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Abstract 

The new method of computation of multiple functional integrals of quantum physics is elaborated. The method is 
based on the numerical integration over complete separable metric spaces via approximations exact on a class of 
polynomial functionals of given degree. New approximation formulas for the functional integrals with respect to 
Gaussian measure are constructed. The convergence of approximations to an exact value of integral is proved, the 
estimate of the remainder is obtained. In the particular case of conditional Wiener measure the approximation formulas 
with the weight are derived. The method is applied to the study of the multidimensional Calogero model and to 
computation of the binding of nucleons in the nucleus of tritium. 
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1. Introduction 

The functional integration method first applied in quantum mechanics by R. Feynman is now 
one of the most effective mathematical methods in contemporary quantum physics [3]. The wide 
scope of application of functional integrals [9-1 stimulated the development of their theory and 
methods for the numerical evaluation (see, e.g., [2-1). In our previous works [4, 6] we derived for the 
functional integrals over complete separable metric spaces some new approximation formulas 
which have been proved to have important advantages versus the traditional lattice Monte Carlo 
method, including the higher efficiency with respect to computer resources [7]. In many physical 
problems when studying quantum systems with many degrees of freedom, one has to evaluate the 
multiple functional integral 

fx F(X) d#(x), x = (xl, x2 .... , xm), (1) 
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over the Cartesian product of m copies of a complete separable metric space X. Here /~(x) is 
a Gaussian measure on X, uniquely determined by the correlation functional K(~, r/) and the mean 
value M(~); 4, r/e X' [2]. 

One of the means of computation of integral (1) is the successive employment of some approxi- 
mation formulas for the one-dimensiona!functional integrals I-4] (e.g., formulas exact on a class of 
polynomial functionals of degree <<.2nk + 1 for the variable Xk e X). 

It turned out however 1-8] that the higher efficiency of computations can be provided by the 
approximation formulas with the given total degree of accuracy 2k + 1, i.e., formulas which are 
exact for the constant functional and for the functionals 

F(x) = f i  Fk,(Xi) , k 1 + k 2 + ... + k m <~ 2k + 1, 
i = 1  

where FR,(X~) is a homogeneous polynomial functional of degree k~ with respect to argument xi. 
In the present paper we derive and study the approximation formulas of this kind and 

demonstrate their efficiency by the numerical investigation of the multidimensional Calogero 
model and by the computation of the binding energy of nucleons in the nucleus of tritium. 

2. Approximation formulas 

The example of approximation formulas of the third total degree of accuracy is given by the 
following. 

Theorem 1 (Egorov et al. [2]). Let L be a linear homogeneous functional defined on a manifold of the 
functionals integrable with respect to the measure It. Let, also, the followin9 conditions be satisfied: 

(1) L{F} = O for any odd functional F(x). 
(2) L { ( 4, " ) (tl, ")} = K(4, rl) for arbitrary 4, tl e X', K(~, tl) is a correlation functional of the 

measure It. 
(3) Either 

o r  

L ~i=lt ~ <4i,'>} $0 and L{1} $0 ,  (2) 

L t~,=~fi (4,,'>}----0 f o r a n y ~ , S O ,  4, e X ' , i = 2 , 3 , . . . , m .  

Let bi (i = 2, 3 .... , m) be arbitrary positive numbers. Then the approximation formula 

fxF(X)dl~(X) ~ ( 1 - ~=x b~L{1}) F(O,O,..., O) 

+ ~ biLx, {F(O,O,...,O, xi/v/-ffi,O,...,O)} 
i=l 

is exact for all polynomial functionals of third total degree on X. 

(3) 
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Remark. The designation Lx,(F) means that the functional L is applied to F as to the functional of 
argument x~ e X only. 

