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A COURSE IN THE MATHEMATICS OF DESIGN 

JAY KAPPRAFF 
New Jersey Institute of Technology, Newark, NJ 07102, U.S.A. 

Abstract--A project-oriented course on the Mathematics of Design taught for the past six years to 
freshman architecture students at the New Jersey Institute of Technology is described. The course uses 
mathematics as the organizing force linking scientific, artistic and cultural subject areas together. The 
sequence of topics is graph theory with application to planning a floor plan; polyhedra applied to Platonic 
solids; tilings of the plane with application to lattice designs; tiling of three-dimensional space and space- 
filling polyhedra; similarity, proportion and the golden mean with application to architectural design; 
transformations; mirrors and symmetry; and vectors applied to analysis of polyhedra and ruled surfaces. 
The mathematical elements of each topic lead students to carry out a two- or three-dimensional con- 
struction. Students are helped to focus on the ideas behind their work by writing a series of essays. 

1. INTRODUCTION 

Seven years ago several mathematicians, architects and computer scientists at the New Jersey 
Institute of Technology began to explore areas of common interest. The architects were trying 
to find ways to break out of  their limited repertoire of  forms and shapes and they wished their 
students to develop the mathematical skills necessary to make design tasks more operational. 
The mathematicians were trying to find interesting applications for otherwise abstract branches 
of mathematics such as group theory, topology and graph theory, and in addition they wanted 
to rediscover the geometrical roots of  their subject. The computer scientists saw the architecture 
students as potential users of computers--in particular, of computer graphics. As a result of 
this interaction, the group decided that a new course on the Mathematics of  Design was needed 
for the following reasons: 

• Most disciplines have become overspecialized. It is important to rediscover the con- 
nections between subject areas. 

• The computer has gained a preeminent position in all subject areas. It is important to 
develop courses dealing with computer-applicable mathematics. 

• Most subject areas emphasize analysis at the expense of synthesis. Courses are needed 
to redress this imbalance. 

A course addressing these needs would have to encompass a wide range of mathematical 
ideas and include topics applicable to disciplines not recognized as mathematical. The ideas 
would have to be made active; a mere survey of mathematics as a culture or use of  mathematics 
as a tool for analysis would not suffice. The course would have to demonstrate how ideas 
originating in the realm of mathematics could lead to fresh approaches in nonmathematical areas 
such as art, architecture, biology and chemistry. I knew about a project-oriented course that 
responded well to these points that was taught by an engineer, artist and geometer, Professor 
Mary Blade at Cooper Union College. Professor Blade's work formed the early inspiration for 
the course that I will describe in this article. 

The course is based on geometrical ideas. By geometry we do not mean the vehicle of  
axiomatics that conditions most students' first approach to the subject. Rather, we refer to 
geometry as the matrix of ideas contained within a study of  symmetry, proportion, tilings of  
the plane and three dimensions, perspective and the theory of  graphs. 

The course prepares students to carry out a construction or project rather than just conveying 
information and perfecting computational technique. Within this format each topic has a tight 
mathematical structure. The pedagogical approach is to "tell the truth, nothing but the t ru th- -  
but not the whole truth." Airtight mathematical language would soon lose an audience untrained 
in this arcane form of expression. A primary goal of  the course is to present material in plain 
language. 

In the process of  teaching nonmathematically oriented students, the problem of math anxiety 
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must be faced. Many students are not able to manipulate mathematical symbols or follow the 
narrow paths of lengthy mathematical arguments. Nevertheless, they are capable of understand- 
ing complex ideas and applying them to practical problems. Even though these students might 
not do well on exams emphasizing computation, they can gain satisfaction from applying 
mathematical ideas to design projects. We also feel that these students can be made more 
receptive to mathematical ways of thinking if mathematics is shown to be a key to understanding 
a wider realm of ideas. To stimulate this reappraisal of thought in the light of mathematical 
revelations, after each project the students write a one- or two-page essay exploring the higher- 
level ideas behind the project. 

The course was originally organized as an experimental seminar, part of the third-year 
design studio of the School of Architecture at NJIT. Each week a faculty member gave a lecture 
focusing on the mathematical content of his subject. The architecture students and their professors 
then met to suggest a design project based on the lecture. The following week the lecturer 
returned and was presented a set of completed constructions. Often the students related to the 
original lecture in ways the lecturer had not imagined. There was always the element of surprise 
in this transaction between students and faculty. We knew at this point that we had the makings 
of an unusual course. 

The new course was made a requirement for all students from the School of Architecture 
and would be taken by about 100 students in the second half of the freshman year. Now the 
task was more difficult. We no longer had the luxury of communicating with a highly motivated, 
self-selected group of upperclassmen, but the needs of wider and less experienced audience had 
to be met. As a result, some of the spontaneity and self-motivation of the experimental seminar 
was sacrificed in favor of the greater structure and formality. 

Since the content of the course was spread through numerous reference books, the members 
of the group collaborated on a set of lecture notes. With the help of a grant from the Graham 
Foundation for Architecture and the Fine Arts, I was able to write the first draft of a text for 
the course[ 1 ]. 

The course has steadily evolved over the past six years. Due to the constructive nature of 
the course, every time a new project is carried out, it can be used to illustrate mathematical 
ideas that would otherwise be lifeless. Finally, after several cycles of teaching the course, one 
of the collaborators, Professor Alan Stewart, recognized that graph theory provided an underlying 
structure to the course that unified the topics. Since the theory of graphs constitutes the least 
constrained of all geometries and all other geometries gain their form and structure from graphical 
notions, it made sense to employ graph theory as the central element of the course and show 
how more constrained geometries arise by adding additional structure to graphs. Also, Prof. 
Stewart saw that the mathematical notions of duality, symmetry, combinatorial properties, space 
filling, vectors and transformations arose in several topics so that ideas appeared and reappeared 
throughout the course. 

This article will describe the major topics of the course and illustrate them with examples 
of students' work. Not all of the topics in this survey can be covered in a three-credit course, 
but all the material has been covered at some time. The sequence of topics is graph theory with 
application to planning a floor plan; polyhedra applied to the Platonic solids; tilings of the plane 
with application to lattice designs; tiling of three-dimensional space and space-filling polyhedra; 
similarity, proportion and the golden mean with application to architectural design; transfor- 
mations; mirrors and symmetry; and vectors applied to analysis of polyhedra and ruled surfaces. 

2. GRAPH THEORY 

Each topic of the course begins informally with constructive exercises, experiments, game 
playing or puzzle solving. The theory of graphs lends itself particularly well to this approach. 
True to the origin of this subject in 1736 by Leonhard Euler we consider the famous Konigsberg 
bridge problem and the Utilities problem[2]. The first of these problems makes it clear that 
graphs with different outward appearances are structurally identical so long as their "connec- 
tivities" are the same and that, in fact, graphs are completely defined in terms of their con- 
nectivities rather than length, angle or other familiar geometric properties. Thus we are justified 
in considering graphs to describe the least constrained of all geometries. In addition, the 
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Konigsberg bridge problem introduces the notion of Euler paths, i.e. a path through the graph 
that traverses each edge without retracing. 

The lesson to be learned from the Utilities problem is that while some graphs, the planar 
graphs, can be redrawn while preserving their connectivities with no edge intersections, others 
cannot. Since the students are from the School of Architecture, we try to have them visualize 
a connected planar graph as a floor plan as shown in Fig. l(a). By placing a vertex in each 
room and connecting two vertices by an edge if the rooms share all or part of a wall, we arrive 
at another graph known as the connectivity graph shown in Fig. 1 (b). Later, we show that the 
floor plan is in some sense "dual"  to the connectivity graph. 

Prob lem.  Draw a floor plan with four rooms so that each room borders the other three. 
Can you do this for a floor plan with five rooms? Why not? Draw connectivity graphs for each 
of these graphs. Are they planar? 

The previous problem demonstrates one of the important ideas of the course, namely that 
spatial design is not as freewheeling as students imagine but is constrained by mathematical 
properties of space. In fact the connectivity graph for the five-room plan, the complete graph 
with five vertices, Ks, along with the utilities graph, the bipartite graph K3,3, are in a sense 
described by a theorem of Kuratowski contained in all nonplanar graphs[3]. This problem also 
gives insight as to why four colors are sometimes needed to color a map where adjacent countries 
must have different colors, but five colors are never needed. 

A final introductory problem, the "Handshake Lemma," introduces the subject of the 
combinatorial properties of graphs. The class is divided into groups of five students and the 
students are told to shake hands with whomever they wish from the group and draw a graph 
to illustrate their pattern of handshakes. They must verify the Lemma which states that the 
number of people in the group that shake hands an odd number of times is even. 

