
Refinement of Interface Automata
Strengthened by Action Semantics

Sebti Mouelhi, Samir Chouali, Hassan Mountassir 1

Laboratoire d’Informatique de l’Université de Franche-Comté - LIFC
16, route de Gray - 25030 Besançon cedex, France

Abstract

Interface automata are light-weight models that capture the temporal interface behavior of software compo-
nents. They have the ability to model both the input requirements and the output behavior of a component.
They support the compatibility check between interface models to ensure a correct interaction between com-
ponents and they adopt an alternating simulation approach to design refinement. In this paper, we extend
our previous works on checking interface automata interoperability by adapting their alternating refinement
relation to the action semantics. We show the relation between pre and post-conditions of transitions in
the abstract version of an interface and their corresponding ones in its concrete version. We illustrate our
extensions by a case study of the CyCab car component-based system.

Keywords: Component-based systems, interface automata, alternating refinement.

1 Introduction

Interface formalisms play a central role in the conception of component-based sys-
tems. They are increasingly used thanks to their ability to describe, in terms of
communicating interfaces, how the components of a system can be connected to
each others. Two principles have to be satisfied to design properly component in-
terfaces. First, an interface should describe enough information about the way to
make two or more components ”working together correctly” by looking only at their
interfaces. Second, more information than is required by the first principle should
not be exposed. Essentially, component interoperability have to satisfy the type
compatibility of operations (the number, order, and types of the parameters). In
addition of type check, component composition requires protocol information about
how a component must be used in a system design and the order in which their
interacting events are enabled. Interfaces that expose protocol information of com-

1 Email: {sebti.mouelhi, samir.chouali, hassan.mountassir}@lifc.univ-fcomte.fr

Electronic Notes in Theoretical Computer Science 253 (2009) 111–126

1571-0661 © 2009 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2009.09.031
Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82088985?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:sebti.mouelhi@lifc.univ-fcomte.fr,samir.chouali@lifc.univ-fcomte.fr,hassan.mountassir@lifc.univ-fcomte.fr
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

ponents can be specified naturally in an automaton-based language like interface
automata [1,2].

Interface automata have been introduced as a formalism that captures the tem-
poral Input/Output behavior of a software component. Similarly to Input/Output
automata [12], they are specified by automata labeled by input, output, and internal
actions. The approach of interface automata adopts an optimistic or environment-
constraining view where the

composition of two compatible interfaces can be used together in at least one
design thanks to the non-input-enabled property, which means that at every state,
some input actions may not be enabled contrarily to I/O automata and CSP [12].
There interaction is made by synchronizing shared input an output actions, while the
internal actions of concurrent automata are interleaved asynchronously. Automatic
compatibility verification and refinement checking can be made. The formalism of
interface automata has been applied in several cases as a formal model to specify
the interface behaviors of software components [4,9]. A path often taken in the lit-
erature is to check the interface compatibility of components at the semantic level
of operations. In our previous work [6], we improve the model of interface automata
to ensure a more reliable verification of components interoperability by taking into
account the semantics of actions. The proposed method enrich transitions of inter-
face automata by pre and post-conditions of actions which are atomic prepositions
over a set of variables. The scope of our previous work do not cover the totality
of interface automata by treating refinement. This paper is essentially written to
expose the refinement our extended interface automata.

The role of refinement relation is to formalize the relationship between the ab-
stract and the concrete versions of the same component. For I/O automata, refine-
ment is usually defined as trace containment or simulation [10]; this ensures that
the output behaviors of the refined automaton are behaviors that are allowed by
the abstract one. Such definitions of refinement do not hold for non-input-enabled
setting, such as interface automata: if the set of legal inputs of the refined interface
is a subset of the inputs allowed by the abstract one, then the refined interface could
be used in fewer environments than the interface abstraction. While a new approach
is adapted to compose interface automata, an alternating approach is used to refine
them.

Alternating refinement simulation is defined to study refinement between al-
ternating transition systems [13]. They are introduced as a general model for
component-based systems which allow the study of adversarial relationships be-
tween individual system components. Unlike in labeled transition systems where
each transition represents a possible step of the system, each transition of an alter-
nating transition system corresponds to a possible move in a game between different
components. The proposed refinement of interface automata is based on this ap-
proach by viewing them as alternating transition systems. Explicitly, a refinement
of an interface automata expresses that the refined component can offer more ser-
vices (input actions) and fewer service demands (output actions). In this article,
we adapt the alternating refinement simulation of interface automata by taking into

S. Mouelhi et al. / Electronic Notes in Theoretical Computer Science 253 (2009) 111–126112

account the relation between pre and post-conditions among the input and output
transitions of an automaton and their correspondent refinements. In other word,
a refined version uses more variables to formulate pre and post-conditions of the
refined and added input actions. We suppose that the pre and post-conditions of
the remaining output actions do not change. Intuitively, while the offered services
are local in the component, we have to strengthen their semantics constraints if
which is not the case for demanded services because the component ignore if the
demanded service was refined or not in the environment.