Formulas like (3) give a good approximation to the integrals of functionals which are close to the 
polynomial functional of third total degree on X. More precise approximations can be achieved for 
the large class of functionals if one uses the method of construction of the so-called "composite 
approximation formulas" which we derive in [4] for the one-dimensional functional integrals. The 
advantages of the "composite approximation formulas" over the "elementary" ones have been 
determined in I-4]. Analogously to the case of one-dimensional functional integrals, the construc- 
tion of the composite approximation formulas for integral (1) is based on the use of the relation 
called "mixed integration formula" [2]. Applying this formula to integral (1) with respect to each 
component x~, we obtain the mixed integration formula for the multiple functional integrals 

1 ~,, (u(0, u(0)} fxV(x,_S.,(xl) + Un,(U(1)), f x F ( X ) d ~ ( x ) = ~ e x p { - - ~ , = ~  ... 

x,, - S,,.(x,,) + U,.(u(r'O)) dp(x) du(X) ... u t"). 

Here 

(4) 

~i ¢1i 

S,,(xi) = Y, (ej, xl)ej, Un,(U ")) = ~, u}i)ej, (5) 
j = l  j = l  

N = ni, u (i) ~ R"', (u ~'), u (i)) = ~., (u)°) 2, 
i = 1  j = l  

n; are arbitrary positive numbers, {ek}ff= 1 is an orthonormal basis formed by eigenfunctions of 
a correlation functional K(~, q) in the Hilbert space H which is dense almost everywhere in X and 
generated by the measure #, and ( -, .) is a scalar product in H. 

Substituting the integral over X on the right-hand side of (4) by the approximation formula (3), 
we obtain the composite approximation formula of the third summary degree of accuracy for 
integral (1). Thus, the following theorem appears to be proved. 

Theorem 2. Under conditions (2) and (5) the approximation formula 

fxF(X)d#(x)=(2n)(-N/2)f Nexp{-lm -~ i~= l (U(i), ll(i)) } 

x [ ( 1 - -  ~ b i g { l } )  

rtl 
+ Z biLxi{V(~,l(Xl = O, u°)), ... ,~,i(xl/x/~i, u(i)), ... 

i = 1  

Z,.(x,,, = O, u("O))}] du + RN(F) 

is exact for all polynomial functionals of  third total degree on X. 

(6) 
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Here 

S~(x~, u "~) = xi - S.,(x~) + U.,(u")), 

RN(F) is a remainder  of formula (6). 
Consider the particular case 

= fR F[p(v)] dr(v), (7) L{F}  

where v is the symmetric probabilistic measure on R. Let a function p(r):R v--, X satisfy the 
conditions 

p(r) = -p ( r ) ,  

R ( ~, p(r) ) (r l, p(r) ) dv(r) = K(~, q), 

J 
1--[ ( ~ , p ( r ) ) ~ L ( R , v ) ,  1 <<.j~3, ~I,~,~,EX',  

i=1 

and let b~ = I/m, i = 1, 2 , . . . ,  m. Then the following theorem is valid: 

Theorem 3 (Zhidkov et al. [10]). Let F(x) be an arbitrary integrable real functional. Then the 
approximation formula 

1 ~ (u(O,u(o)} fxF(X)dU(x)=(2n)'-N/2'~Nexp{-~,=~ 
x - -  

m i = l  
F(U, , (u"~) , . . . ,  Z , ( x / ~  p(v, .), u ¢°) . . . .  

U..(u(m))) du dv(v) + RN(F), (8) 

where 

S,~ = p(v, t) - S.,(p(v, t)) + U.,(u"~), 

is exact for functional polynomials of the third total degree on X. 

In the special case 

X = {C[O, 1], x(O) = x(1) = O} = C 

when X is a functional space with conditional Wiener measure, determined by the correlation 
functional 

K(t, s) = min(t, s) -- ts, 



Yu.Yu. Lobanov et al./Journal of Computational and Applied Mathematics 70 (1996) 145-160 149 

we obtain [10] the following approximation formula for an m-dimensional conditional Wiener 
integral: 

where 

x - - ~  
m ~  1 

F(U,, (u~I)), ... , S,i(x/~ p(v, "), u~i)), ... 