At this point we have laid the groundwork for a more serious study of graphs. Notions of 
graph isomorphism, cycles, planar and nonplanar graphs, duality, map coloring and combi- 
natorial properties have been introduced in an informal manner. 

The principal application for this section of the course is the application of graphs to 
designing complex floor plans(4]. To carry out this program we must first specialize to connected 
nonplanar graphs called maps. Maps have well-defined sets of edges, vertices and faces where 
the faces are topologically equivalent to discs, possibly with pendant edges. It is important to 
our application for students to first think of the maps as being drawn on a sphere, in which 
case each face has finite extent. A map in the plane is then obtained by puncturing an arbitrary 
face, widening the hole, and deforming the map until it fills the plane, as shown in Fig. 2. The 
punctured face then becomes the exterior face of the map. 

Again, combinatorial properties of maps are discussed and the students are asked to draw 
many maps in search of a relation between the number of edges (E), faces (F) and vertices 
(V). It is always a surprise for students to discover another constraint on space, the Euler- 
Poincare number: 

X = F +  V - E =  2. 

The students then begin to explore maps on other surfaces such as cylinders, tori and 
iVlobius strips and to discover the different values of X for each of these surfaces. The Szilassi 
polyhedron shown in the student construction of Plate 1 shows that as many as seven colors 

L - Living room C 
J L  

C - Circulating L ~ / ' ~ ~  B 
L C B space 

B - Bedroom 

D K D - Dining room 

K - Kitchen O VK 

Fig. 1. A floor plan and its connectivity diagram. (a) Floor plan; (b) connectivity diagram. 
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Plate 1. A Szilassi Polyhedron. Each face borders on the other six faces, demonstrating the need for seven 
colors to color a figure with the connectivity of a toms. 

may be needed to color a map drawn on a surface with the connectivity of a torus[5]. Finally, 
we show students that graphs which are nonplanar in the plane and on a sphere may be planar 
when drawn on a torus, a fact that may prove useful for drawing floor plans for two-story 
houses. 

By using the combinatorial properties of maps we are able to prove that there exist, aside 
from several trivial cases, only five regular maps, i.e. maps with vertices and faces surrounded 
identically by edges[3]. The students begin a search for these maps. This search will be borne 
out in the next section when the students encounter them as planar projections of the Platonic 
solids. 

The notion of the dual map is introduced and students are now ready to carry out their 
first project: 

Design a one-story floor plan of a hypothetical house given a well-stated set of client con- 
straints. 

Here, constraints on the floor plan are imagined to be communicated verbally from client 
to architect. Based on these constraints the architect constructs a connectivity graph which 
includes partial information about the organization of rooms in the house. The connectivity 
graph is redrawn as a planar map. The dual of the connectivity map constitutes the first 
approximation to the floor plan. However, the exterior region to the house may appear in the 
dual map as an interior face at this stage of the design process. If this is so, the map is placed 
on a sphere and punctured so that the exterior region becomes the outside face. Finally the map 
is topologically deformed, preserving adjacencies until the desired floor plan obtains. This 
process is illustrated in Plate 2 by a student's project to design an office. 

After completion of the design, the students are asked to write a one- or two-page essay 
in response to the following statement. 

Writing Project 
Christopher Alexander, in his book Notes on the Synthesis of Form, makes a case for 

there being a stage in the design process prior to the concrete planning stage, e.g. formal 

Fig. 2. Transformation of a map on a sphere to a map in the plane. (a) Map on the sphere with face 1 punctured. 
(b,c) The puncture is widened. (d) Map in the plane with face 1 external. 



The mathematics of design 917 

o n ~ . , , , , , , . , ~  . L .  U 

, -  t ~ o 

(¢ . . . .  I 
"l " ; ~  J ~ [ . ~k : ' 0 

Plate 2. Design of a floor plan using graphs. 

presentation of a floor plan or community development project. In this primitive stage linkages 
or connections are drawn between the various components of the design. 

Whereas in primitive societies change occurred so slowly that this stage of the design 
was unconscious, in a more dynamic society such as our own, where design changes more 
radically, the process must be more self-conscious. Graphs are the appropriate tool to un- 
derstand the linkages or connections. 

What do you think? Write a response to this statement in one or more pages. (A student 
response is included in the Appendix.) 

Other topics covered in this section of the course have been application of directed graphs 
to planning a job by critical path analysis[6] and application of bipartite graphs to determining 
the minimum number of rods needed to brace a planar and three-dimensional space frame[4,7]. 

3. POLYHEDRA 

We are now ready to apply some of the graph-theoretic results of the last section to three- 
dimensional structures. Polyhedra, and in particular the Platonic solids shown in Fig. 3, provide 
a source of interesting structures to study[8,9]. In fact, we began their study in the previous 
chapter when we attempted to find the five regular maps on the plane. Each of these maps can 
be drawn as the projection of one of the five Platonic solids onto the plane from a projection 
point above one of its faces, as shown in Fig. 3. Moreover, if the regular maps are placed on 
a sphere they result in surfaces topologically equivalent to the Platonic solids. 

The Platonic solids also constitute a subject rich in connections to the worlds of art, 
architecture, chemistry and biology. For example, in Plato's Timaeus four of the solids were 
related to the four elements: earth, air, fire and water. The fifth solid, the dodecahedron, 
represented the cosmos. These solids also served as Kepler 's  model for the orbits of the planets, 
inspired the art of  M. C. Escher[10], served as the basis of  Buckminster Fuller's geodesic 
domes[11], serve as a starting point in the study of inorganic crystals[12] and the carbon-  
hydrogen bonds that make up the chemistry of  life and finally arise as the form of microscopic 
organisms known as radiolaria[ 13], as shown in Fig. 4. 

Again, we begin this section of the course in a constructive way. The students build 
polyhedral forms from miniature marshmallows and toothpicks. The resulting structures can be 

CAMWAI2 : 3/4B-Z 
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Fig. 3. The Platonic solids and their projections (Schlegel diagrams). (a) Schlegel diagram of cube formed by 
projection onto plane of bottom face (courtesy Dover[8]). (b) Schlegel diagram of Platonic solids. (c) Platonic 

solids. 

thought of as three-dimensional graphs in which the marshmallows represent vertices and 
toothpicks play the role of edges, with the additional constraint that all edges have the same 
length. After some introductory puzzles which lead students to discover the tetrahedron and 
octahedron, the students create patterns by connecting tetrahedra vertex to vertex, edge to edge 
and face to face. This leads naturally to construction of octet space frames from combinations 
of tetrahedra and octahedra, as shown in the student constructions of Plate 3, where modulation 
of edge lengths results in curvature. 

Another construction with marshmallows and toothpicks leads to the discovery of the 
Platonic solids. The students create regular polyhedra defined by the constraint that each vertex 
and face must have the same number of incident edges. In the process of constructing these 
polyhedra it becomes evident that whereas the tetrahedron, octahedron and icosahedron, with 
triangular faces, are all rigid, the cube and dodecahedron collapse. Thus students discover the 
importance of the triangle as a source of rigidity in structures. 

By placing the octahedron inside the cube, the icosahedron within the dodecahedron and 
the tetrahedron inside another tetrahedron, the duality of these polyhedral pairs is made visually 
evident. Also, by tabulating F, E and V the Euler-Poincare number X = 2 is rediscovered. 

The Platonic solids are considered to be a family because they relate to each other in many 
ways aside from duality. In fact, the golden mean, ~b = (1 + N/-5)/2, is a number which ties 
this family together[14] as shown by Euclid in Book XIII of The Elements. The golden mean 
will play a major role in the portion of the course dealing with proportion. Here we demonstrate 
the remarkable internal structure of the icosahedron in which the vertices lie at the comers of 
three mutually orthogonal golden mean rectangles. Plate 4 shows a student construction of a 
tensegrity structure illustrating this fact. 

After studying the combinatorial properties of the Platonic solids, it is natural to consider 
their metric properties. The cube constitutes the natural coordinate system in which to investigate 
metric properties since the Platonic solids can all be related to a cube. In fact, a complete 
characterization of the metric properties of any polyhedron related to a cube can be made in 
terms of the cube's three principal directions: the edge, face-diagonal and body-diagonal di- 
rections. We have found the "universal node system" of Peter Pearce[15] to be an excellent 
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Fig. 4. (a) The Platonic solids depicted by Johannes Kepler in Harmonices Mundi, Book I1 (1619). (b) The 
Platonic solids in the form of Radiolaria (courtesy Cambridge Press[13]). 
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Plate 3. Two examples of octet space frames. Curvature is the result of modulated edge lengths. 

Plate 4. Tensegrity of an icosahedron illustrating inner structure of three intersecting golden mean triangles. 

