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A b s t r a c t - - I n  this paper, the existence of positive periodic solutions of a class of periodic Lotka- 
Volterra type impulsive systems with distributed delays is studied. By using the continuation theorem 
of coincidence degree theory~ a set of easily verifiable sufficient conditions are obtained, which improve 
and generalize some existing results. (~) 2005 Elsevier Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

It is well known that, in the periodic environment, the population dynamics of two competing 
species can be described by the famous nonautonomous Lotka-Volterra competing system, 

x i (t) = Xl (t) [al (t) - all  (t) Xl (t) - a12 (t) x2 (t)], 

x~ (t)  = x2 (t) [a2 (t) - a21 (t)  x l  (t)  - a22 (t)  x2 ( t ) ] ,  
(1.1) 

where x~(t) is the population density of species i; a~(t) is the rate of cell proliferation of species i 
per hour; aij(t) is the rate of intraspecific competition if i = j ,  and the rate of interspecific 
competition if i ~ j ,  i, j = 1, 2. Because the environment usually varies continuously with certain 
per iod  (e.g., seasonal  effects of weather  condit ions,  food supplies, t empera tu re ,  ma t ing  habits ,  
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etc.), and the assumption of periodicity of the parameters a~ and aij is a way of incorporating 
the periodicity of the environment, we assume a~ and a~j are w-periodic. 

In recent years, there has been much research about the existence and global asymptotic 
stability of periodic solutions, where the main technique is the Schauder fixed-point theorem or 
a V-function. Furthermore, if the delay is considered when investigating the reciprocity between 
two species, equation (1.1) will be extended to a nonautonomous Lotka-Volterra system with 
delays. In [1,2], Liapunov functions, monotone flow theory and the Horn asymptotic fixed-point 
theorem are used to study the existence and global asymptotic stability of periodic solutions. 
In [3], the following nonautonomous Lotka-Volterra system with delays is studied by applying 
coincidence degree theory, 

• i (t) = ~ (t) [ ~  (t) - ~ 1  (t) ~ (t - ~-~ (t))  - ~ 2  (t) ~ (t - ~-~ ( t ) ) ] ,  
( L 2 )  

X~ ( t )  ---- X2 ( t )  [a2 ( t )  - -  a21 ( t )  Xl  ( t  - -  ";-21 ( t ) )  - -  a22 ( t )  x2  ( t  - -  922 ( t ) ) ]  , 

and some sufficient conditions for the existence of positive periodic solutions are given. 
We know that  the birth of many species is not continuous, but occurs at fixed time intervals 

(some wild animals have seasonal births). In the long run, the birth of these species can be 
considered as an impulse to the system. To describe this phenomenon exactly, we proposed 
the following periodic two-species Lotka-Volterra competition impulsive system with infinitely 
distributed delays, which is a generalization of (1.2), 

[ /: ] x i ( t ) = x l ( t )  - d l ( t ) - x  l ( t )  - E a l j ( t )  k l j (S )  x j ( t + s )  ds , t>_O, t C t k ,  
j = l  oo 

x i (t) = x2 (t) -d~ (t) - x2 (t) - ~ a2~ (t) k~j (s) x i (t + s) ds , t >_ O, t # tk (1.3) 
j = l  o~ 

x l ( t + ) - - x l ( t k ) = b l k X l ( t k ) , x 2 ( t + ) - - x 2 ( t k ) = b 2 k x 2 ( t k ) ,  k = 1 , 2 , . . . ,  

where 0 = to < t l  < t2 < ".. < tk < . . .  are fixed impulsive points with limk_.~ t~ = oo. 
In this paper, we will investigate the existence of periodic solutions of (1.3) by using coincidence 

degree theory. 
First, we give the following assumptions. 

(A1) b~k > 0 is the birth rate of xi at tk, and there exists q E N, such that tk+ q = tk  7 u U), 

b~(k+q) = b~k. 
(h2) d~(t) is the death rate of x~ at time t, d i ( t  + w) = d~(t), i = 1, 2. 