U,.(u~m))) du dv + RN(F), (9) 

-- t sign(v), t ~ Ivl, 
dv = ½dr, p(v, t) = ((1 - t)sign(v), t > Ivl, 

Z (p(v, t ) ,  = p ( v ,  t )  - s.,(p(v, t)) + 

1 
S~,(p(v, t)) -- 2 ~ )-~ sin (j~t)sign(v)cos(j=v),  

j = l  

~,.(u ~i)) = x /~  u~. ") - -  sin (jrct) for all i = 1, 2 , . . . ,  m. 
' j = l  J jT~ 

Let us now study the convergence of the approximations (8) (and (9) respectively) to the exact 
value of the integral. 

Theorem 4. Assume that for almost all v e R we have 

S , , (p(v) )~  p(v), nl---}oo, i =  1,2 , . . . ,m,  (10) 

with respect to the measure v(v). Let F(x) be a continuous on X functional satisfying the conditions 

[V(x)l ~< g(Al(Xl ,  xx), ... ,A"(xm, x,,)), (11) 

where Ak(xk, Xk) is a nonnegative quadratic functional 

Ak(xk, Xk) = ~ V~(Xk, el) z, k = 1,2,. . .  ,m, (12) 
i = 1  

~ V~< o0, 7i1>0, i = 1 , 2 , . . . ,  (13) 
i = l  

g(x) is a nondecreasing positive function and 

k v ) 

k (14) 



150 Yu. Yu. Lobanov et al./Journal of Computational and Applied Mathematics 70 (1996) 145-160 

Then the remainder of the approximation formula (8) 

RN(F)~O a s n i ~ , i =  l,2 . . . .  ,m. 

Proof.  Wi thou t  any  restr ict ions of  general i ty  we suppose that  

7 k---Ti for a l l k = l , 2  . . . . .  m 

and  

AK(Xk, Xk) -- A (xk ,  x~). 

Using (11)-(13), we obtain  

I F(S,, (x~),..., x//--m(p(v) - S,~(p(v))) + S,~(Xk) . . . . .  S..(x,,))I 

= ~'~ ( X l ,  el )e l , . . . ,  ~ (Xk, ei)ei + ( p ( v ) ,  el)el . . . .  , 2 (xm, ei)el 
i=1 i=1 i = n ~ + l  i = 1  

< g ~ 7i(xl, ei)2,..., ~_, 7i(Xk, ei) 2 + m yi(p(v), el)2,..., yi(x,,, el) 2 
i = 1  i = 1  i = n k + l  i = 1  

<~ 9(A(xl, xl), ..., A(w/-mp(v), x/mp(v)) + A(xk, Xk) .... , A(xm, xm)) (15) 

for all k = 1, 2 . . . .  , m. 
Cons ider  the funct ional  

TN(XI ,X2 , . . . ,Xm ) = ~ ~ F(S,,(xl), . . . , x / m ( p ( v ) -  S.,(p(v))) + Sn,(xk) , . . . ,Sn.(Xm))dv(v ). 
k = l  J R  

It follows f rom (14) and  (15) tha t  TN(X) is integrable  on X with respect  to measure  #. Using  the 
mixed in tegra t ion fo rmula  (4) we get 

fx TN(X) d#(x) = (2rO-N/2 fR exp { ~ ,~": I (u(')' u(1))} 

x fx TN(Xl -- S,I(Xl) + U,,(u tl), ... ,Xm -- S..(Xm) + U~.(utm)))d#du. (16) 

One  can t rans form the funct ional  

TN(Xl - S . , ( x l )  + U.,(u"~),  . . . , x ~  - S , . ( x~ )  + U,.(u~m~)) 

as follows: 