(a) (b) (c) 

Plate 5. Three polyhedra constructed with the universal node system of Peter Pearce. (a) A cube showing 
principal directions. (b) Cuboctahedron constructed with face-diagonal directions. (c) Rhombic dodecahedron 

surrounding a cube constructed with body-diagonal directions. 
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tool for constructing and demonstrating at a glance the structure of polyhedra. In this system 
the edges are color and shape coded according to the principal directions of the cube and connect 
to equivalently shape-coded connectors. This enables polyhedra to be built with great ease. A 
cube with a tetrahedron embedded on its surface and four edges connecting the cube's center 
to each of the four vertices of the tetrahedron, constructed with the universal node system along 
with two polyhedra related to a cube, the cuboctahedron and rhombic dodecahedron, are shown 
in Plate 5. If we imagine a carbon atom to lie at the center of the cube and hydrogen atoms at 
the vertices of the tetrahedron, this system provides a model of the carbon-hydrogen bond found 
in organic molecules. 

Symmetry will be discussed in great detail later in the course. In this section the topic is 
introduced by illustrating the 13 axes of rotational symmetry and the 9 planes of reflection 
symmetry of a cube using a cube constructed with the universal node system. The axes of 
rotational symmetry lie in the principal directions of the cube and can be detected by projecting 
the cube onto a plane perpendicular to the axes and then by finding the symmetry of the plane 
projections, as in Fig. 5. 

The geodesic properties of the Platonic solids are introduced as the final topic of this 
section by posing the following problem: 

Find a way to cut an orange into four congruent pieces other than the usual breakfast way. 

The solution is found by projecting the tetrahedron to a circumscribed sphere from its 
centroid. This divides the sphere into four congruent solid angles. In the process the edges 
project to arcs of geodesics of the sphere. Of course, similar results obtain from other Platonic 
solids and their circumscribed spheres. This gives an opportunity to define geodesics and assign 
problems to compute shortest distances between points lying on a cube, parallelopiped, cylinder, 
torus, shell and cone. 

Besides the circumscribed sphere, two other spheres are associated with the Platonic solids: 
the inscribed sphere tangent to polyhedral faces and the intersphere through the midpoints of 
the edges. These spheres are related to the symmetry of the Platonic solids in a striking way 
illustrated by the dihedral kaleidscope of the cube shown in Plate 6116]. Here the 9 planes of 
reflective symmetry divide the cube into 48 congruent tetrahedra, known as orthoschemes, 
defined by the radii of the three spheres[8]. These tetrahedra also form an excellent set of 
building blocks from which to construct polyhedral sculptures as shown. 

Three additional surfaces satisfying the criteria for Platonic solids were introduced by 
Coxeter[l 7] in 1937. They differ from the five already introduced by having an infinite number 
of faces. Two of them are duals since four hexagons surround each vertex in one while six 
squares surround a vertex in the other, as shown in the student project of Plate 7. 

Finally, the three regular star polyhedra discovered by Kepler have been explored by 
several students and give entree to the visually fascinating area of star polyhedra[18]. 

4. TILINGS OF THE PLANE 

Tiling a region of space is the concern of many disciplines. The architect fills open spaces 
with buildings and partitions the inside of a building with rooms. The artist subdivides a canvas 
into spaces in which to portray the subjects that make up a painting. The chemist and crystal- 
lographer deal with well-ordered patterns of molecules in the form of chemical compounds or 
crystals. The botanist studies regular orderings of stalks, or paristichies, of a plant. Electrical 
engineers consider breakdowns of space into close-packed spheres representing the coding of 
messages. In this section, we study the mathematics of tiling a plane and indicate how math- 
ematics addresses the concerns of other subject areas. In the next section we consider tilings 
of three-dimensional space. 

The previous section was devoted to a study of polyhedra, and in the introductory exercises 
students constructed octet space frames. Now these space frames are projected, by a light source, 
onto a plane, and triangles, squares and hexagons are observed in the resulting patterns. The 
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Plate 6. Dihedral kaleidoscope based on the symmetry of the cube. 

mathematics of planar tilings begins with a study of these patterns of triangles, squares and 
hexagons. 

As an introductory exercise, students are asked to observe patterns of triangles, paralle- 
lograms and hexagons formed by the grid lines of triangular-grid graph paper. The possibilities 
are noted for constructing unusual designs with this grid by circumscribing a circle about a 
large hexagon defined by the grid and shading the grid contained within the hexagon, as shown 
in Fig. 6. 

After creating their own hexagonal design, the students construct designs using the entire 
grid, in a manner reminiscent of Islamic patterns[19]. A student project is shown in Plate 8. 

Now that the students have had the opportunity to try their hand at some free-form planar 
designs, they learn that as a consequence of the combinatorial properties of graphs, triangles, 
squares and hexagons are the only regular maps that tile the plane with an infinity of faces[20]. 
Thus once again a mathematical property of space forbids other polygons, such as pentagons, 
from tiling regularly. 

(a) (b) 

Plate 7. Two additional Platonic solids discovered by Coxeter. They are duals. 
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(a) (b) (c) 

Fig. 5. Projection of a cube onto the plane along its axes Fig. 6. A triangular grid with three hexagonal patterns 
of rotation. (a) Four-fold axis; (b) three-fold axis; (c) (courtesy Creative Publications). 

two-fold axis. 

This result was proven for maps whose faces need not be congruent, or for that matter, 
have linear edges. If we now consider regular tilings made of congruent polygons, the three 
permissible tilings were already inherent in the triangular grid of the introductory exercise. 
However, any quadrilateral, convex or nonconvex, and hexagons with parallel opposite sides 
also tile the plane regularly. 

Next we define semiregular tilings of the plane in which more than one polygon is used. 
For example, Fig. 7(a) shows a semiregular tiling with triangles and squares, five around a 
vertex. Next to it, in Fig. 7(b) is a tiling with pentagons. We try to get the students to explain 
why this tiling does not violate the proscriptions of regular pentagonal tilings. In fact, Fig. 7(a) 
is dual to Fig. 7(b) and brings up an important aspect of duals: although dual figures are 
structurally identical they are nevertheless visually quite different. Thus a single mathematical 
idea can serve as a carrier of a variety of visual patterns, a recurring theme in this course. 

Parallelograms and hexagons with parallel opposite sides play a special role in tiling, 
namely they tile the plane by translation only. These polygons are members of a class of 
polygons known as zonagons[21], generated by stars of vectors. In order to study zonagons we 
first introduce the subject of vectors, which will find great utility throughout the course. The 
3-zonagon is then defined by a vector star of three vectors as shown in Fig. 8. 

The value of this construction to design is that vectors of the star can be altered in length 
to form zonagons changed in size and shape but with the same interior angles. Thus a space- 
filling array of hexagons continues to tile the plane, as shown by the student construction of 
Plate 9. From a design point of view, joints are the most difficult part of a structure to fabricate 
and zonagons enable structures to be "fitted" to their "function" in terms of size and shape 
without altering the joints. 

In the regular grid tilings that introduced this section the focus was on edges and faces. 
Now we consider the vertices of those grids which constitute a planar lattice. Some exploratory 
exercises help students gain an understanding of the invariance of planar lattices under trans- 
lations in two nonparallel directions characterized by vectors, and the notion of the fundamental 
domain of a lattice. It is not surprising that a structure as rich as the lattice in mathematical 
ideas is also a rich source of two- and three-dimensional tilings. A design idea suggested by 
William J. Gilbert[22] describes how patterns with lattice symmetry can be generated. The 
designs shown in Plate 10 illustrate some results of Gilbert's method. One of the tilings in- 
corporates 90 ° rotations in addition to translation, while another applies Gilbert's ideas to three- 
dimensional lattice designs. 

Up to now the plane has been tiled with polygons of identical size and shape. Now tilings 

1 2 

I 3 

(o l  I¢~ 

o b 

Fig. 8. Construction of a 3-zonagon. (a) 3-Vector star; 
Fig. 7. A semiregular tiling and its dual (courtesy Ad- (b) 3-zonagon (note: opposite sides are equal and parallel 
dison Wesley[20]). (a) Semiregular tiling; (b) dual and zonagon is centrally symmetric); (c) 3-zonagon is 

tiling, the plane projection of a parallelopiped. 
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Plate 8. A design based on tiling the plane with triangles, 
squares and hexagons. Plate 9. Tiling the plane with hexagons constructed from 

a 3-zonagon. 

are considered with polygons that may be irregularly shaped, known as Dirichlet domains 
(DDs)[20]. Dirichlet domains have applications in biology, chemistry and architecture. They 
are generated by a set of points in which the regions of the tiling satisfy the following minimum 
principle: all points nearer to a given point of the generating set than any other point of the set 
belongs to the DD of the given point. 