Concretely, we strengthen the alternating simulation between states of a refined
interface and its correspondent abstract one by establishing equivalence and impli-
cations between their similar input and output actions. After this introduction, in
section 2 and 3, we will give an overview of interface automata and we will present
our contribution of considering action semantics to verify their interoperability. In
section 4, we will detail our adaptation of the alternating refinement simulation of
interface automata to the semantics of actions and we will illustrate our works by
a case study of the CyCab car component-based system.

2 Preliminary

I/O automata have been introduced by Nancy A.Lynch and Mark.Tutle [12] as
labeled transition systems. Commonly, they are used to model distributed and
concurrent systems. Labels of I/O automata fall into three categories of actions:
input, output, and hidden actions where input actions are enabled at every state
of an automaton.

Defintion 2.1 An I/O automaton A = 〈SA, IA,ΣI
A, ΣO

A, ΣH
A , δA〉 consists of

• a finite set SA of states;
• a subset of initial states IA ⊆ SA;
• three disjoint sets ΣI

A,ΣO
Aand ΣH

A of inputs, output, and hidden actions. All
actions, as a whole, are denoted by ΣA = ΣI

A ∪ ΣO
A ∪ ΣH

A ;
• a set δA ⊆ SA × ΣA × SA of transitions. It gives a transition relation with the

property that for every state s and an input action a there is a transition (s, a,
s) in δA.

Interface automata have been defined by L.Alfaro and T.Henzinger [1], to model
the temporal behavior of software component interfaces. These models are
non-input-enabled I/O automata, as previously said, where it is not necessary to
enable input actions at every state of one automaton. Every component interface
is described by one interface automaton where input actions are used to model
methods that can be called, and the end of receiving messages from communication
channels, as well as the return values from such calls. Output actions are used
to model method calls, message transmissions via communication channels, and
exceptions that occur during the method execution. Output actions describe the
required actions of a component (represented by the symbol ”!”), input actions

S. Mouelhi et al. / Electronic Notes in Theoretical Computer Science 253 (2009) 111–126 113

describe the provided actions of a component (represented by the symbol ”?”), and
internal (or hidden) actions inside the component itself describe its local operations
(represented by the symbol ”;”). Both for I/O automata (IOAs) and interface
automata (IAs), the input and output actions of an automaton A are called
external actions uniformly (Σext

A = ΣI
A ∪ ΣO

A) while output actions and internal
actions are called locally-controlled actions (Σloc

A = ΣO
A ∪ ΣH

A). We define by ΣI
A(s),

ΣO
A(s), ΣH

A (s) the input, output, and internal actions enabled at the state s.

Definition 2.2 An interface automaton A = 〈SA, IA,ΣI
A,ΣO

A,ΣH
A , δA〉 consists of

• a finite set SA of states;
• an subset of initial states IA ⊆ SA. It contains at most one state. If IA = ∅,

then A is called empty;
• three disjoint sets ΣI

A, ΣO
A and ΣH

A of inputs, output, and hidden actions;
• a set δA ⊆ SA×ΣA×SA of transitions between states. Contrarily to I/O automata,

the input actions are not necessarily enabled at every state.

For an IA A, we define two type of actions a ∈ ΣA and ax ∈ Σext
A , and two type

of action sequences α = a1a2...an ∈ (ΣA)n and β = b1b2...bn ∈ (Σext
A)n. Given two

states s1 and s2, we define the following relations.

• s1
a−→A s2 iff (s1, a, s2) ∈ δA;

• s1
τ−→A s2 iff s1

b−→A s2 for some b ∈ Σint
A ;

• s1
α−→A s2 iff s1

a1−→A
a2−→A ...

an−→A s2;
• s1

ε=⇒A s2 iff s1(
τ−→A)

∗
s2 (* is reflexive and transitive closure and juxtaposition

of transitions);
• s1

ax=⇒A s2 iff s1
ε=⇒A

ax−→A s2 (this relation is called input or output sequence of
steps according to the type of the action ax and states between the two extremities
s1 and s2 are called internal states);

The optimistic view of interface automata incorporates a notion of interface com-
position that leads to smaller compound automata than the input-enabled view.
When we compose two interface automata, the resulting composite automaton may
contain illegal states, where one automaton issues an output that is not acceptable
as input in the other one. The proposed approach to compute compatibility between
interface automata based on the fact that each interface expects the environment
to provide only legal inputs. The compound interface expects the environment to
pass over transitions leading only to legal states. The existence of a such legal en-
vironment for the composition of two interfaces indicates that there is a way to use
their corresponding components together by ensuring the encounter of their envi-
ronment assumptions. The composite interface automaton combines the behaviors
of the two component interfaces and the environment assumptions under which the
components can work together properly.

S. Mouelhi et al. / Electronic Notes in Theoretical Computer Science 253 (2009) 111–126114

3 Interface automata strengthened by action semantics

Our approach presented in [6] extends interface automata by considering the action
semantics to ensure a more reliable verification of component interoperability. In [1],
the checking of the component compatibility uses only action signatures, which are
not sufficient to decide if two interfaces are compatible or not. Our contribution
uses pre and post-conditions over a set of variables to annotate the actions of in-
terface automata. These constraints on actions show their semantic effects which
can be useful to strengthen the compatibility checking. The proposed algorithm to
verify the composition and the compatibility between interface automata takes into
account of pre and post-conditions of actions.