TN(X~ -- S , , (x~)  + U.~(u"~), . . .  ,Xm - S , . ( x ~ )  + U . . ( u ~ ) )  

= ~ f F(U.,(u (')) .... , x / ~ ( p ( v )  -- S.k(p(v)) ) + U.k(u 'k)) . . . .  , U.. (u")) ) dv(v). (17) 
k = l  J R  



Yu.Yu. Lobanov et al./ Journal of Computational and Applied Mathematics 70 (1996) 145-160 

Subst i tut ing (17) into (16) and taking into account  

x d #  = 1, 

we obtain 

fx TN(x) d#(x) = (2n)- s/2 fR exP { 2 i~l (u"), u(i') } 

xfx{k~=lfRF(Unl(lg(l'),...,N//m(p(v'--Snk(p(v)))-{-Unk(u(k'),... 

Un.(u(m))) dv(v)} dl~du = (27z)-N/2 fR exp { ~ i=~ 1 (u(O, u(i)) } 

m I R  × k Z e(u, ,( ,"~),  . . . , , / - ~ ( o ( v ) -  S.,(o(v))) + u,,(,(k~), . . .  

u..(u(~)) dr(v) du. 

Hence, the integral (1) can be presented in the form 

F(x) d#(x) = m TN(X) d#(x) + RN(F). 

F o r  almost  all x e X with respect to the measure/~ there holds the convergence 

S,,(xi)--, xi whenn l - - , oo ,  i= 1,2,...,m, 

therefore 

,,/~(p(v) - S,~(p(v))) + S,,(x~) --, xk when n~ ~ o% k = 1, 2 , . . . ,  m. 

Consequent ly,  at these points  

(S.,(xx) .... , x//--m(p(v) - S.,(p(v))) + S.,(Xk) .... , S..(Xm)') ~ F(x) F 
\ k y t / 

k 
by the s imultaneous approach  of all nk to infinity. 

It follows from (14) and (15) that  the sequence 

QO {TN(X)},,,=x, i= 1 ,2 , . . . ,m,  

151 
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is bounded by the integrable function. Now we can apply the Lebesque theorem "on the passage to 
the limit under the integral sign" 

f x  TN(x) dl~(x) -~ m fxF(X)d#(x), 

which completes the proof of the theorem. []  

The estimate of the remainder RN(F) in dependence on N is given by the following. 

Theorem 5. I f  the integrable with respect to measure p(x) functional F(x) can be expressed in the 
form 

F(x +Xo) = Pa(x) + r(x, xo), (18) 

where Pa(x) is a polynomial functional of the third total degree on X and the remainder r(x, Xo) is 
estimated by the expression 

m 

Ir(x, Xo)l ~< I ]  (Ai(xi, xi))2( cl exp{c2Ai(xi + x°,  xi + x°)} + c 3 exp{c2Ai(x °, x°)}), (19) 
i = l  

where ci are positive constant such that 

1 - -  C2~)~i) ~ O, k 1,2, i 1, . ,m, (20) ~ . . . ,  ~ o .  

7~ki)ak < ~ ;  (ek,x//-mp(v)) 2 <. ak; ak, V ~ R ,  
k = l  

then for the remainder of approximation formula (8) there holds the estimate 

i = 1  k = n ~ + l  i = 1  k = n ~ + l  •k t*kJ  " 

Proof. Since the formula (8) is exact for all polynomial functionals of the third summary degree, it 
follows that its remainder Ru(F) can be expressed as follows: 

1 Z (u~i), u~i)) r(x - S,(x); U,(u))dl~(X) Ru(F) = (2r0 -u/2 exp ~i=1 

I~fR ( ) } r 0 ... .  ,x /~(p(v)  - S,,(p(v))) . . . .  ,0; U,(u) dv(v) du - K1 - K2. 
mi=l ~ v- ; 

i 
(22) 
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According to (19), we get 