Subdivision of the plane into DDs can be carried out by compass-and-straightedge con- 
struction. For example, the boundary of the two points is clearly the perpendicular bisector of 

(a) (b) 

LATrICE 

(c) (d) 

Plate lO. Some designs based on two- and three-dimensional lattices using Gilbert's method. 
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the line joining thc two points. The DDs of three points are formed by the perpendicular bisectors 
of the sides of the triangle. The construction of the DDs of four points is more of a challenge 
and leads to an algorithm for constructing DDs for n points. 

The purpose of introducing DDs is to exploit their connection to space filling in the plane, 
and more importantly in three-dimensional space, by congruent modules. These space-filling 
properties of DDs lie at the base of their applications to biology, chemistry and architecture. 

The DDs of a plane lattice are either hexagons or rectangles. Coxeter[23] showed that the 
growth of plants can be studied by mapping the surface of the plant onto a planar lattice and 
identifying the stalks of the plant with the DDs of the lattice as shown in Fig. 9 for a pineapple. 

Writing Project 
In his paper entitled "Perception and Modular Coordination," Christopher Alexander 

suggests that we enjoy symmetric themes in design because our minds recoil at chaos but 
are put at ease by the repetition of a simple motif. We like to see things that look familiar, 
that we have seen before, and structure and order in art and architecture help us to feel secure 
and comfortable with our surroundings. On the other hand, people react adversely to mindless, 
monotonous order. To a great extent, it is the job of the artist and architect to supply, through 
their work, a solution to the problem of satisfying the needs of people for both order and 
novelty. 

Comment on this statement. Do you agree or disagree? The Design Project on Lattices 
certainly satisfies the criterion of design based on order and repetition. Is it also capable of 
producing designs interesting enough to appeal to our need for surprise and novelty? (A 
student response is included in the Appendix.) 

In the next section DDs of three-dimensional lattices will be shown to be space-filling 
polyhedra with opposite faces congruent and parallel, i.e., analogs in three dimensions of  the 
zonagons known as zonahedra[24]. 

Additional material is included in the Notes describing an algebraic method of tiling a 
rectangle with noncongruent squares[25] and a class of  nonperiodic tilings of the plane discovered 
by Roger Penrose[26]. Student projects illustrating these tilings are shown in Plate 11 and Plate 
12. Also, following up on the star polyhedra introduced in the preceding section, the students 
explore regular star polygons, a source of both interesting patterns and number-theoretic re- 
suits[27]. 

5. TILING OF THREE-DIMENSIONAL SPACE 

This section extends the ideas of the last section to tilings of three-dimensional space. The 
section begins with two introductory exercises showing the relation between two- and three- 
dimensional tilings and the use of  soap bubbles as a natural way to fill space with curvilinear 
polyhedra. A study of close packing of spheres leads to the subject of three-dimensional lattices, 
networks and dual networks[15]. The Archimedean solids are seen to be semiregular tilings of  

4 

Fig. 9. Relation of pineapple phyllotaxis to a period lattice (courtesy Wiley[23]). 
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(a) (b) 

Plate 11. Tiling a rectangle with noncongruent squares. 

the sphere, and they lead to additional space-filling possibilities. Finally, prisms and antiprisms 
are studied and the latter are used as the basic module of a design with architectural applications. 

The first introductory exercise involves using a soap solution to study what appears to be 
the structureless formation of bubbles making up a soap froth much like a three-dimensional 
graph drawn with curvilinear edges. In fact, closer study of the froth reveals a precise structure. 
Three bubbles always meet at an edge and four edges meet at each vertex. Also, the average 
number of faces in the polyhedra formed by the froth is approximately 14. Later we shall see 
that this state of affairs also prevails in the space-filling array of one of the Archimedean solids, 
the truncated octahedron. 

(a) (b) 

Plate 12. A nonperiodic tiling of the plane by kites and darts, based on the golden mean. 
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CA CA 

Side view 

Schernolic 

Fig. 11. The cuboctahedron as a figure of cubic close 
packing of spheres (courtesy Dover[8]). 

Fig. 10. Pattern for a dome constructed from paper strips 
using the method of Gerald Segal (courtesy Gerald 

Segal). 

Last semester I made use of a second constructive exercise, devised by Gerald Segal[28] 
to make the transition from tilings of the plane to polyhedra. Ninety-six heavy cardboard strips 
measuring 10 in. by 1½ inches and paper connectors were distributed to groups of students. 
Their job was to place strips around a central square to make the square rigid. They realized 
that surrounding the square by triangles would do the job. At this point we presented them with 
the patterns shown in Fig. 10 to construct. The results are shown in Plate 13. 

At a certain point in the construction, the two-dimensional pattern of strips is forced into 
the third dimension to form a dome. Once again the students are confronted with a mathematical 
property of space which forces a move from the second into the third dimension, namely, that 
the sum of the angles around a vertex is less than the 360 ° required to lie flat in a plane. The 
difference between 360 ° and this sum, known as the spherical deviation, is characteristic of all 
polyhedra. 

Thinking back to the octet space frame of the section on polyhedra, we now visualize the 
marshmallows at the vertices to be spheres that expand to form a close-packed array of spheres. 

Plate 13. Some domes constructed with papers strips by Segal's method. 
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(a) (b) 

(d) 
(c) 

(e) 

Plate 14. Some infinite regular surfaces based on a network and its dual, using Burr, Kleinmann and Wachman's 
method. 
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In this configuration, 12 spheres surround a central sphere, 6 in a planc, with 3 spheres lying 
in the intcrsticcs above and below with oppositc orientations. The centers of these spheres lie 
at the vcrticcs of another Archimcdcan solid known as the cuboctahcdron (shown in Fig. I I). 
Also, the sphere centers of thcsc close-packed sphcrcs constitutc one of thc 14 Bravais latticcs 
that makc up the subject of crystallography, namely thc facc-ccntcrcd cubic (FCC) latticc. 

In addition to FCC wc study two other lattices, the basic cubic latticc (C) and the body- 
ccntcred cubic lattice (BCC), which arc rclatcd, along with thc FCC, to a cube. In particular, 
dircctions from point to point in thcsc latticcs occur in thc cdgc (E), body diagonal (BD) and 
facc diagonal (FD) dircctions respectively. 

If lattice points are conncctcd with edges, a nctwork is formed made up of E, BD and FD 
directions. Thcsc cdgcs also divide space into scts of spacc-filling polyhcdra, namely, cubes, 
tctrahcdra with curvilincar faces and octahcdra and tctrahcdra rcspcctivcly. Wc can also dcfinc 
dual networks that connect the polyhedral ccntcrs of adjaccnt polyhcdra through their common 

(a) 

(b) (c) 

Plate 15. Two exarnples of space filling by cornbinations of Archimedean solids. (a)Cuboctahedraandoctahedra; 
(b) great rhombicuboctahedron, truncated octahedron and cube; (c) truncated tetrahedron, truncated cube and 

great rhombic dodecahedron. 
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Plate 16. Space-filling truncated octahedra. 

faces. Burt, Wachman and Kleinmann[17] have catalogued numerous examples of infinite 
rectangular surfaces with the structure of the network and its dual corresponding to a particular 
lattice. Student projects illustrating some of these structures are shown in Plate 14. The surface 
separates two connected labyrinths of tunnels[15,29]. 

Next we study Archimedean solids, which are the three-dimensional analogues of the 
semiregular filings of the previous section. They each have more than one kind of polygonal 
face but surround vertices identically[11]. As for the Platonic solids, they can each be circum- 
scribed by a sphere and through a projection from the center result in tilings of the sphere along 
arcs of geodesics. Several combinations of Archimedean polyhedra served as modules for the 
infinite regular surfaces. Many combinations of Archimedean solids combine to fill space. Two 
examples are shown in the student constructions of Plate 15. 

In this section we focus on only the cuboctahedron shown in Plate 5(a) and the truncated 
octahedron shown in Plate 7(a), the former because of its relation to close-packed spheres and 
the latter because it is the only space filler by itself among the Archimedean solids and serves 
as a model for soap froths as shown in Fig. 11 and Plate 16. We also study the dual of the 
cuboctahedron, known as the rhombic dodecahedron and shown in Plate 5(c), because it too 
fills space by itself, serves as the structure of beehives[13] as shown in Fig. 12 and has 
possibilities as an architectural module to rival the parallelopiped[21 ]. In fact, the cube, rhombic 
dodecahedron and truncated octahedron are all zonahedra and constitute the Dirichlet domains 
of the C, FCC and BCC lattices--all of which connects this section strongly to the previous 
one. The lattices and their Dirichlet domains also have connections to the structure of metal- 
lic crystals, where two species of atoms lie at the lattice points and the vertices of the DDs- 
[30-321. 