We introduce a finite set of variables x ∈ V with their respective domain Dx.
These variables are used to represent the effect of actions by updating there values.
The variable updates are modeled by pre and post atomic formulas over V.

Definition 3.1 Let A = 〈SA, IA,ΣI
A, ΣO

A, ΣH
A , P reA, PostA, δA〉 be an IA strength-

ened by action semantics where

• a finite set SA of states;
• an initial state IA ⊆ SA;
• three disjoint sets ΣI

A, ΣO
Aand ΣH

A of inputs, output, and hidden actions;
• Pre and Post are the set of pre and post-conditions of actions, they are atomic

formulae over the set of variables V;
• a set δA ⊆ SA × PreA × ΣA × PostA × SA of transitions.

For a ∈ ΣA, we denote by PreAa and PostQa respectively the precondition and
post-condition of the action a in the automaton A.

The composition condition is the same as the preexisting approach. The compo-
sition of two automata may take effect only if their actions are disjoint, except
shared input and output actions between them. When we compose them, shared
actions are synchronized and all the others are interleaved asynchronously.

Definition 3.2 Two interface automata A1 and A2 are composable if

ΣI
A1

∩ ΣI
A2

= ΣO
A1

∩ ΣO
A2

= ΣH
A1

∩ ΣA2 = ΣH
A2

∩ ΣA1 = ∅
Shared(A1,A2) = (ΣI

A1
∩ ΣO

A2
) ∪ (ΣI

A2
∩ ΣO

A1
) is the set of shared input and output

actions between A1 and A2. We can now define the product automaton A1 ⊗ A2

properly. We mention that some transitions in A1 and A2 may not occur in the
product.

Definition 3.3 Let A1 and A2 be two composable interface automata. The product
A1 ⊗ A2 is defined by

• SA1⊗A2 = SA1 × SA2 and IA1⊗A2 = IA1 × IA2 ;

S. Mouelhi et al. / Electronic Notes in Theoretical Computer Science 253 (2009) 111–126 115

• ΣI
A1⊗A2

= (ΣI
A1

∪ ΣI
A2

) \ Shared(A1, A2);

• ΣO
A1⊗A2

= (ΣO
A1

∪ ΣO
A2

) \ Shared(A1, A2);

• ΣH
A1⊗A2

= ΣH
A1

∪ ΣH
A2

∪ Shared(A1, A2);
• ((q1, q2), P re, a, Post, (q′1, q′2)) ∈ δA1⊗A2 if
· a �∈ Shared(A1, A2) ∧ (q1, P re1, a, Post1, q

′
1) ∈ δA1 ∧ q2 = q′2 ∧ Pre ≡

Pre1 ∧ Post ≡ Post1
· a �∈ Shared(A1, A2) ∧ (q2, P re2, a, Post2, q

′
2) ∈ δA2 ∧ q1 = q′1 ∧ Pre ≡

Pre2 ∧ Post ≡ Post2
· a ∈ Shared(A1, A2) ∧ ((q1, P re1, a, Post1, q

′
1) ∈ δA1 ∧ a ∈ ΣI

A1
) ∧

((q2, P re2, a, Post2, q
′
2) ∈ δA2 ∧ a ∈ ΣO

A2
) ∧ Pre ≡ Pre2 ∧ Post ≡ Post1

such that Pre2 ⇒ Pre1 ∧ Post1 ⇒ Post2
· a ∈ Shared(A1, A2) ∧ ((q1, P re1, a, Post1, q

′
1) ∈ δA1 ∧ a ∈ ΣO

A1
) ∧

((q2, P re2, a, Post2, q
′
2) ∈ δA2 ∧ a ∈ ΣI

A2
) ∧ Pre ≡ Pre1 ∧ Post ≡ Post2

such that Pre1 ⇒ Pre2 ∧ Post2 ⇒ Post1

Illegal states are the states at which the shared actions do not synchronize. We
distinguish two different cases: (i) a component requires a shared action which
is not provided by the environment, or (ii) they synchronize on a shared action
between them but the required action and the provided one are not compatible at
the semantic level.

Definition 3.4 Given two composable interface automata A1 and A2, the set of
illegal states Illegal(A1,A2) ⊆ S1 × S2 of A1 ⊗ A2 is defined by {(q1, q2) ∈ SA1 ×
S2 | ∃ a ∈ Shared(A1, A2). such that the following conditions hold } .

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a ∈ ΣO
1 (q1) ∧ a �∈ ΣI

2(q2)

∨
(a ∈ ΣO

1 (q1) ∧ a ∈ ΣI
2(q2)

∧
(Pre1 �⇒ Pre2) ∨ (Post2 �⇒ Post1))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

or

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a ∈ ΣO
2 (q2) ∧ a �∈ ΣI

1(q1)

∨
(a ∈ ΣO

2 (q2) ∧ a ∈ ΣI
1(q1)

∧
(Pre2 �⇒ Pre1) ∨ (Post1 �⇒ Post2))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The set of illegal states in the product A1 ⊗A2 describes the possibility that one of
the two automata may produce an output action that is an input action of the other,
but it is not accepted. In our contribution, we extend the previous definition by the
possibility that, for some states (q1, q2) in the set of illegal states, an output action
issued from q1 in A1 can be synchronized with the same action enabled as input at q2

in A2 but the precondition of the output action does not imply the the precondition
of the input action or its post-condition is not implied by the post-condition of the
input one.