[Kll<-(2~)-N/2fRexp{~i~=l(U(1),u(i))};XiOl(k=n~+17~kO(Xl, ek)2)2 

~tki'(x,,ek)2 + C2 ~ ,(',t,,(O,2~ 
k = 1 [k ~,~k ! 

and after some transformations 

[KI[ <~ f i  I~ (1-2c27~/)) -1 /2fx  ( ~ 7~i)(xi, ek)2) 2 
i = 1  k = l  k = n i + l  

cl exp c2 
k=n~+ 1 

~(ki)(Xi~ e k ) 2 t  + ¢3 )d lA (X i )  

f i  ?1 i 

1--I (1 2" ,,(i)~- 1/2i~i) - -  c,27 k ) 
i = 1  k = l  

Analogously for K2 we have 

IK21 <~ ~_, [I (1 - 2Cz~,~i)) -'/2 Y' 
i = 1  k = l  k=ni+l 

ni 

= ~, 1--I (1 - 2C27~ki))-x/zI~ ). 
i = l  k = l  

In order to evaluate 1~ ) let us consider the integral 

k=ni+ l 

It is well known [2] that its analytic value 

1/(2)= I~I (1--  22c27~k0) -1/2. (23) 
k=ni+ 1 
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After some more transformations we obtain 
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k=ni+ 1 j=ni+ 1 

-- + 2c3 
j=ni+ 1 j=n~+ 1 

and it follows from the last expression that 

I ' ; ' =  o , K ,  = o . 
j = n i + l  i = l  j = n i +  1 

Using condition (20) we get 

I ~ ) ~ ( c l e x p { c 2 k = ~ n ~ + l T ( i ) a k } + C 3 ) ( k = n ~ + l ' ( i ) a k )  2, 

(i) ,,(i) I~ ) 0 7k ak K2 0 = ~ = f k  ~k • 
k=n~+ 1 i= k=n~+ 1 

Thus the proof  of the theorem is complete. []  

j=ni+ 1 

3. Approximation formulas with weight 

In the real physical problems it is often convenient to use the approximation formulas for 
multiple conditional Wiener integrals 

I = ; c P ( X ) F ( x ) d w x ,  x = ( x l , . . . , X m ) ,  dwx = dwxl  . . .dwxm (24) 

with the weight 

pi( t ) ,q i ( t )s  C[0, 1] for all i = 1,2 . . . .  ,m. 

For  such integrals we obtained the following approximation formula: 

Theorem 6. Le t  Bi(s) be a solution o f  the differential equation 

(1 -- s)B~(s) -- (1 -- s)2B~(s) - 3B,(s) = 2p,(s), s e [0, 1], 

B,(1) = --2/3pi(1) 
(26) 
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and let the following definitions hold: 

w,(t) = exp { f I (1-s)B,(s)ds},  

1 - t  

Li(t) = f i  (Bi(s)Wi(s)Hi(s)-qi(s))ds W cl, 

Hi(s) = q,(u) ~i(u) du, Li(u) du = O. 

Then the approximation formula 

155 

(27) 

I ~ e x p { l i ~ = l f :  (1-s )B, (s )ds}exp{~i~=l f~L~( t )d t  } 

1 ., f l  F(oq .... , x/~Ti(v, .) + o~,(. ), ... , O~m) dv (28) 
× ~ f l  -1 

is exact for any polynomial functional of the third total degree on C 
Here 

~ ( v ,  .) = ~ ( v ,  .) - ~(v, .), 

• 1-t(l+f?~°~lv~'lB,(s)W,(s)as ) J~(v, t) = sign (v) ~ 

sign(v), for = 1,2, ... m. t .%< Ivl 
a(v, t) = 0, t > [ v [  all i 

Proof. Analogously to the one-dimensional  case (see [6]) we employ the linear t ransformat ion 
x(t) ~ y(t), given by the relation 

y~=xi+A~x~, x~eC, i= l , 2 , . . . ,m ,  

where 

A,xi(t) =(1  - t) f l  Bi(s)x,(s)ds, Bi(s) e C[0,1] .  

