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Abstract

A power-sequence terrace for Zn is a Zn terrace that can be partitioned into segments one
of which contains merely the zero element of Zn whilst each other segment is either (a) a
sequence of successive powers of an element of Zn, or (b) such a sequence multiplied throughout
by a constant. If n is odd, a Zn terrace (a1; a2; : : : ; an) is a narcissistic half-and-half terrace if
ai − ai−1 = an+2−i − an+1−i for i= 2; 3; : : : ; (n+ 1)=2. Constructions are provided for narcissistic
half-and-half power-sequence terraces for Zn with n=pqt where p and q are distinct odd primes
and t is a positive integer. All the constructions are for terraces with as few segments as possible.
Attention is restricted to constructions covering values of n with n= pqt and n¡ 300; terraces
are provided for all such values except n= 189. Particularly elegant constructions are available
for n= 275.
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1. Introduction

1.1. De:nitions and references

Let G be a Anite group of order n with identity element e, let the group operation be
multiplication, let a = (a1; a2; : : : ; an) be an arrangement of the elements of G, and let
b=(b1; b2; : : : ; bn) be the ordered sequence where b1=e and bi=a−1

i−1ai for i=2; 3; : : : ; n.
The arrangement a is a terrace [4] for G, and b is the corresponding 2-sequencing or
quasi-sequencing for G, if b contains exactly one occurrence of each element x∈G
that satisAes x = x−1, and if, for each x∈G that satisAes x �= x−1, the sequence b
contains exactly two occurrences of x but none of x−1, or exactly two occurrences of
x−1 but none of x, or exactly one occurrence of each of x and x−1.

If G is Zn, with addition as the group operation, then x−1 in the above is replaced
by −x, and the elements of the 2-sequencing are given by b1=0 and bi=ai−ai−1 (i=
2; 3; : : : ; n).
If G is a group of odd order n with n=2m+1, a terrace for G has the half-and-half

property [2] if, for each non-zero element x of G, each of the sets {b2; b3; : : : ; bm+1}
and {bm+2; bm+3; : : : ; bn} drawn from the terrace’s 2-sequencing (b1; b2; : : : ; bn) contains
either x or −x exactly once. Such a terrace is narcissistic [2] if bi = bn+2−i for all
i = 2; 3; : : : ; m+ 1.
Anderson and Preece [3] provided general constructions for terraces for Zn where n

is an odd prime power, say n=ps with p an odd prime and s a positive integer. Their
terraces are power-sequence terraces in the sense that the constructions are based on
sequences of powers of elements in Zn. Each such terrace can be partitioned into seg-
ments one of which contains merely the zero element. Each other segment is either (a)
a sequence of successive powers of an element of Zn, or (b) such a sequence multiplied
throughout by a constant. Here the phrase “successive powers” covers index-sequences
of the form i; i+�; i+2�; : : : ; where � may be any suitable positive or negative integer.
For n prime, powers of primitive roots of n are used, or powers of the negatives of
such primitive roots; for n=ps, the elements whose powers are used are primitive roots
of ps for all s, or the negatives of such primitive roots. An example of a narcissistic
half-and-half power-sequence terrace for Z11 is

9 7 3 6 1 | 0 | 10 5 8 4 2

i.e.

64 63 62 61 60 | 0 | − 60 − 61 − 62 − 63 − 64;

which uses the primitive root 6 of 11. Here, as elsewhere, we omit brackets and
commas from our notation for a terrace, and we use vertical bars to separate segments.
An example of a narcissistic half-and-half power-sequence terrace for Z9 is

4 2 1 | 6 | 0 | 3 | 8 7 5

i.e.

22 21 20 | 61 | 0 | negatives;
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where, as subsequently, we omit elements following the zero, as they are merely, in
reverse order, the negatives of the elements that precede the zero. This last terrace can
also be written in power-sequence form as

54 55 50 | 61 | 0 | negatives

as 56 = 50 (mod 9).
The present paper moves on from n=ps to provide general methods of construction

for narcissistic half-and-half power-sequence terraces for Zn with n=pqt where p and
q are distinct odd primes and t is a positive integer. Structure in the ring Zn with
n= pqt was discussed in [1, Section 2].
We start in Section 2 with narcissistic half-and-half power-sequence terraces for Zn

with n= 3p, but Arst we need some results from number theory.
All our constructions are for Zn terraces with as few segments as possible, and

are therefore based on primitive �-roots of n. Primitive �-roots were introduced by
Carmichael [7–9] as a generalisation of ordinary primitive roots, to cover composite
positive integers n lacking primitive roots. To provide a basis for descriptions and
proofs of our constructions, we now rehearse some details of both primitive roots and
primitive �-roots.