Compatible states, denoted by Comp(A1,A2), are states from which the

S. Mouelhi et al. / Electronic Notes in Theoretical Computer Science 253 (2009) 111–126116

environment can prevent entering illegal states. The compatibility can be defined
differently, A1 and A2 are compatible iff their initial state is compatible.

Definition 3.5 Given two composable interface automata A1 and A2. The com-
postion A1 ‖ A2 is an interface automaton defined by: (i) SA1‖A2

= Comp(A1,A2),
(ii) the initial state is IA1‖A2

= IA1⊗A2 ∩ Comp(A1,A2), (iii) ΣA1‖A2
= ΣA1⊗A2,

and (iv) the set of transitions is δA1‖A2
= δA1⊗A2 ∩ (Comp(A1,A2) × PreA1⊗A2

× ΣA1‖A2
× PostA1⊗A2 × Comp(A1,A2)).

The verification steps in this approach are the same as [1] except that we consider
the action semantics. The proposed algorithm [6] verify the compatibility of two
interface automata by checking if their composition is nonempty. We mention that
our approach does not increase the linear complexity of the previous proposed one.
Finally, we add that the associative criterion of the composition operator ‖ between
three automata is undefined when some of them are not composable.

4 Adapting the alternating refinement relation

The aim of the refinement relation is to concretize an abstract version of a compo-
nent interface. It permits to move a component or an interface from a high-level
understanding to a more concrete specification. Contrarily to traditional types of
I/O automata, refinement is defined as trace containment, the refinement of in-
terface automata is based on an alternating refinement relation in the spirit of
simulation. A more concrete version of an interface have to be used in stronger
environments than its abstraction. In other words, the refinement of an interface
must allow more legal inputs, and fewer outputs than the abstract version.

By taking the fact that the internal actions are independent, an interface au-
tomaton Q refines another P if all input transitions of the second one can be sim-
ulated by the first one, and contrarily for output transitions.

4.1 Preliminary

We recall the preliminary notions used to define the alternating simulation relation
between interface automata. The ε-closure of a state s is the set of all reachable
states from s by transiting only internal steps. The environment cannot distinguish
between s and all states of ε-closure(s).
Definition 4.1 Given an interface automaton P and a state s ∈ SP , ε-closureP (s)
is the smallest set R ⊆ SP such that (1) s ∈ R and (2) for s′ ∈ R, if there exists s”
such that s′ ε=⇒P s′′ is a sequence of internal steps, then s′′ ∈ R.

An interface automaton P must be able to accept an output action a issued from
the environment if a is accepted at all states in ε-closure(s). Contrarily, P can
issue an output action b at least from one state in ε-closure(s) to the environment.

S. Mouelhi et al. / Electronic Notes in Theoretical Computer Science 253 (2009) 111–126 117

Definition 4.2 The sets of externally enabled output and input actions at a state s
∈ SP are defined as follow

• ExtEnO
P (s) = {a | ∃ r ∈ ε-closure(s). a ∈ ΣO

P (r)}
• ExtEnI

P (s) = {a | ∀ r ∈ ε-closure(s). a ∈ ΣI
P (r)}.

We redefine also the set of all reachable states from a state s by transiting steps
labeled by externally enabled actions.

Definition 4.3 The set ExtDestP (s, a) of externally reachable states from a state
s in an interface automaton P for an externally enabled action a ∈ ExtEnO

P (s) ∪
ExtEnI

P (s) is defined by the set {r′ | ∃ r
a−→P r′. r ∈ ε-closure(s)}

4.2 Alternating simulation

Let us consider now pre and post-conditions to establish properly the new definition
of the alternating simulation between the states of an interface automaton P and
its refined version Q. We extend the set of variables V by adding some others, so we
define V’ as a set that includes the set V. We assume that pre and post-conditions
of the refined interface automaton Q are defined over the set V’.

Defining pre and post-conditions of actions of the refined interface must obey to
some variant constraints. On the one hand, when we refine a component, we add
to their provided services (input actions) some other new services by defining new
signatures of actions and on the other hand, we strengthen their former operations
by adding some other constraints on their pre and post-conditions. We take into
account the principle that, in the refined interface, an old input action must have
a fewer precondition than the precondition of the same corresponding action in
the abstract one and its post-condition must be stronger than the corresponding
post-condition in the abstraction.

Things change for required services, constraints on the required services (output
actions) in the abstract interface still unchanged in the refinement. In more details,
it is assumed that there is less output actions in the refinement and the required
computing results of extinct actions become internal. So, refining remaining ones
has no sense. More concretely, the pre and post-conditions of a remaining output
action in the abstract interface are equivalent to their correspondents in the refined
one. For the requirements of internal actions, we apply the same rules as input
actions. We can now define our manner to adapt alternating simulation to the
action semantics formally.