The t ransformat ion 

Ai = 1 + Ai 
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maps the space C onto itself in one-to-one correspondence. Using this transformation we obtain 

fc " fc { ~ f ] ( l [ d  12 F(x)dwx= 1--[ Oi F(Alxl,...,Amxm) exp - -~ -~t (Aixi) 
i = 1  i = 1  

d 
+xi~t(Aixi )d t  dwx= I~ Di ~(Xl,...,Xm) 

i = 1  

xexp{~ ~/=1 f2 ((l-s)B}(s)-(1-s)2B~(s)-3B~(s))x](s)ds} dwx' 

where 

t~}(X1, . . . , X m )  = F(Al  Xl,  . . .  , h m x m ) ,  

Di is the Fredholm determinant 

D, =exp {~ f /  (1-  s)B,(s)ds}. 

Therefore, if Bi(t) is the solution of the problem (26), we have 

fc~(Xl .... ,x,,)exP{i=~lf]Pi(t)x~(t)dt}dwx 

= /=11~I D [ - l f c  ~ ( A l l x l ' " " A m l x m ) d w x '  

where 

AT ' xi(t) = xi(t) - l - t f l Bi(s) Wi(s)xi(s) 

Wi(s) corresponds to (27). 
Performing one more change of variables 

Y,(t)=zi(t)+flL,(s)ds, 

where the L/(s) satisfy (27), after some transformation we obtain for integral (24) with weight (25) 

P(x)f(x) dwx = exp - 2 i= 1 

{12 f:L, (t)dt}fc (Arlxl+ l dwx, (29) x exp ~ 
i = 1  

where the ei correspond to (27). 
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For the integral over C on the right-hand side of (29) we apply the approximation formula (3) 
with L { F }  satisfying (7). The assertion of Theorem 6 follows now from Theorem 1 due to the 
continuity of AT 1 and ~ and due to the linearity o f A f  1. [] 

Remark. Eq. (26) is in fact a Riccati equation. Its solution for 

p~(t) = pi = const. < n2/2 

is 

1] 
1 c t g ( x / ~ ( 1  - s)) 1 S " B~(s) = i - s 

If we set also qi(t) = q~ = const., then ~q(t) can be expressed explicitly as 

~/(t) = qi sin ( ~ )  sin ( ~ ( 1  - t ) ) ,  
pi COS 

and the approximation formula (28) acquires the form 

I ,~  f i  ( ~ ~ l / Z e x p ) "  q2 
i = l k s i n x / 2 p i /  [ (2p,)3/2 (tg ~ /~  -- X/~)}  

1mr,( ) X2-mmi-~=l -1 F ~ l ( ' ) , . . . , v / - m t P i ( v , . ) + ~ i ( ' ) , . . . , ~ m (  • ~- , dv 

i 

(for p < 0 the trigonometric functions are converted into hyperbolic ones). 

(30) 

4. Numerical calculations 

The basis of our computations in Euclidean quantum mechanics is the matrix element 

Ziz(fl) = ( x i l e - a n l x i )  (31) 

for the Hamiltonian H = - ½A + V. The partition function Ziy(fl) = Z ( x ,  xy,  fl) can be expressed 
in the form of an integral with respect to conditional Wiener measure dwx [3]: 

Z(x. xi, fl) = f exp {- ~ V(x(t))dt} dwx. (32) 

The integration in (32) is performed over the manifold of continuous functions x(t) ~ C [0, fl] with 
x(O)  = x .  x ( ~ )  = x l .  
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Table 1 

~o Eo Emc Eex 

0.10 1.346 1.3472 
0.20 2.700 2.6944 
0.25 3.366 3.35 + 0.004 3.3680 
0.50 6.738 6.7361 

Various characteristics of a quantum system, such as the free energy f(/~), the ground-state 
energy E, the wave function ~o(X), are expressed as follows: 

1 
f(]~) = -- -z In Z(]~), 

# 

Z(x,x, fl)=(2rtfl)-l/2fceXp{-flf£V(V/-~x(t)+x)dt}dwx, 

E = lim f(/~), 
/J-o o0 

I ~o(X)l 2 = lim (exp{Efl}Z(x, x, fl)). 