We have used the prescription of Anthony Pugh[32] to construct tensegrity models of 
polyhedra. Tensegrities, discovered by the sculptor Mark Snelson, are described to the students 
as discrete analogues of the balloon in which the skin is tensed under the enclosed gas. They 
combine both tension and compression to an even degree, much like the body with its skeleton 
and tendons, and always result in light, airy strucctures. A tensegfity model of a cuboctahedron 
is shown in Plate 17. 

Prisms and antiprisms are the final two classes of solids studied in this section. Since the 
lateral faces of the prism are parallelograms, prisms are not rigid. However, they can be made 
rigid to lateral forces by rotating the top face relative to the bottom and connecting top vertices 
to bottom ones to form antipfisms with triangulated lateral faces. 

Many of the students have incorporated the hexagonal antiprism into models of prefabricated 
paper housing consisting of sequences of vaults, semidomes and domes[33]. These models are 
fabricated by folding paper into a pattern of congruent isosceles triangles. The vaults can be 
joined together by intersection structures which enable them to be continued to tile the plane. 
Student models are shown in Plate 18. 
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Fig. 12. The geometry of a beehive. (a) Plane section of a close-packed configuration of bees. (b) Edges of 
neighboring chambers are flattened to form a hexagonal pattern. (c) Detail of rhombic dodecahedron ends 

attached to hexagonal prisms. (d) Close packing of beehives. (Courtesy Cambridge Press[13]). 
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(a) (b) 

Plate 17. A tensegrity model of a cuboctahedron with inner structure of four interlocking equilateral triangles. 

Writing Project 
It is stated in the Kaballah, a book of Jewish mysticism, that there are actually two 

bibles or torahs handed to man by God: the one of the written words and the one made up 
of the space between those words. 

Give your opinion as to whether the space left empty within a design has equal importance 
to the space that is filled. Use the example of infinite regular polyhedra in which space is 
divided into two congruent sets as an example of positive and negative space. (A student 
response is included in the Appendix). 

Additional material is included in the Notes on the structure of soap bubbles and curved 
surfaces in general[34,35]. In particular, we concentrate on surfaces of rotation and translation 
and ruled surfaces. We return to this material in the last section of  the course and apply some 
of the ideas to constructing ruled surfaces. It has also served as an inspiration to the students 
to show a film at this point in the course by a master designer, Ron Resch, entitled The Ron 
Resch Paper and Stick Thing Film[36]. 

6. S I M I L A R I T Y ,  P R O P O R T I O N  AND THE GOLDEN MEAN 

The mathematical concept of  similarity holds one of the keys to understanding processes 
of  growth in the natural world. After all, as a member of a species grows to maturity it generally 

(a) (b) 

Plate 18. Two folded-paper structures made of vaults, semidomes, domes and intersecting vaults. 

3AMWAI2 : 3/4B-AA 
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(b) 

Fig. 13. The logarithmic spiral in nature. (a) Logarithmic spirals as they appear on the surface of a pineapple, 
pinecone and sunflowers (courtesy Dover[43]). (b) Logarithmic spirals in shells and horns (courtesy Little, 

Brown[37]). 

transforms in such a way that its parts maintain approximately the same proportion with respect 
to each other. In this section of the course we show how shells, horns of horned animals and 
plants exhibit self-similar spiral growth[37]. In the case of plant growth, or phyllotaxis, the 
proportions are related to the golden mean, d~- The architect Le Corbusier took his cue from 
observations of plant growth to create a system of proportionality for architects known as the 
Modulor based on the golden mean. After mastering the mathematics behind the Modulor we 
apply it to creating designs[38,39]. 

As usual, the topic begins with a game, Fibonacci Nim[40]. Through this game students 
discover the Fibonacci series: 1,1,2,3,5,8, . . . , which is well known to lie at the heart of 
plant growth[41,42]. In fact, the number of spirals from the clockwise and counterclockwise 
sets of logarithmic spirals that appear on the surfaces of sunflowers, pine cones and pineapples 
are generally successive numbers from this series (as shown in Fig. 13(a)[37]) and the angular 
placement of stalks around the base of the plant is well known to depend on ~b, the most frequent 
angle being 2"rr/~b 2 = 136.5 ° shown in Fig. 9 of Section 3 for the pineapple. More discussion 
of the mathematics and mythology of the golden mean and its applications to art, architecture 
and biology is included in the course notes[43,44]. 

We begin the mathematical exposition of this subject by defining similarity and illustrating 
families of similar figures. We show the right triangle to be the embodiment of self-similarity 
by cutting a right triangle along its altitude to obtain the three similar triangles shown in Fig. 
14. 
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From this dissection follow both the Pythagorean theorem and the mean proportionality of 
the altitude to the sections of the hypotenuse: 

a b 
- = - .  ( 1 )  
b c 

Both of these theorems were considered by Kepler to be the most important truths of all geometry. 
From eqn (1) it follows that a geometric series of points on the logarithmic spiral can be 
constructed as vertices of a series of right triangles, as shown in Fig. 15. The remaining points 
can then be densely constructed with compass and straightedge using the growth principle: as 
the central angle doubles, the radius squares. 

It is not surprising that the logarithmic spiral shares with the right triangle the property of 
self-similarity. In fact, all arcs subtending the same angle are similar. This is the same self- 
similarity that appears in the spiral structure of shells, horns, and other living forms shown in 
Fig. 13(b). 

Next we show how eqn (1) governs the breakdown of rectangles into similar elements 
known as Gnomons and one unit similar to the original and tied together by a log spiral, as 
shown in Fig. 16144]. As a result of this construction it follows that a square removed from a 
rectangle with golden mean proportions leaves another golden rectangle. We also discover that 
the golden mean 4 forms a series 

1 1 
" ' + 2, 4 '  1, 4 ,  4 2 , 4 3 . . . .  

that is both double geometric and Fibonacci, i.e. 

1 
- + 1 = 4 ,  1 + 4 = 4 2  , 4 + 4 2 = 4 3  , etc. 
4 

Artists have known that the golden mean modulates the parts of the human body. Figure 
17 shows LeCorbusier's symbol of the Modulor, a 6 ft British policeman with arm outstretched 
and a Botticelli Venus with sections of the body modulated by powers of 4. 

For ages architects have searched for systems of proportionality[45] to help them subdivide 
the inner space and facades of buildlings and the open sites upon which they placed buildings. 
A useful system of proportionality had to help the architect satisfy the following three design 
criteria. Good designs must 

(i) be repetitive (made up of a small set of modules); 
(ii) have parts that fit together; 

(iii) be nonmonotonous (not completely predictable)[45,46]. 

G "'\i\ 
Fig. 14. Dissection of a right triangle into a family of / / / /  ~1~! 

three similar right triangles. 

' G 

~ 1  Fig. 16. Breakdown of a rectangle into a proportional 
/ ~  4 unit and gnomons and spanned by a logarithmic spiral. 

K~,, .... \ ~ K  In this example, the unit, U, has proportion X/2:1 and 
the gnomon, G, has same proportions as the unit. For a 

Fig. 15. Vertex points of a logarithmic spiral lie at a golden mean rectangle, G is a square and U has pro- 
double geometric series of distances from the center, portion d~: 1. 
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The "trademark" of LcCorbusier's pro- I # 
portional system, the Modulor. "A man- " -  
with-arm-upraised provides, at the deter- 
mining points of his occupation of space-- 
foot, solar plexus, head, tips of fingers of 
the upraised arm-qhtee intervals which give 
rise to a series of golden sections, called ~ i  
the Fibonacci series." 

/ i  

(b) 

Fig. 17. (a) The "trademark" of LeCorbusier's propomonal system, the Modulor. Thre-. intervals give rise to 
a Fibonacci series of golden sections (courtesy M.I.T. Press[38]). (b) Analysis of a Botticelli Venus, using the 

golden mean (courtesy of Dover Press). 

To satisfy these canons of architecture, Palladio used a system based on the proportions inherent 
in the musical scale[45,46]. Another system, used during the Renaissance, was based on 
geometric series. In this section we study the Modulor of Le Corbusier and show how it meets 
these architectural criteria. 

The Modulor uses a double series of lengths known as the Red and Blue series. Each series 
is a geometric series with common ratio t~, in which for each element of the Red series there 
is an element of the Blue series twice as long (as shown in Fig. 18). Thus the elements of the 
two series complement each other by each filling in gaps between successive lengths of the 
other. In fact, each element of the Blue series divides the gap of two adjacent elements of the 
Red series in the golden section ~:  1. Finally, the ratio of the British policeman's upraised arm 
to his height in the Modulor symbol of Fig. 17(a) is 2:~b, a length taken from each series. 