(A3) k,j 6 C((-oo,  01, [0, +c¢)) and I° k i j ( s ) d s  = I, i, j = 1, 2. 

(A4) a~j 6 C ( R ,  [0, oo)), i , j  = 1,2 are continuous w-periodic functions with f o  a~3(t) dt > O. 

Without loss of generality, here, and in the following, we assume that  

[0,~1 n {tk} = { t ~ , t 2 , . . . , t m } ,  

so, q = m. 
By the definition of x~, we have xi(0) > 0. In view of 

{/o'[ ' ]} xi  (t) = xi  (0) exp -d~  (t) - x l  (t) - E a l j  (t) kl j  (s) x j  (t + s) ds at , 
j--1 

x~( t ) - - - -x . ,~ tk /ex  p {  - - d i ( t ) - - x i ( t )  - E a i j ( t )  k i j ( s )  x j ( t + s ) g s  dt 
k [  j ~ l  co 

x t ( t  +) = ( l + b i k ) x i ( t k ) ,  k = 1 , 2 , . . . ,  i = 1 , 2 ,  

the solution of (1.3) is positive. 

t e [0, tl], 

t e (tk, tk+l], 
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Let ui(t) = lnxi(t) ,  i = 1, 2, then equation (1.3) is transformed into 

2 0 

u~ (t) ---- - d l  (t) - e ~ (~) - E au (t) / _  klj  (s) e ~(.t+8) ds, 
j = l  c,o 

2 0 

u~ (t) = -d2  (t) - e ~(t)  - ~-~a2~ (t) f _  k2~ (s) e,,At+s) ds, 
j = l  oo 

(1.4) 

ui (t +) - ui (tk) = In (1 + bik), i = 1, 2. 

So, the existence of periodic solutions of (1.3) is equivalent to that of (1.4). 
Let (I) denotes the set of Lebesgue measurable functions ¢ : ( - co ,  0] -~ R. 

DEFINITION 1.1. For ¢1,¢2 6 ~, a function u = (ul,u2) T 6 ( ( -oc ,  co) ,R 2) is said to be a 
solution of (1.4) on [0, co) satis~/ing the initial condition, 

ui (s) = ¢i  ( s ) ,  s e ( - c o ,  0],  (0) > 0, i = 1, 2, 

ff the following conditions are satisfied. 

(i) u(t) is continuous on each interval (tk-1, tk), k = 1, 2 , . . . .  
(ii) For any tk ,  k 1,2 , . . .  + = ,  (tk ) ,  e st a n d  = 

(iii) u(t) satisfies (1.4) almost everywhere in [0, co) and at impulsive points tk situated in 
(0, co), may have a discontinuity of the first kind. 

2. T H E  E X I S T E N C E  O F  P O S I T I V E  P E R I O D I C  S O L U T I O N S  

In this section, we will investigate the existence of positive periodic solutions of (1.3). For 
convenience, we first summarize a few concepts and results in [4], which will be used in this 
section. Our existence results are based on the coincidence degree theory in [4]. 

Let X, Z be normed vector spaces, L : dom L C X ~ Z be a linear mapping, and N : X ~ Z 
be a continuous mapping. 

L is said to be a Fredholm mapping of index zero, if dim Ker L = codim Im L < +oc and Im L 
is closed in Z. 

If L is a Fredhlom mapping of index zero, then there exist continuous projectors P : X --* X 
and Q : Z ~ Z, such that I m P  = KerL,  KerQ = Im L = I m ( I - Q ) .  It follows that L I 
dora L N Ker P : (I  - P ) X  -* Im L is invertible. We denote the inverse of that map by Kp.  

The mapping N is said to be L-compact on ~, if ~ is an open bounded subset of X, Q N ( ~ )  is 
bounded and K p ( I  - Q ) N  : ~ -~ X is compact. 

Since Im Q is isomorphic to Ker L, there exists isomorphism J : Im Q ~ Ker L. 
In the proof of our existence theorem below, we will use the continuation theorem advanced 

in [4]. 