1.2. Primitive roots

If p is prime and !∈Zp \ {0}, then ! is a primitive root of p if ordp(!)=p− 1.
All the elements of Zp \ {0} are then given by 1; !; !2; : : : ; !p−2. If ! is a primitive
root of p, then the other primitive roots of p are precisely the elements !i where
gcd(i; p−1)=1; thus there are �(p−1) primitive roots of p, where �(·) is the Euler
function (e.g. [5, p. 124; 16, p. 87; 17, p. 28]). Several of our constructions use the
fact that if p ≡ 1 (mod 4) then ! is a primitive root of p if and only if −! is, whereas
if p ≡ 3 (mod 4) then −! is a primitive root of p if and only if ordp(!)= (p− 1)=2.
If a and b are given elements of Zp \ {0}, then, provided p is large enough, there

exist primitive roots � and � of p such that � = a� + b [10–12]. The special cases
�=±(2� − 2) are relevant to many of our constructions.
For any positive integer n, an integer a with 0¡a6 n is a unit of Zn if and only

if gcd(a; n)=1. The set Un of units in Zn comprises �(n) elements and forms a group
under multiplication modulo n. If n is a prime power ps (where p is prime and s is
a positive integer), then an element ! from Un is a primitive root of n if the order of
! (modps) is �(ps) = ps−1(p− 1).

1.3. Primitive �-roots

The least positive integer e such that ae =1 for all a∈Un is the universal exponent
e(n) of n [14, p. 116]. Sometimes (indeed perhaps more commonly), e(n) is referred
to merely as the exponent of n; often it is written �(n) (e.g. [5, p. 164; 10, Section 28;
17, p. 53]). If n takes any of the values 1, 2, 4, ps or 2ps, where p is an odd prime
and s is a positive integer, then �(n) = e(n) and n has a primitive root [14, p. 99,
108]. For any other positive integer n, there is no primitive root, and e(n)¡�(n) with
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e(n) |�(n); then, if x∈Un, the element x is a primitive �-root of n if ordn(x) = e(n)
[9, Section 39]; [13, pp. 112–124]; [15, p. 55]. We write �(n) = �(n)=e(n).
As the literature on primitive �-roots is very sparse, detailed notes on them have

been made available on the internet [6].
For values of n satisfying �(n)¿ 1 we deAne a primitive �-root to be negating

if it has −1 as a power, and to be non-negating otherwise. Similarly for values of n
satisfying �(n)¿ 1 we deAne a primitive �-root x of n to be inward if x−1∈Un and to
be outward otherwise; a primitive �-root x of n is inward if and only if gcd(x−1; n)=1.
We deAne a primitive �-root that is both non-negating and inward to be a strong
primitive �-root. The constructions in this paper are based on strong primitive �-roots.

1.4. Primitive roots and �-roots for n= pqt

If n= pqt where p and q are distinct odd primes and t is a positive integer, then

�(n) = (p− 1)qt−1(q− 1) = n(1− p−1)(1− q−1);

e(n) = lcm( (p− 1); qt−1(q− 1) )

and

�(n) = gcd( (p− 1); qt−1(q− 1) )

with �(n) even.
If n= pq where p and q are distinct odd primes, the elements of Zn consist of (i)

zero, (ii) the set Un of units of Zn, (iii) the set Wn;p of non-zero multiples of p in
Zn, and (iv) the set Wn;q of non-zero multiples of q in Zn. If the element x from Un

has orders ordp(x), ordq(x) and ordn(x) in Zp, Zq and Zn, respectively, then

ordn(x) = lcm(ordp(x); ordq(x)):

