - - of conditions in G. It follows that for every n, dom(f,) € U. Since
U is normal, we have x € dom(j(f,)) for all n. But this is a contradiction because

we would have

i) > () > j(f2) () > - -

Hence o is not a winning strategy and therefore I is pseudo-precipitous. [l

The equivalence proved in Theorem 3.2 can be used to prove the following
result:

Theorem 3.3. If « carries a pseudo-precipitous ideal, then k is measurable in an
inner model.

T

le in this situation, as it is in the

nicgue from 91 is annlica
que rom (Y] appica

analogous case of precipitous ideals. In fact, the proof of Theorem 2 in [6] can be
repeated here almost word by word, with appropriate changes. I suggest that the
reader looks at the proof of Lemma 2.2 in [6]. Using the same notation as there,
the proof boils down to showing that for every X e L[A], X e I implies k — X e L.
This is established by the following chain of arguments:

It X+ Xeq,

T MNYiL. —(Y) {0 ic narmal)
| P2 W] P\C_’\I\} \w 1D llUllllul}’

It XIH(L[AlFe(k, E, A)),

TIHATL . f n \

LA JFPIK, £, A),

IH(L[A]Re(k, E, A))

I-Xeu,

k—Xel

]

The rest of the proof is more or less like in [6]. O

We don’t know how strong property it is for k to carry a pseudo-precipitous
ideal. The only result in the opposite direction is the following result:

pseudo -precipitous.
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1J =1
The game %,(I) is thus reduced the game 9(I), and as I is precipitous, One
does not have a winning strategy. Hence I is pseudo-precipitous. [

o1 isequal to T Q fre aminie QT+
DCLI al 1|OLUIDUIIICJCI .
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1

[1. Is every precipitous ideal normed?]
[2. If T is normed, does the ath function exist for every «?]

3. If there is a weakly precipitous ideal
(a) Is V£L?
(b) Does 0% exist?
{(c) Is there a Ramsey cardinal in K7]
4. How strong is the consistency of “there is a pseudo-precipitous idealon RX,”?

Problems 1 and 2 are solved (Fall 1980). The answer is ‘‘not necessarily”’. See
the paper by Jech and Mitchell in this Journal [13].

With regard toc Problem 3 Les rn gl (Fall 1020 chawe
vviul TCgaraG 1O ryO0CIl S5 1 CVINSKI ([dit 176U) Si0we

partition property, whose strength is between Ramsey and (% suffices for
weakly precipitous ideal:

K —> ((22N1) +)<u

A that th
Ll tiia L
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