LEMMA 2.1. CONTINUATION THEOREM. Let L be a Fredholm mapping of index zero and N be 
L-compact on ~, ff  

(a) for each A E (0, 1), every solution x of Lx  = A N x  satisfies x ¢. 0~,  and 
(b) for each x e K e r L N  01~, d e g B { J Q N , ~  N KerL,  0} ¢ 0, when Q N z  • O, where deg B 

denotes the Brouwer degree, then the equation Lx  -- N x  has at /east one solution in 
dom L n ~. 

To prove main conclusion by means of the continuation theorem, we need to introduce some 
function spaces. 

Suppose J C R be any interval Define PC[J, R 2] = {u : J -~ R 2, u(t) is continuous for t e J ,  
t ~ tk, and u(t+), u(t-~) exist and u(tk) = u(tk) }. 
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p C I [ j , R  2] = {u E PC[J, R2],u(t) is continuous differential, for t C J,  t # tk, and u'(t +~ 
~ , k ] '  

u ' ( tk )  exist and u'(tk) = u ' ( t ; ) } .  
Obviously, PC[J, R 2] is a Banach space with the norm I}uNpe = sup te j  Ilu(t)ll, and PC'[J, R e] 

is also a Banaeh space with the norm IJullpc, = max{llullpc , Hu'IIpc}, where I]" II is any norm 
of R 2. 

LEMMA 2.2. H C PC[J, R 2] is relatively compact if  and only if  the functions in H are uniformly 
bounded on J and equicontinuous on (tk-1, tk], k = 1, 2 . . . .  , K ,  for any FLied K > 1. 

PROOF. It is easy to prove by the Ascoli-Arzela theorem. 
For convenience, let 

m 

E in (1 + bik) /; "[ti = d~ (t) dr, A~ de__=f k=l -- di. 
~d 

In the following, we will give the main result of this paper. 

THEOREM 2.1. Assume (A1)-(A4) hold, then i f  

A1a22:> A2a12 Ifi(l-}-b2k)l ' k = l  A 2 a l l  > AIQ,21 

Equation (1.3) has at least one positive w-periodic solution, where 

1 a~j (t) dt, i, j = 1, 2. 

PROOF. As stated in Section 1, we only need to prove tha t  (1.4) has at least one w-periodic 

solution. 
Let 

X = { u ( t ) = ( u l ( t ) , u 2 ( t ) )  T c P C ( R ,  R 2 ) [ u ( t + w ) = u ( t ) } ,  Z = X x R  2m. 

For u e X,  take ]lullpc = supt~[o,~]{llu(t)H}, where H" H is any convenient norm on R 2, and 

for z e Z, take II z IIz=H u IlPc + ~] Y II, where u e X ,  y e R 2m, and I1" II is any convenient norm 
on R 2m, then X, Z are both  Banach spaces with the norm ]1 ' [ I e c  and }] • Itz, respectively. 

Let 

d o m L =  { u ( t ) =  (ul ( t ) , u2 ( t ) )  T e X :  (ul ( t ) , u2 ( t ) )  T e P C  1 ( R , R  2 )} ,  

L : d o m L  ~ Z, u ~ ( u ' , A u ( t l ) , . . . , A u ( t , ~ ) ) ,  N : X--*  Z, 

-dl  (t) - ~,(~) - E al~ (t) F°o~ klj (s) e~J ¢t+~) & 
.= - In (1 + bu) / In (1 + bl.~) 

N u  = 321 ' ln(1Wb21) " ' "  ' !~ln(1Wb2m) ' 

j = l  

where 

A u  

It is clear tha t  

k e r L = { u l u ~ X  , u = h ,  h E R 2 } ,  

I m L =  z l z = ( l ,  C1,...,Cm) eZ:  . l ' (s)  d s +  C k = O  . 
k=l  

k -- 1 , 2 , . . . , m .  
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So, Im L is closed in Z, and dim Ker L = 2 = codim Im L. Hence, L is a Fredholm mapping of 
index zero. 