In particular, a common primitive root x of p and q is a primitive �-root of n (see [15,
p. 54]; [17, p. 109]) and may indeed be a strong primitive �-root, e.g. (n; p; q; x) =
(15; 5; 3; 2). However, a strong primitive �-root of n may be a primitive root of just
one of p and q, or of neither. For example, as ord3(2) = 2 and ord7(2) = 3 we have
ord21(2) = 6, so that 2 is a strong primitive �-root of 21 and a primitive root of 3 but
not a primitive root of 7. Also, as ord7(18)=ord7(4)=3 and ord13(18)=ord13(5)=4
we have ord91(18) = 12, so that 18, despite being a strong primitive �-root of 91, is
not a primitive root of either 7 or 13.
Still with n = pq, the members p; 2p; : : : ; (q − 1)p of Wn;p constitute, under mul-

tiplication, a group whose identity element In;p is the member that can be written in
the form iq + 1 for some integer i. Likewise the members of Wn;q constitute a group
whose identity element In;q can be written jp+1 for some integer j. If x∈Wn;p, then
the order of x in Wn;p is the same as the order of x in Zq; thus Wn;p contains as many
distinct elements of order q − 1 as there are distinct primitive roots of q. Likewise if
x∈Wn;q, then the order of x in Wn;q is the same as the order of x in Zp; thus Wn;q

contains as many distinct elements of order p− 1 as there are distinct primitive roots
of p.
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If n= pqt where p and q are distinct odd primes and t is an integer with t ¿ 1, a
common primitive root x of p and qt is a primitive �-root of n and may indeed be
a strong primitive �-root, e.g. (n; p; q; t; x) = (45; 5; 3; 2; 2). A strong primitive �-root x
of n may be a primitive root of p but not of qt , e.g. (n; p; q; t; x) = (117; 13; 3; 2; 71),
or a primitive root of qt but not of p, e.g. (n; p; q; t; x) = (63; 7; 3; 2; 2), or a primitive
root of neither, e.g. (n; p; q; t; x) = (63; 7; 3; 2; 44).

2. Terraces with n = 3p

If n = 3p where p is an odd prime with p¿ 3, then �(n) = 2(p − 1) and e(n) =
lcm(2; p − 1) = p − 1 so that �(n) = 2. Thus the units of Zn can be segregated into
(a) the powers of a primitive �-root x of n, and (b) the remaining units. A primitive
�-root x of n may satisfy either x ≡ 1 or x ≡ 2 (mod 3). If a strong primitive �-root
x is chosen so that the units in (b) are the negatives of those in (a), we have met
one of the requirements for a narcissistic half-and-half power-sequence Zn terrace in
which, on each side of the central zero, there is only one segment for the units. The
full set of requirements is met by the conditions imposed in the following theorem,
which produces terraces where, on each side of the central zero, there is also only one
segment for each of Wn;3 and Wn;p. The theorem is a special case of Theorem 3.1 in
the next section, but is given here both because of its importance and for clarity of
exposition.

Theorem 2.1. Let p be a prime, p¿ 3, and let � = 1 or 2 according as p ≡ 1 or
5 (mod 6), respectively, so that �p is the identity element I3p;p of W3p;p. Choose an
element x satisfying x ≡ 2 (mod 3), such that
(a) x is a primitive root of p if p ≡ 1 (mod 4) or has order (p − 1)=2 (modp) if

p ≡ 3 (mod 4),
and suppose that there is an element y of Zp satisfying (2x−1)(y−1) ≡ ±y (modp)
and such that
(b) y is a primitive root of p if p ≡ 1 (mod 4) and has order p− 1 or

(p− 1)=2 (modp) if p ≡ 3 (mod 4).
Then x is a strong primitive �-root of n, and the sequence

y(p−3)=2(2x − 1) y(p−5)=2(2x − 1) : : : y(2x − 1) (2x − 1) |
x x2 : : : xp−2 1 | �p | 0 | negatives

is a narcissistic half-and-half power-sequence terrace for Z3p. Depending on whether
y is of order (p − 1)=2 or p − 1 (modp), the :rst segment of the terrace can be
written in the form

za za+2 : : : za+(p−3)

or

za za+1 : : : za+(p−3)=2
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respectively, where z is an element of order p − 1 from W3p;3; if y is of order
(p− 1)=2 (modp) and a is even, then the :rst segment of the terrace can be written
as

wb wb+1 : : : wb+(p−3)=2;

where w is an element of order (p− 1)=2 from W3p;3.