Definition 4.4 A binary relation � ⊆ SP × SQ from Q to P is an alternating
simulation if for all s ∈ SP , r ∈ SQ such that r � s the following conditions holds

(i) ExtEnI
P (s) ⊆ ExtEnI

Q(r);

(ii) ExtEnO
Q(r) ⊆ ExtEnO

P (s);

S. Mouelhi et al. / Electronic Notes in Theoretical Computer Science 253 (2009) 111–126118

(iii) ∀ a ∈ ExtEnI
P (s) ∪ ExtEnO

Q(r) and ∀ r’ ∈ ExtDestQ(r, a): ∃ s’ ∈
ExtDestP (s, a) such that r’ � s’ and
• if a ∈ ExtEnI

P (s) then PreP,a ⇒ PreQ,a and PostQ,a ⇒ PostP,a.
• else if a ∈ ExtEnO

Q(r) then PreP,a ⇔ PreQ,a and PostP,a ⇔ PostQ,a.
over the set of variables V’.

The first condition of the second part of the definition ensures that all externally
enabled inputs of s are also externally enabled in r, and conversely, all externally
enabled outputs of r are also externally enabled in s.

vu

u′ v′

�

⇐
a?

PreQ,a

PostQ,a

�
⇒

a?

PreP,a

PostP,a

vu

u′ v′

�

⇔
a!

PreQ,a

PostQ,a

�
⇔

a!

PreP,a

PostP,a

Fig. 1. The extended condition 2 of the alternating simulation definition.

The second one ensures that each input (resp. output) sequence of steps labeled
by an externally enabled action a from r in the refinement must be matched by
an input (resp. output) sequence of step labeled by the same action a from s in
the abstraction except that the equivalences and the implications between pre and
post-conditions must be checked as it is shown in Figure 1. We can now define the
refinement between two interface automata P and Q as follow

Definition 4.5 The interface automaton Q refines the interface automaton P, writ-
ten Q � P according to the set of variables V’ if

• ΣI
P ⊆ ΣI

Q and ΣO
P ⊇ ΣO

Q;
• there is an alternating simulation � from Q to P such that IQ � IP .

As in [1], we can easily verify that refinement between interface automata in our
contribution is reflexive an transitive. But, when we want to establish the relation
between the refinement and the compatibility between automata things have to be
more detailed: a more refined version Q of P can replace P in a system design such
that Q � P if the environment does not provide some input actions (calls of some
offered services) for Q that are not in P. Alternatively, new incompatibilities may
be arise when we compose Q with the environment, namely all new input actions in
the refined version Q must not be required as output actions by the environment.

Also, another conditions must be verified when we consider pre and post-
conditions. A refined version of an interface P remains consistent with the en-
vironment if the abstraction is compatible with it under the hypothesis seated pre-
viously. As shown in the Figure 2, the step x

a!−→Env y of Env is compatible with

S. Mouelhi et al. / Electronic Notes in Theoretical Computer Science 253 (2009) 111–126 119

final step of the input sequences of steps 1 a?=⇒P 2 of P , then it is compatible
also with the final step of 1′ a?=⇒Q 2′ of the refinement Q of P such that 1′ � 1
and 2′ � 2 because PreEnv,a ⇒ PreQ,a and PostQ,a ⇒ PostEnv,a. Things do not
change when we consider output steps in the refinement Q. Based on the fact that
pre and post-conditions of the remaining actions in the refinement are equivalent
to their corresponding ones in the abstraction, the implications PreEnv,a ⇒ PreQ,a

and PostQ,a ⇒ PostEnv,a are also satisfied. The dashed edges in the previous and
the following figure represent input or output sequences of steps between states 1
and 2 in P and between 1’ and 2’ in Q. We can easily deduce that the substitution
of an automaton by a more refined one preserve the compatibility between them.

x y

1 2

1′ 2′

Env:

P:

Q:

PreEnv,a, a!, PostEnv,a

PreP,a, a?, PostP,a

⇓ ⇑

PreQ,a, a?, PostQ,a

⇓ ⇑

x y

1 2

1′ 2′

Env:

P:

Q:

PreEnv,a, a?, PostEnv,a

PreP,a, a!, PostP,a

⇑ ⇓

PreQ,a, a!, PostQ,a

� �

Fig. 2. Relation between the environment and the refined version Q of P

We can now rise the following theorem properly as in [1] without having hindsight.

Theorem 4.1 Consider three interface automata P, Q, and R such that Q and R
are composable and ΣQ

I ∩ ΣR
O ⊆ ΣP

I ∩ ΣR
O. If P and R are compatible and Q � P ,

then Q and R are compatible and Q‖R � P‖R.

From the hypothesis of this theorem, we can extract the following important
corollary establishing that if two interface automata are compatible then their
refinements are compatible and the composition of their refinement refines them.

Corollary 4.1 Consider four automata P, Q, R, and S such that

• Q and R are composable;
• ΣQ

I ∩ ΣR
O ⊆ ΣP

I ∩ ΣR
O;

• S and Q are composable;
• ΣS

I ∩ ΣQ
O ⊆ ΣR

I ∩ ΣQ
O;

If P and R are compatible, Q � P , and S � R then Q is compatible with R and S
is compatible with Q and Q‖S � P‖R.