Set 

P u =  1 L ~u(t)  dt, 
to 

(1[/: 1 ) Q z = Q ( f ,  C 1 , . . . , C ~ ) =  f ( s )  ds+ Ck ,0 ,0 , . . . , 0  . 
k = l  J 

It is easy to show that P and Q are continuous projectors, such that  

Im P = Ker L, Im L = Ker Q = Im (I - Q).  

Furthermore, the generalized inverse (to L) Kp : Im L ~ Ker P Adom L exists. 
Set z = (f, C1,.. .  ,Cm) 6 ImL, then there exists u 6 X satisfying 

u'(t)=f(t), t # t k ,  k = 1 , 2 , . . . ,  

( t : )  - ~ (t~) = c~,  

that is 

Because of u(t) e Ker P,  we have 

/;/0'~ 
Then, from the last equation and 

L 
t 

(t) = : (s) ds + ~ Ck + ~ (o). 
t > t k  

fo u(s) ds = 0. So, from (2.1), 

/0~ (s) ds dt + Ck dt + tou (0) = O. 

(2.1), 

(2.1) 

i.e., 

Q N u  -- 

L t E 1 L'Jo t 1 ~  u(t) = f ( s )  ds+ C k - - ~  f ( s )  d s d t - - -  (w--tk)Ck, 
t>tk to k=l 

io' 'S:io' " 
K p z  = S (s) <z~ + ~ m,< - -~ S (~) ds <~t - - F_. (~ - t~) 0,~. 

t>tlc tO k=l 

1 {/o~' [-<~, (,)- e"'")- ~: <,,~" (0/_°'<. (:)o°,"+'> d~ <~<+~ ,,,(1+~,,~) 

{s:[ ~ £ } ) -d2(t)-e ~2(~) ~ a~,,+ (t) k2S(s)e"~(t+')ds dr+ ~ ln(l+b2k) 
j = l  k = l  

(2.9.) 

(2.3) 

,0,...,0), 
//o:I 2 1 / -d l (p) -e"XO' ) - j~ la l j (p )  klj(s)c~'~O'+~)ds d#+ ~ ln(l+blk) 

Kp (I - Q) Nu = t>*~ 

t/o[ 2 ] -d2(#) e u1(•)- ~ a2j(#) k2j(s)cUflt'+S)ds d#+ ~ ln(l+b2k)) 

I • 1 
_= o ±~ 

! [ ~  [ "  -a~ (t) - e~l(~) o .  (t) at a~ + 
-- oo 60 k=l 

[ o • 
W J o  J o  j = t  6o k= l  

(~ 1/{ L o ] ) 
_ o~ -d2(#) -eu2(~)- ~ a2j(#)fc=k2j(s)eU~(.+S)d s d#+ ~ ln(l+b21¢) 

j = l  -- k = l  
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Clearly, QN and Kp(S - Q)N axe continuous. By Lemma 2.2, we can easily show that  
K p ( I -  Q)N((~) is relatively compact for any open bounded set ~ C X. Moreover, QN(~) 
is bounded. Thus, N is L-compact  on (~ for any open bounded set ~ C X.  

In order to apply Lemma 2.1, we have to obtain an appropriate open bounded subset f~. 

Corresponding to the operator  equation Lu = ANu with )~ E (0,1), we have 

~ i  ( t )  = ~, - d l  ( t )  - e u l  (t) - -  E a l j  (t) k l j  (s) ¢uj(t+s) as , 
j = l  

~ (t) = a -d~ ( t ) -  e"~(*)- ~ a2~ (t) k2j (~) e ~ (t+.) d. , 
j = l  

~,(o)=~,(,,). 

t¢t~,  k =  1,2,.. . ,  

ul 

i = I, 2, 

(2.4) 

Integrating (2.4) from 0 to w, we have 

fo -a'(t)-e~'('-~'(t) k.(,l~J(*+~)e, at+~ln(*+b~k)=0 
j----1 oo k = l  

( i , j = 1 , 2 ;  i ~t j ) ,  

tha t  is, 

.4=1 ~ 

From (2.4) and (2.5), it follows tha t  

Jo j = l  

= dlw +toAi 
m 

---- E l n ( 1  +blk). 
k = l  

dt 

(2.5) 

(2.6) 

Since u(t) E X,  there exists ~i e [0, w], such tha t  

ui (~i) = min ui ( t ) ,  
t ~ [o ,~1 

i =  1,2. (2.7) 

From (2.5) and (2.7), we have 

w~iie~(~ ~) < wAi, i = 1, 2. 