Le Corbusier used lengths from this double series to serve as dimensions of a set of 
rectangular tiles, as shown in Plate 19(a). The fact that any one of these tiles can be broken 
down into other tiles from the series by using the Fibonacci property enables tilings of a rectangle 
by Modulor tiles to be rearranged in many different ways to satisfy the interests of the architect. 
Plates 19(b) and (c) show two student projects exploring the capabilities of the Modulor system. 
In Plate 19(c) the same set of tiles is used to tile a rectangle three different ways. 

The class of infinite self-similar curves known as fractals[47] has also been introduced in 
the Notes. Coastlines, lightning and many other forms from the natural world are fractals and 
these curves have potential for interesting designs (see The Geometry of Coastlines by ]. Kappraff 
in this issue). 
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7. T R A N S F O R M A T I O N S  

Children explore a new object by turning it first one way and then another, touching, 
smelling, tasting and examining it in different shadings of light. Similarly, scientists try to 
understand physical reality by mapping it onto abstract constructs that are easier to study and 
manipulate than the actual realities. Artists help others to understand the world by transforming 
familiar forms and objects so that the commonplace can be seen in new ways. On a more 
abstract plane, dancers use their bodies to transform both space and time, connecting to natural 
rhythms and forms inherent in the deeper levels of being. Finally, poets transform language 
and ideas, bringing to light deeper meanings and connections between things otherwise inac- 
cessible to more mundane analysis. 

As an introductory assignment to this section of the course, the students show through art 

(a) (b) 

E 

(c) 

Plate 19. Tiling of a square with the Modulor. 
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Plate 20. The panels of metamorphisis by M. C. Escher (courtesy the World of M. C. Escher[62]). 

or photography how a familiar object in their everyday experience undergoes transformations. 
For example, they might show the tree in front of their house before and after its leaves fall or 
its appearance in morning and evening light, etc. 

Transformation played an important but unstated role in previous sections of the course. 
Floor plans were transformed into graphs which were then easier to manipulate. Polyhedra were 
studied in planar projections. Lattice designs were constructed invariant under transformation 
by translation. Natural forms transformed themselves by self-similar growth. In this section, 
the mathematics of mappings and transformations is presented. Our immediate purpose is to 
use transformation to gain deeper insight into the structure of geometry and to lay the framework 
for studying the mathematics of symmetry in the next section. This section is organized into a 
hierarchy of ideas: sets, mappings, transformations in general, particular transformations as- 
sociated with various kinds of projections and finally transformation by rubber-sheet topology. 
We show how the various geometries can be defined by invariance properties under different 
classes of transformations such as isometries, similarities, affinities, projectivities and topo- 
logical transformations. An appendix to this section introduces matrices to carry out transfor- 
mations. As usual, mathematical completeness and rigor play a subordinate role in showing 
how the ideas relate to concepts familiar to the students. 

It is best to begin with the most primitive notion of the mapping of objects from one set 
to another, carded out with objects found around the classroom. Through this exercise the 
notions of one-to-one and many-to-one inverse mappings and transformations are described in 
a concrete way. Notation to represent mappings is also introduced. 

It is well known to geometers that projective geometry is the most general geometry dealing 
with point, line and plane. It is also a natural way to show students how geometry is intimately 
related to transformations. In this section we specialize to planar transformations. Depending 
on the location of the object plane, image plane and point of projection, either projective, affine, 
similar transformations or isometries are produced. 

For example, a road on the ground plane is transformed to a canvas from a projection 
point located at the artist's eye to render a scene as the artist sees it. The road which recedes 
in parallel lines to infinity converges on the canvas to a single point on the horizon line, (as 
shown in Fig. 19). 

Besides demonstrating a principle of projective geometry, this example has the effect of 
making the elusive concept of infinity comprehensible to students. We also experiment with 
projecting objects by a flashlight to their shadows. In particular, conic sections are shown to 



The mathematics of  design 939 

Red 1 1 1 1 1 1 1 l l 1 1 1 o" 
Blue 1 1 1 I 1 

2 2 2 2~ 

Fig. 18. The Red and Blue series. 

Fig. 19. A road receding to infinity depicted as con- 
verging to a point on the horizon line of an 

artist 's canvas. 

arise from circles. Finally, it is pointed out that although metric properties and even parallel- 
ism are not, in general, preserved under projective transformations, a quantity known as cross 
ratio is. 

Projection from a point at infinity is within everyone's experience since it is the way the 
sun transforms objects to shadows. These so-called affine transformations generally do not 
preserve metric properties, unless the sun is directly overhead, but do preserve parallel lines. 

If the sun is directly overhead, as it is two days per year between the tropics of Cancer 
and Capricorn, objects transform to their shadows under isometries preserving length and angle. 

Similarity transformations, which were the subject of the previous section, map objects to 
enlarged or contracted similar images by means of a projection point that can be represented 
by the lens of a camera, overhead projector, etc. These similarity transformations preserve angle 
but not length. 

A final class of transformations that played an important role in the design of the floor 
plans in Section 2 are topological transformations, which continue to be represented as trans- 
formations stretching on a rubber sheet without cutting. These transformations could be applied 
to design by distorting lattice tilings, such as the ones in Plate 10, by modulating the units on 
the coordinate axes. We have not yet tried this with our students, but the results should be 
reminiscent of some of Escher's prints as shown in Plate 20. 

Thus we have defined a hierarchy of transformations: isometry --* 
similarity --~ affinity --o projectivity ~ topological. The corresponding geometries study the 

Plate 20. The panels of metamorphisis by M. C. Escher (courtesy the World of M. C. Escher[62]). 
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properties of figures that are invariant under these classes of transformations. Within each 
geometry, figures are considered "equivalent" or "congruent" if they can be transformed one 
to the other by transformations within that geometry. We find that even though it is beyond the 
scope of the course to study any one of these geometries in detail, it is nevertheless valuable 
for students to discover, through simple explanations, demonstrations and examples within their 
experience the overall structure of geometry. 

The emphasis of this section of the course on projective transformations is an attempt to 
compensate for the complete absence of projective geometry in the educational background of 
students. Perspective drawing[48], an example of which is shown in Fig. 20, should be a 
precondition to studying geometry and should be introduced in the early grades. It creates the 
necessary links between what we observe in the real world and the abstractions of this world 
that make up the subject of Euclidean geometry[49]. 

The remainder of this section is devoted to studying the distance-preserving transformations 
or isometries. It is essential to think of isometries as rigid body movements which, in the plane, 
must be either translations, rotations, reflections or glide reflections. For application of isometries 
to the study of symmetry, it is important to classify these transformations as proper or improper. 
The proper transformations corresond to rigid-body motions entirely within the plane. Improper 
transformations require the transformed points to be removed from the plane, inverted in three- 
dimensional space and replaced in a manner similar to mirror images. In fact, in the next section 
we show that mirrors and isometries are intimately related subjects. 

Writing Project 
Transformation lies at the base of how people learn. For example, children learn about 

their world by manipulating or transforming the objects around them. Through the use of 
metaphor, poets and artists map the world of ideas onto their work, enabling the rest of us 
to sharpen our understanding of these ideas by seeing them in a different light. 

Comment on this statement. Since mathematics deals primarily with transformations, 
state your opinion about whether mathematics can serve as a useful metaphor for architectural 
design. Cite ideas that you have been exposed to in Math 116 that may be applicable to 
architectural design. (A student response is included in the Appendix.) 

Much of the material of this section is made concrete by a section in the Notes in which 
homogeneous coordinates and matrices are introduced to transform planar figures by rotation, 

Fig. 20. An example of perspective in Renaissance art. 
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reflection, translation, similarity and projection of three-dimensional figures to a plane from a 
point representing the eye[50]. 

8. SYMMETRY 

Symmetry is a concept that inspires the creative work of both artists and scientists and 
serves as the common root of artistic and scientific endeavors[51 ]. Considered naively, symmetry 
conjures up feelings of order, balance, harmony, and an organic relation between the whole 
and its parts. Artists and architects have a finely tuned sense of the symmetry of visual form 
without having consciously considered a precise definition of this concept from the mathematical 
standpoint. The objective of this section is to help students see greater possibilities for symmetry 
in design by exposing them to a mathematical treatment of the subject. In the process we show 
how the subject of symmetry is intimately connected to mirrors, as already illustrated in Section 
3 with dihedral kaleidoscope. The key organizing factor for the mathematics of symmetry lies 
in the concept of a group of isometries[4,52]. 

The symmetry of a cube and the translational symmetry of lattices have already been 
considered in Sections 3 and 4. In this section we study bilateral symmetry, point or kaleidoscope 
symmetry, line or frieze symmetry and planar or wallpaper symmetry. 