Using our approximation formulas we computed [7] the various physical quantities in some 
quantum models, such as the system with the double-well potential and the quantum pendulum 
model. In that case we studied the problems of tunnelling. Our numerical results appeared to be in 
good agreement with the theoretical prediction of dilute instanton gas approximation. 

We have also investigated the Calogero model which corresponds to the system of n particles 
(n = 3,5, . . . ,11) in one-dimensional space with pairwise interaction via centrifugal potential 
repulsion forces and linear attraction forces. This model is characterized by the Hamiltonian 

1 
=~ ~ + ~ o~ ~ L (x, - ~j)~ + g (x, - x j ) -  ~, 

i<j  i<j  

where to and g are known coupling constants. 
The values of the energy Eo computed for g = 1.5 using formula (30) for various 09 at n = 3 and 

various n at co = 0.25 are given in Tables 1 and 2, respectively. Here E,,, are the solutions obtained 
by the Monte Carlo method and Eex are the exact (theoretical) values [5]. 

For n = 11, the computat ion of Eo required 3 min on CDC 6500, whereas the computat ion of 
Emc took as long as 15 min on a similar computer. Comparison with the data of other authors 
shows that the use of our deterministic method gives significant economy of computer  time and 
memory versus other methods while obtaining the results with the same accuracy. 
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Table 2 

09 Eo Emc Eex 

5 13.447 13.37 + 0.04 13.4397 
7 32.249 32.34 ___ 0.09 32.2718 
9 61.473 61.31 + 0.01 61.5183 

11 102.865 102.31 _ 0.14 102.6028 

159 

Now let us consider the numerical investigation of the interaction of particles (nucleons) in the 
nucleus of tritium. This three-body problem is of fundamental interest in physics (see [1]). The 
Hamiltonian describing the system of three particles interacting pairwise in three-dimensional 
space is the following: 

3 h2 t3 

H = ~ 2mi dx 2 + ~ V(Irijl). (33) 
i = 1  i < j  

Here x~ = (x~, x 2, x 3) (i = 1, 2, 3) denotes the coordinate of the particle with the mass mi and 

Fij  = X i - -  X j .  

We have studied the following model of triton: 

{ r2 } 
V(r) = -51 .5exp  - ~  MeV, b = 1.6F, (34) 

ml = rn2 = m3 = rap, where mp= 938.279 MeV is a proton mass. This model is an object of 
investigation of many authors (see, e.g., [5] and the references therein). The main attention in these 
works has been paid to the calculation of the binding energy of the nucleons. The following values 
of the ground-state energy have been obtained there by means of variational Ev and Monte Carlo 
Emc methods: 

Emc = --9.77 __+ 0.06 MeV, 

Ev = -- 9.42 MeV, 

Ev = --9.47 + 0.4 MeV, 

-9.99 + 0.05 MeV < Ev < -97.5 _+ 0.04 MeV, 

Ev = -9.78 MeV. 

It is seen that the difference between these results is larger than the presented error estimates. 
Therefore, the solution of this problem by some other methods is of interest for obtaining the more 
precise result. 

We consider the problem (33)-(34) in the framework of the functional integral approach 
(31)-(32). In order to compute the nine-dimensional functional integral Z we use our numerical 
techniques mentioned above. The computations have been performed on the CDC 6500 computer 
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with the relative accuracy e = 0.01. Our result E = -9 .7  MeV agrees well with the data of other 
authors. The CPU time per point fl was about 15 min, which is less than the times required in the 
other known works. 
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