To check that Q � P , we should compute the maximal alternating simulation

S. Mouelhi et al. / Electronic Notes in Theoretical Computer Science 253 (2009) 111–126120

between the two initial states of P and Q thanks to the algorithm proposed in [1].
Our approach does not increase the complexity of the algorithm.

4.3 Case study of the CyCab car

We illustrate our works by applying refinement to the component vehicle of the
CyCab car component-based system studied in [6]. The CyCab [7] car is a new
electrical means of transportation conceived essentially for free-standing transport
services. It is totally manipulated by a computer system and it can be driven
automatically according to many modes.

Vehicle

position!

halt?

far?

emergency?

reset!

Station

position?

halt!

far!

Emergency

Halt

emergency!

reset?

Starter
start!

start?

Fig. 3. A UML-like model of the CyCap components.

The goal of the CyCab car system design is to allow for users the displacement of the
vehicle from one station to another. As an illustration of its concept, we consider
the following requirements and functionalities of the CyCab car and its environment:
(i) a CyCab has and appropriate road where stations are equipped by sensors, (ii)
the driving of the CyCab is guided by information received from the station allowing
to position of the CyCab from the stations, (iii) there is no obstacle in the roads,
(vi) the vehicle has a starter and also an emergency halt button.

The CyCab car and its environment can be seen as an abstract system composed
of four components: the vehicle, the emergency halt button, the starter, and the
station. The Figure 3 represents the UML 2 component model of our system. The
emergency halt button can be activated at every moment during the running of
the vehicle. It is specified by sending a signal emergency!. The starter allows the
starting of the vehicle. The station is materialized by a sensor that receives signals
position? from the vehicle to know its position. The station sends as consequence
a signal far! or halt! to the vehicle to indicate if it is far from the station or not.

In this section, as shown in Figure 3, we apply our proposed contribution of
refinement of the interface automaton of the component vehicle. Assume that Av

is the interface automaton associated to the component vehicle and V = { carstrd,
isknpos, isacstr, isrcstn, isnuldist } be the set of five boolean variables used to define
pre and post-conditions of actions.

2 The component diagram showed in Figure 3 do not respect exactly the UML 2 notation. It is simply used

S. Mouelhi et al. / Electronic Notes in Theoretical Computer Science 253 (2009) 111–126 121

1

2

3

4

VPrS,start?,VPsS

VPrP,pos!,
VPsP

VPrF,far?
,VPsF

VPrH,halt?,VPsH

VP
rE

,e
m
rg
?,
VP

sE

VPrE,emrg?,VPsE

VPrR,reset!,VPsR

start

emrg

far

halt

pos

reset

1

2

S
P
rP

,p
o
s?

,S
P
sP

S
P
rF

,f
ar

!,
S
P
sF

S
P
rH

,
h
a
lt
!,
S
P
sH

pos

far

halt

Fig. 4. The IAs Av and As of the Vehicle and the Station

The variable carstrd indicates if the vehicle is started or not, the variable isknpos in-
dicates if the vehicle knows its position from the station, isacstr equals to true when
the starter is active, isrcstn equals to true when the station is reached, and finally the
variable isnuldist indicates if the distance between the vehicle and the station is null
or not. The automaton Av is given by the tuple 〈Sv, Iv,ΣI

v,Σ
O
v ,ΣH

v , P rev, Postv, δv〉
where

• Prev = {V PrH, V PrS, V PrE, V PrF, V PrP, V PrR} where
· V PrH ≡ carstrd = true ∧ isrcstn = false ∧ isknpos = true ∧ isnuldist = true;
· V PrS ≡ isknpos = false ∧ carstrd = false ∧ isacstr = true;
· V PrE ≡ carstrd = true;
· V PrF ≡ carstrd = true ∧ isrcstn = false ∧ isknpos = true ∧ isnuldist = false;
· V PrP ≡ carstrd = true ∧ isknpos = false;
· V PrR ≡ carstrd = false ∧ isacstr = false;

• Postv = {V PsH, V PsS, V PsE, V PsF, V PsP, V PsR} where
· V PsH ≡ carstrd = false ∧ isrcstn = true;
· V PsS ≡ carstrd = true;
· V PsE ≡ carstrd = false ∧ isacstr = false;
· V PsF ≡ carstrd = true ∧ isrcstn = false;
· V PsP ≡ carstrd = true ∧ isknpos = true;
· V PsR ≡ isacstr = true.

A possible refinement of this abstract interface of the vehicle component is an au-
tomaton that guards all output actions of the abstraction and allows more services
(input actions). We can add the requirement that the vehicle functions according
to two modes: the station mode where the vehicle runs while communicating with
stations and the other is the free-running mode where the vehicle displace freely
without interaction with stations.

A new input action fstart? allowing the free-starting of the vehicle. The sepa-
ration between the starting of the vehicle and its moving off can be interesting as
a new refinement requirement. We add the two internal actions move; and stop;

to clarify the CyCab system

S. Mouelhi et al. / Electronic Notes in Theoretical Computer Science 253 (2009) 111–126122

permitting respectively to move off the vehicle and to stop it. The internal action
move; can be enabled by taking as precondition the proposition that a vehicle can
be started without moving from its place.