Before we begin to study the mathematics of symmetry it is important for students to 
develop an active awareness of the subject. The students are shown schematic representations 
and examples of the seven possible frieze patterns usable for ornamenting the edges of buildings 
and the patterns of wallpaper, including prints of M. C. Escher[52-54]. As an introductory 
exercise, the students are asked to collect as many different types of point-, line- and plane- 
symmetry patterns as they can from books or magazines and identify them by their symbols. 

Mirrors are at once among the most familiar and puzzling of human artifacts. Why do 
mirrors reverse 

S but do not alter: W '~ 
L A 
E I 
E T 
P 

Why do mirrors seem to reverse left and right, but not up and down? How do images appear 
in curved mirrors[55]? The students are asked to look at the following objects in a mirror and 
record their observations: a pear, banana, glove, box, spiral form, conical cup, etc. 

The mystery behind mirrors was already hinted at in the previous section where reflections 
were shown to be improper transformations and thus constructible by rigid-body movements 
into a higher-dimensional space, a reversal and replacement to the lower-dimensional space. 
For a two-dimensional world, such a program can be physically implemented. However, in 
three dimensions the movement and reversal must take place in the fourth dimension. Such 
ideas do not reside in common experience. However, they are within the intellectual domain 
of mathematicians, artists and philosophers, and they have been described beautifully by E. A. 
Abbot[56] and Rudolph Rucker[57]. Thus mirrors give an entree to the subject of higher- 
dimensional space, although we have not yet explored this realm in the course. 

For our purposes, mirrors are fundamental to an understanding of symmetry. In fact, the 
subject of symmetry begins with bilateral symmetry. Bilateral symmetry pervades natural forms 
as nature's response to the force of gravity, which distinguishes up from down but not left from 
right[58]. 

It gives valuable insight into the structure of isometries to learn how they are generated 
by mirrors[4,59]. In fact, the students learn that any isometry of the plane can be generated by 
one, two or three mirrors; intersecting mirrors generate rotations, parallel mirrors generate 
translations and three mutually intersecting mirrors generate glide reflections. 

What the students learn about mirrors they apply to exploring the principle behind the 
kaleidoscope made up of two intersecting mirrors. They learn the relationship between the angle 
between the mirrors and the number of images of an object placed between the mirrors. Thus 
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the region between the mirrors can be thought of as the fundamental region of the kaleidoscope 
symmetry. The students also construct kaleidoscope patterns by paper cutting. 

After these concrete experiences with symmetry, the students are ready for a precise 
mathematical definition and treatment of the subject: 

Definition. A symmetry of a figure is the group of isometries that keeps the figure invariant. 
The definition is applied to several examples of point symmetry. In particular, the symmetry 

of the equilateral triangle, the dihedral group with three mirrors, D3, is examined in great detail. 
In the process of this examination, the mathematical concept of a group is defined and applied 
to showing, algebraically, that all the isometries of the group can be generated by two mirrors 
(the kaleidoscope principle) and that symmetry patterns of D3 are generated by transforming 
points from the fundamental domain between two mirrors by all the elements of the group. If 
the mirrors are removed from D3, the subgroup C3 remains. C3 is a symmetry with rotations 
only that arises in floral patterns. 

Finally, what we learn from studying the structure of point groups applies also to frieze 
and wallpaper symmetries. The fact that only two-, three-, four- and sixfold rotations occur in 
wallpaper patterns is the result of another constraint on the properties of space, the "crystal- 
lographic restriction," which states that the images of any point of a symmetry pattem under 
all the transformations of the group do not accumulate at a point (i.e. there is a finite minimum 
distance separating them). 

The emphasis of this section of the course is not on mastery of group concepts or complete 
cataloguing of the symmetries. An entire course could be based on this[60-62]. Rather, we are 
interested in conveying the idea that visually diverse symmetry patterns can have the same 
mathematical structure and that by understanding this structure the student can generate his or 
her own pattem. Some examples of student projects are shown in Plate 21. 

9. VECTORS 

The subject of Euclidean geometry is primarily concerned with the mathematical properties 
of figures constructed from points, lines and planes. These elements are the abstract primitives 
upon which the axiomatic structure of geometry is built. Although structures of the natural 
world are irregular as far as we can see, points, lines and planes are nevertheless idealizations 
in the mind of the geometer of certain features of experience with the natural world. For example, 
two islands on the horizon may appear as points, while the horizon where sea meets sky is 
imagined to be a line. Yet we know that, unlike mathematical points, islands have extent while 

(a) 

Plate 21. Some examples of point, line and wallpaper symmetries. 
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(b) 

(c) (d) 
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(e) (f) 

Plate 21. (Continued). 
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the horizon follows the curvature of the earth. Likewise, open prairies are not planes even 
though it is often convenient to imagine them to be. Beyond geometry, point, line and plane 
make up the fabric of civilization: they are the building blocks of cathedrals, skyscrapers, 
bridges, communication linkages, etc. 

In this section we use the notion of vector to describe points, lines and planes mathematically 
and use these elements to study the geometry of polyhedra and a class of curved surfaces 
enveloped by lines known as ruled surfaces. 

As an introductory exercise we ask students to find at least three examples each of con- 
figurations or objects from the natural world that can be described approximately by points, 
lines and planes. The students repeat the exercise for figures and objects from the world of 
civilization and human artifacts. 

Geometrical vectors were introduced in Section 4 as vector stars to characterize the edge 
directions of zonagons. They were also used in that section to specify the translation directions 
of two- and three-dimensional lattices. In this section, since we wish to use vectors to analyze 
polyhedra, it is convenient to employ a unit cube as the basis of a three-dimensional cartesian 
coordinate system. In fact, a cube, built from the universal node system, with a tetrahedron 
embedded in it along with edges from the center of the cube to the vertices of the tetrahedron 
(as shown in Plate 5(b)) gives a sufficiently rich system of edges to begin analyzing the angles 
between pairs of edges and pairs of faces of polyhedra. There is educational value in using an 
actual cube at this stage of instruction. Any vertex of the cube can serve as the origin, while 
the three edge directions incident to this vertex correspond to the coordinate axes. Since the 
representation of a vector in this coordinate system depends only on the labeling of axes it is 
easily seen that representation is independent of the orientation of the axes, and that computation 
of angle and length are independent of any particular choice of a cartesian coordinate system, 
although we shall later see that the vector operation of cross product will require a choice, by 
convention, of a right-handed coordinate system. Finally, once an orientation of the cube is 
established, we represent vectors by the notation (a, b, c) in which the coordinate pairs (---1, 
0, 0), (0, - 1 ,  0) and (0, 0, - 1 )  are described by the dualisms front-back, left-right and up- 
down with respect to a viewer centered at the origin. I find that this approach to vectors makes 
representation natural and avoids the difficulty students have in comprehending the invariance 
properties of vectors under translation and various coordinate transformations. 

Once students are able to represent vectors with confidence, they are taught the usual 
vector operations of addition, scalar multiplication, scalar product and cross product, with stress 
on the computational aspect of these operations. We have found it useful to have students 
compute scalar product and cross product between vectors (a~, a2, a3) and (bl, b2, b3) as a • b 
= albl + a2b2 + a3b3 and a × b = (a2b 3 - a3b2, a3bl - alb3, alb2 - a2bO initially and 
then show how these computations can be made easier by introducing the i, j ,  !~ system. 

The principal application of vectors in this section is the calculation of angles between 
edges and computation of the dihedral angles between faces of polyhedra related to a cube. 
Dihedral angles are particularly difficult for students to conceptualize, no less compute, even 
though the architecture students are familiar with the concept through their drafting experience. 
However, we have found that the vector approach makes the subject understandable. The 
importance of the dihedral angle was already shown in Section 5, where information about the 
dihedral angle between faces of the infinite regular surfaces (shown in Plate 14) were needed 
in order to score the paper properly in the construction. Also, as a necessary condition for 
polyhedra to fill space, it was shown that the sum of the dihedral angle around each edge of a 
space-filling array must sum to 360 ° . The students can now verify this condition for some of 
the space-filling polyhedra that have been previously mentioned. 

An additional construction that requires sophisticated vector computation asks students to 
construct a sculpture of linear segments out of wooden dowels to form a closed cycle. The 
students must work out a procedure to cut the dowels so that adjacent segments match in cross 
section. 

Finally, the representation of lines and planes in three dimensions using vectors is intro- 
duced. Three skew lines are used to generate two classes of ruled surfaces, the hyperboloid of 
revolution and the hyperbolic paraboloid, both of which have architectural applica- 
tions[35,63,64]. These curved surfaces have already been introduced to the students in Section 
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5. Here we present students with practical ways to construct sculptures suggestive of architectural 
structures using ruled surfaces. Some student constructions are shown in Plate 22. 