Moreover, 

Then,  

ui( t )<_u,(~)+ L l u ~ ( t ) l d t < l n t n ~ , j +  ln(1 + b~k) deJ M+.  
k=l  

On the other hand, since supte[0,~]{ui(t)} exists, there exists ~i E [0, w] satisfying 

~ (,+) = sup { ~ , ( t ) ) ,  i = 1, 2. 
te[o,~] 

(2.8) 

(2.9) 

(2.10) 
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= = ~( t  k). From (2.10), if 7/i ¢ tk, then ui(~ +) ui(ni); if ni = tk, then ui(~ +) + 
and (2.9), it follows that  

""~ =/0 ~'(~) + ~ aij (t) k,j (~) e~(~+~) e~ ,a 
j = l  oo 

2 

<_ eU'(n+)w + E f,jweU'(n+), i = 1,2. 
j = l  

From (2.5) 

That is, 
eU,(n +) > A i -  gijeU~(o+), 

- g i i  + 1 

By (2.9) and (2.11), we have 

i ¢ j ,  i , j = l , 2 .  

aJJ A, -- aiJ AJ [k~I__l(1 + bJk)] 
e",(,, +) > 

- -  a i i a j j  -~- a j j  

which implies that  

Ui(r/+) > l n  [k~I=l (1 bjk)] clef Mi, 

By (2.6) and (2.12), we have 

r r~  

>_ Mi E In (1 + bik) d~f= M.- 
k = l  

Again, by (2.9) and (2.13), 

i ¢ j ,  i , j  = 1,2, 

i ¢ j ,  i , j  = 1,2. 

[ui (t)l < max {[M+I,  [M~[} a__ef Hi. 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

constant vector in R 2 with HuH = H. Then, 

/ 2,=~ 
A 1 --  eU~ _ ~ .  a u e  u~ 

QNu = 2 
A2 - @,2 _ ~ ~2je~j 

j = l  

, 0 , . . . , 0  / ¢0 .  

sup 
te[0,~] 

It is evident that, Hi is independent of the choice of A. Moreover, it is not difficult to show by 
using the assumption of Theorem 2.1 that  the system of algebraic equations, 

2 

e~' + E 5iJe~ = Ai' i = 1, 2 (2.15) 
j = l  

has a unique solution (u~, u~) T e R 2. 
Let H = [[(H1,H2)T]] + C, where C is large enough so that  the unique solution of (2.14) 

satis~es II(~,~)rl l  < c .  
Let 

= {u(t) = (ul,u2) r e X :[lullPc < H}. 

It is clear that  ~2 satisfies Condition (a) in Lemma 2.1. When x E KerL N Oft = R 2 N 0fl, u is a 
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Take J : I m Q  --* X,  (d, 0 , . . -  ,0) --~ d, then i f u  C K e r L  n Of~, we have ( 2 )  
A 1  - e ~1 - ~ ~ l j e  ~'~ 

J Q N u  = j = l  2 
A2 e ~2 ~ a2je u~ 

j.~l 

Furthermore, in view of the assumptions in Theorem 2.1, it is easy to prove that 

deg { J Q N u ,  ~ A Ker L, 0} ~ 0, 

We have now proved t ha t  f~ satisfies all the  condit ions in L e m m a  2.1. Hence by  Lemma 2.1, (1.4) 

has at  least  one w-periodic solut ion u* (t) in ~ .  So, x* (t) --  (x~ (t), x~ (t)) T wi th  x* (t) --  exp{u* (t)} 

is a posi t ive w-periodic solut ion of (1.3). The  proof  of Theorem 2.1 is complete.  
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