Vehicle’

pos!

halt?

far?

emrg?

reset!

fstart?

start?

1′ 2′

3′

4′

5′

6′
start?

pos!

move;

emrg?

far?

halt?

emrg?
emrg?

reset!

fstart?

move;

stop;

emrg?

fstart

start

emrg

far

halt

pos

reset

Fig. 5. The refinement automaton A′
v of the Vehicle

The set of variables V is extended by adding two new variables carmovg and
frunmode. The new set of variables V’ = V ∪ { carmovg, frunmode } is used
to define pre and post-conditions of the refined automaton A′

v. The first variable
carmovg is used to make the difference between the act to start the vehicle and the
act to move it. The second variable is used to position the two different modes of
the vehicle running. The refined automaton Vehicle’ 3 is showed in the right part
of Figure 5. Assuming that atomic formulas are defined now over V’, we define the
pre and post-conditions of the automaton A′

v as follow

• Pre′v = {V PrH ′, V PrS′, V PrE′, V PrF ′, V PrP ′, V PrR′,
P rM, PrStp, V PrFS′} where
· V PrH ′ ≡ carstrd = true ∧ isnuldist = true;
· V PrS′ ≡ isknpos = false ∧ carstrd = false ∧ isacstr = true;
· V PrE′ ≡ carstrd = true;
· V PrF ′ ≡ carstrd = true ∧ isrcstn = false ∧ isnuldist = false;
· V PrP ′ ≡ carstrd = true ∧ isknpos = false;
· V PrR′ ≡ carstrd = false ∧ isacstr = false;
· PrM ≡ carstrd = true ∧ carmovg = false;
· PrStp ≡ carstrd = true ∧ carmovg = true;
· V PrFS′ ≡ frunmode = true ∧ carstrd = false ∧ isacstr = true;

• Post′v = {V PsH ′, V PsS′, V PsE′, V PsF ′, V PsP ′, V PsR′,
PsM, PsStp, V PsFS′} where
· V PsH ′ ≡ carstrd = false ∧ carmoving = false ∧ isrcstn = true;
· V PsS′ ≡ carstrd = true ∧ carmovg = false;
· V PsE′ ≡ carstrd = false ∧ carmovg = false ∧ isacstr = false;
· V PsF ′ ≡ carstrd = true ∧ isrcstn = false;

3 The actions of the automaton A′
v are not annotated by pre and post-conditions in order to alleviate the

automaton.

S. Mouelhi et al. / Electronic Notes in Theoretical Computer Science 253 (2009) 111–126 123

· V PsP ′ ≡ carstrd = true ∧ isknpos = true;
· V PsR′ ≡ isacstr = true;
· PsM ≡ carstrd = true ∧ carmovg = true;
· PsStp ≡ carstrd = false ∧ carmovg = false;
· V PsFS′ ≡ carstrd = true ∧ carmovg = false.

According to our new definition of the alternating simulation between states, the
reader can remark that, for example, the precondition of the input action halt? in
the abstraction implies the precondition its correspondent one in the refinement
and vice versa for post-conditions (V PrH ⇒ V PrH ′ and V PsH ′ ⇒ V PsH). We
suppose that the two automata Av and As are compatible. The automaton Av can
be substituted in the product Av ⊗ As by the automaton A′

v by applying Theorem
4.1.

1′1 2′1

3′1

4′2

5′1

6′1

5′2

1′2 6′2

start?

halt;

pos;

move
;

em
rg

?

far;

reset!

fstart?

move;

stop;

emrg? emrg?
emrg? reset!

fstart?

move;

stop;

fstart

start

emrg

reset

Fig. 6. The composite automaton A′
v ‖ As

The verification that A′
v � Av can be easily made using the proposed algorithm

in [1] by taking into account the extended third condition of Definition 4.4. The
algorithm permits to compute the unique maximal alternating simulation from A′

v

to Av.

Algorithm
Input: Interface automata P and Q extended by pre and post-conditions
Output: The maximal alternating simulation from Q to P .

Let �0 = SP × SQ

repeat
For i ≥ 0, define �i+1⊆�i by v �i+1 u if v �i+1 u and the conditions 1, 2, and
3 of Definition 4.4 hold for v and u where � = �i

until �i+1 = �i

return �i

The complexity of the alternating simulation check between our extended IAs is
linear like the original model. The unique difference is the consideration of the

S. Mouelhi et al. / Electronic Notes in Theoretical Computer Science 253 (2009) 111–126124

semantics of actions modeled by relations between pre and post-conditions which
can be computed in linear time. Consequently, our approach does not increase the
PTIME-complete complexity of the classical refinement checking between IAs.