10. CONCLUSION 

We feel that the course summarized in this article successfully fulfills the objectives set 
for it by the interdisciplinary group. We have been able to convey to students a sense of 
mathematics as the organizing force linking scientific, artistic and cultural subject areas. We 
have also made the course alive by involving students in the application of what they learn to 
constructing designs and projects and writing essays. 

The results of teaching this course are always tangible. Each semester an exhibition of the 
students' best work is organized, and they share some of their writing with fellow students 
through school publications. 

Perhaps more important to the life of this course is its steady growth in terms of subject 
matter and educational ideas. By no means do we wish to convey the idea that the sequence 
of topics in this article is either complete or the only natural ordering. Inevitably a course such 
as this must involve the instructor as an active participant in the formulation of curriculum. 
Actually, it is the creative process entered into by not just the students but the faculty that 
makes an exciting course possible. Much of the material of the course was unfamiliar to me 
when I began to work on this project. It was my own revelation that there lies rich untapped 
resources that has encouraged me to write this article as a suggestion of the possibilities. Beyond 
all the objectives that we set in organizing the course, it is most important to convey the idea 
that teaching a course like this is just plain fun for both teacher and students. 

There are many avenues along which the work that we have begun can continue. First of 
all, work on a text for the course should be completed, since lack of such a book is the greatest 
impediment to replication of courses such as this by others. The course also should have a 
laboratory component in which portions now dealt with through lectures are conveyed by hands- 
on experience. Finally, we are giving thought to collaborating on a second course which develops 
computer applications for ideas generated by this course. After all, the technology and much 

(a) (b) 

(c) 

Plate 22. Ruled surface sculptures suggestive of architectural structures. 
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of the software is presently available to do graph-theory analysis; tile the plane; design polyhedra;  

transform figures by isometries and projection;  exper iment  with symmetry;  and utilize vectors ,  

lines and planes in imaginat ive  ways.  We feel  strongly, however ,  that unless a course  such as 

ours is undertaken first, without  computers ,  students wil l  not fully appreciate the ways in which  

computers  can enhance their design experiences.  
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A P P E N D I X  

S T U D E N T  R E S P O N S E S  TO WRITING PROJECTS 

Graph Theory 

In considering Christopher Alexander's thesis on the stages of design and the evolution of the design 
process from the unconscious instincts of primitive society to self-conscious decision making in a dynamic 
society, one comes to the realization that this is inevitable: the design process must have evolved parallel 
to all other stages of civilization's growth. 

In an ideal, Hobbesian "state of nature" where man's only instinct is for survival, the concept of 
design must have been part of that unconscious instinct, appearing as a search for shelter. The beginnings 
of agricultural society and civilization were accompanied by complex needs for many types of shelter 
and settled communities whose designs required conscious planning with respect to function. It must be 
noted, however, that design of shelter, at this stage, was a skill of "everyman," passed down as a 
fundamental tool for survival. 

With the evolution of specialization in crafts and professions in more complex economies, design 
probably began to emerge as a studied process. The use of architecture for the deification of both man 
and gods exemplifies this point of view. Inherent in the quest for more magnificent tributes to these 
deities is an increasing complexity of plan and structure followed by the emergence of design as a 
specialized art incorporating tools of math and engineering. The synthesis of complex demands and needs 
into a plan has become a structured "self-conscious" process. 

Finally, in a dynamic technological society, the need for rapid design change is an effect of constant 
discovery and innovation in all facets of that society. Industrialization, space exploration, and socio- 
economic change heap new demands on the designer and engineer. The use of graphs as a tool for 
understanding linkages is certainly an appropriate step in the planning process as it facilitates and organizes 
the designer's thoughts at a crucial stage. 

Rachel Stettler 
Second-Year Architecture Student 

Order and Symmetry 

In his paper entitled "Perception and Modular Coordination," Christopher Alexander suggests that 
we enjoy symmetric themes in design because our minds recoil at chaos but are put at ease by the 
repetition of a simple motif. I think that this is true to a certain extent because human beings are very 
sensitive to their surroundings. Things like heat, lighting, color, smell and texture can have tremendous 
effects upon a human's mood. 

In the areas of art and architecture, designs which are very intricate or haphazard cause mental 
stress because they demand more intense concentration. Although a high level of intricacy can cause 
mental stress, I feel that what makes design chaotic is a lack of cohesiveness as a whole. Intricacy is 
necessary to a certain extent in order to appease our appetite for new things. An artist or architect is 
faced with organizing and subduing his work while at the same time making it interesting. An artist 
does not want every part of his painting to jump out and demand equal attention. Similarly, the architect 
does not want his building to look like it was designed by more than one architect. 

Design Project #2,  which involved lattices, was a good example of repetition. I feel that there are 
many ways of making lattices appeal to our sense of surprise and novelty. Also, because they are on a 
small scale--that is, a picture or a model---I feel they can be very intricate. The level of intricacy can 
be increased because the viewer is not confined when viewing a picture. The level is more limited for 
three-dimensional lattices because they cause more mental stress in demanding that the viewer imagine 
three-dimensional objects twisted and intertwined. 

Stephen Oliver 
First-Year Architecture Student 

Space Filling 
Probably the most important feature of shape, the one that allows us to identify an object, is its 

contour, its general outline. Yet the perception of contour involves a differentiation of inside from 
outside, in front from behind, and, if necessity, figure from ground. In two dimensions, normally the 
figure stands out from the background because of a number of factors: convexity, position, texture, 
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enclosure. The ground, whether because of lower energy or little contrast, blends into a continuous 
surface behind the figure. While our attention focuses on the figure, the ground is just as important 
because both are necessary to allow perception. 

Figure is often quite different, then, in its visual qualities to make it stand out as figure. Since the 
artist or designer is creating both the figure and the ground, he must be aware of both to allow the 
differentiation to become clear. On the other hand, it is possible to create an ambiguity of figure and 
ground, when the ground becomes as important visually as the figure. This can be done by deliberately 
confusing some of the signals, the clues that we use to perceive figure as distinct from ground. The use 
of poch6, for example, in architectural drawings, the blackening of the walls in plan, makes the thickness 
of the walls read as a kind of figure, when usually we think of the spaces between the walls as the 
figure. 

In three dimensions, contour does not divide space into figure and ground, hut into object and 
space. Sculptors, architects and dancers must all be aware of the effect their object, whether statue, 
building or body, has on the space around it. They are in a sense giving shape to space by placing their 
object in it. 

Infinite polyhedra form a kind of contour, not a wiggly line as in two dimensions, but a wiggly 
plane separating space into two parts, inside and outside, two parts that happen to be congruent. Unlike 
the statue, the building or the body, there is no object which activates the space around it, There is 
simply the boundary between two spaces. Perhaps this is more analogous to the ambiguity it is possible 
to achieve in two dimensions when figure and ground can be made to have equal weight. 

Allison Baxter 
Fifth-Year Architecture Student 

Transformation 
Architecture is the manipulation of forms and the creation of space through the use of those forms. 

Certainly, mathematics is always present in an architectural design; however, the emphasis placed on 
the mathematical relationships is, more often than not, secondary to the aesthetic considerations of a 
project. This fact is a sad one, for appreciation of the mathematical relationship within the forms and 
among the forms goes unnoticed. It is often true that the aesthetic choices are also the ones that offer 
the best mathematical metaphors, yet the aesthetic reasoning always receives the most emphasis. 

While the idea of mathematics being a useful metaphor for architectural design is an intriguing one, 
few architects have practiced the theory to its fullest. Le Corbusier's Le Modulor epitomized the use of 
traditional mathematical relationships as architectural ideas while also allowing for aesthetic qualities of 
an outstanding calibre. 

The metaphors of traditional mathematics are largely unnoticed in the current products of architecture, 
but the ideas of symmetry and graphing are more readily recognized as mathematical metaphors in 
architecture, though the field of mathematics from which they are generated is less understood by the 
populace than traditional mathematics. Perhaps the well-trained eye can search out and find the traditional 
mathematical relationships in a facade, such as ratios of window heights to the spaces between floors. 
It is the common eye, however, that can easily find the relationships of symmetry and graphs. These 
metaphors may be easily recognized, but seldom are they properly labeled. An untrained person may 
recognize symmetry and describe it as "the same on one side as it is on the other." The proper terminology 
may be lacking, but the mathematical condition known as symmetry is easily recognized by one and 
all. 

Architects must use both traditional and nontraditional mathematical metahpors in their work; these 
mathematical ideas are a source of orientation and identification for users of architectural designed spaces. 
When done properly, the inclusion of these metaphors can create splendid architectural spaces and allow 
everyone an insight into the world of architecture; without mathematical metaphors, spaces become plain 
and lackluster. 

Douglas Gruninger 
First-Year Architecture Student 