5 Related works

Luca de Alfaro and al. [11] propose ”sociable” interfaces as a different formalism
to specify component interfaces from that of interface automata. Their formalism
communicates via both actions and shared variables and the synchronization be-
tween actions is based on on two main principles: (i) the first principle is that that
same action can label both input and output transitions, and (ii) the second is that
global variables can be updated by multiple interfaces. The authors show that the
compatibility and the refinement check of sociable interfaces can be made thanks
to efficient symbolic algorithms. Their tool called TICC [5] (Tool for Interface
Compatibility) implements these algorithms.

Ivana Černá and al. [8] had been founded an automata-based formalism to
capture component interactions in hierarchical component-based systems. Their
”Component-interaction automata” language represents a flexible model to com-
pose components by respecting the architectural assembly of a system design. Other
works are published that extend component-interaction automata by checking LTL
temporal properties.

In [3], the authors propose concurrent automata to model component behaviors.
The described model consists of a pair: a component signature which captures the
static view of a component as depicted in UML 2.0, and a language of component
vectors over this signature which describe the behaviour of the component. There
is similarity between the notion of a component signature and the static structure
of interface automata. The major difference with our model is that whereas in con-
current automata ports are associated to a set of operation calls/signals, thereby
ports in our model correspond to individual operations/signals which are further-
more assumed to be sent or received sequentially. So, in our model concurrency is
no allowed between ports of the same component.

6 Conclusion and perspectives

In this paper we adapt the alternating refinement relation between interface au-
tomata to the semantics of actions. We have improved these automata by pre and
post-conditions of component required or provided actions in order to integrate the
action semantics in the verification of interface compatibility and interoperability.
We strengthen the alternating simulation between states of an abstract version of
an interface automaton and its refined version. Equivalence and implications be-
tween input and output actions of the refinement and their correspondent ones in
the abstraction are established. The compatibility between the refined version of
an abstract interface automaton and the environment is preserved in the case when
the abstract one is compatible with same environment. These results are applied

S. Mouelhi et al. / Electronic Notes in Theoretical Computer Science 253 (2009) 111–126 125

to the case study of the component-based system of the CyCab car.
As future works, we are interested in implementing a verification tool which

takes into account pre and post conditions of actions to check compatibility and
refinement between interface automata.

References

[1] L. Alfaro and T. A. Henzinger. Interface automata. ACM Press, 9th Annual Aymposium of FSE
(Foundations of Software Engineering), pages 109–120, 2001.

[2] L. Alfaro and T. A. Henzinger. Interface-based design. NATO Science Series : Mathematics, Physics,
and Chemistry, Engineering Theories of Softwareintensive Systems, 195:83104, 2005.

[3] J. K. F. Bowles and S. Moschoyiannis. Concurrent logic and automata combined: A semantics for
components. Electron. Notes Theor. Comput. Sci., 175(2):135–151, 2007.

[4] S. Brookes, C. Hoare, and A. Roscoe. A theory of communicating sequetial processes. Journal of the
ACM (JACM), (31):560–599, 1984.

[5] L. D. d. S. M. F. A. L. V. R. B.T. Adler, L. de Alfaro and P. Roy. Ticc: A tool for interface compatibility
and composition. In Computer Aided Verification (CAV06) in Seattle, WA, pages 59–62.

[6] S. Chouali, H. Mountassir, and S. Mouelhi. An i/o automata based approach to verify component
compatibility: application to the cycab car. LNCS, Springer-Verlag - FESCA of the European joint
conference on Theory and Practice of Software (ETAPS’08), March 2008.

[7] B. Grard, G. Philippe, M. Herv, and P.-G. Roger. The inria rhône-alpes cycab. INRIA technical report,
1466, Avril 1999.

[8] P. V. Ivana Černá and B. Zimmerová. Component-interaction automata modelling language. Brno,
Czech Republic : Faculty of Informatics, Masaryk University, 2006. Technical report FIMU-RS-2006-
08.

[9] Y. Jin, R. Esser, C. Lakos, and J. Janneck. Modular analysis of dataflow process networks. International
conference on Fundamental Approaches to Software Engineering (FASE’03 - ETAPS 2003) - Springer-
Verlag, 2621(31):184–199, 2003.

[10] T. H. L. Alfaro. Interface theories of component-based design. In Proceedings of the First International
Workshop of Embedded Software (EM-SOFT) - LNCS., Springer-Verlag, 2211:148–165, 2001.

[11] M. F. A. L. P. R. L. de Alfaro, L. Dias Da Silva and M. Sorea. Sociable interfaces. In FROCOS 2005:
5th International Workshop on Frontiers of Combining Systems, Springer-Verlag, LNAI 3717, 2005.

[12] N. Lynch and M. Tuttle. Hierarcical correctness proofs for distributed algorithms. In Proc. 6th ACM
Symp. Principles of Distributed Computing, pages 137–151, 1987.

[13] R. Milner. An algebraic definition of simulation between programs. In Proc. 2nd International Joint
Conference on Artificial Intelligence, The British Computer Society, pages 481–489, 1971.

S. Mouelhi et al. / Electronic Notes in Theoretical Computer Science 253 (2009) 111–126126

	Introduction
	Preliminary
	Interface automata strengthened by action semantics
	Adapting the alternating refinement relation
	Preliminary
	Alternating simulation
	Case study of the CyCab car

	Related works
	Conclusion and perspectives
	References