Proof. As ord3p(x) = lcm (ordp(x); 2) = p − 1 in all cases, x is a primitive �-root of
3p. To show that x is non-negating, we now prove that there is no integer i such that
xi ≡ −1 (mod 3p).
Suppose that xj ≡ −1 (mod 3p); then (i) xj ≡ −1 ≡ 2 (mod 3), and (ii) xj ≡

−1 (modp). By (i), j is odd. If p ≡ 1 (mod 4) then, as x is a primitive root of p, (ii)
requires j ≡ (p−1)=2 (modp−1) so that j is even; this gives us a contradiction. If p ≡
3 (mod 4), the element −1 is not a square [14, p. 126]. But if x has order (p−1)=2 then
x is the square of a primitive root ! of p and so the element −1 ≡ xj ≡ !2j is a square,
again giving us a contradiction. Thus {1; x; : : : ; xp−2} ∪ {−1;−x; : : : ;−xp−2}= U3p.
As x ≡ 2 (mod 3), 2x − 1 is a multiple of 3. Further, p does not divide (2x − 1),

as otherwise the condition (2x − 1)(y − 1) ≡ ±y (modp) would require p|y. So
the elements in the Arst segment are members of W3p;3. Suppose that (2x − 1)yi ≡
±(2x−1)yj (mod 3p) for some integers i and j satisfying 06 i¡ j¡ (p−1)=2. Then,
on putting 2x − 1 = 3 , we have  yi ≡ ± yj (mod p), whence yj−i ≡ ±1 (modp)
where 0¡j− i¡ (p−1)=2. This is impossible if y has order p−1, and can happen if
y has order (p−1)=2 only when j− i=(p−1)=4; so it is impossible if p ≡ 3 (mod 4).
Thus no member of the initial sequence is equal to any other or its negative, and the
proposed terrace does indeed contain each element of Z3p exactly once.

Now consider the diKerences, noting that � is chosen so that �p−1 is a multiple of 3.
The non-negating primitive �-root x is inward, and therefore strong, as x �≡ 1 (mod 3),
and x �≡ 1 (modp) as otherwise x would have order less than (p− 1)=2 (modp). The
diKerences arising from the proposed terrace are ± the following:

x(x − 1); x2(x − 1); : : : xp−2(x − 1); x − 1; �p− 1; �p;

(2x − 1)(y − 1); (2x − 1)(y − 1)y; : : : (2x − 1)(y − 1)y(p−5)=2:

To obtain all possible diKerences we require that

�p− 1 ≡ ±(2x − 1)(y − 1)y(p−3)=2 (mod 3p)

i:e: �p− 1 ≡ ±(2x − 1)(y − 1)y(p−3)=2 (modp)

i:e: −1 ≡ ±(2x − 1)(y − 1)y(p−3)=2 (modp)

i:e: y ≡ ±(2x − 1)(y − 1)y(p−1)=2 (modp)

i:e: ±y ≡ (2x − 1)(y − 1) (modp):

Thus, the conditions stated in the theorem ensure that the given sequence is a terrace.
If y is a primitive root of p, let z1 be the inverse of y in Zp. Then z1 is also a

primitive root of p. Choose z ∈W3p;3 such that z ≡ z1 (modp). Then z has order p−1
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in W3p;3. If we deAne a by y(p−5)=2(2x− 1) = za, the initial section of the terrace can
be written as za; za+1; : : : ; za+(p−3)=2.
If y has order (p − 1)=2 (modp), then z1, again taken to be the inverse of y in

Zp, also has order (p − 1)=2 (modp). Thus z1 = !2
1 for some primitive root !1 of

p. Choose z from W3p;3 such that z ≡ !1 (modp). Then z generates W3p;3 and, if
y(p−3)=2(2x−1)= za, the Arst section of the terrace is za; za+2; : : : ; za+(p−3). The choice
w= z2, taken in conjunction with a=2b, yields the Anal assertion of the theorem.

Note on existence: The construction in Theorem 2.1 works provided that there exist
primitive roots x and y of p such that

(i) if p ≡ 1 (mod 4), then (2x − 1)(y − 1) ≡ ±y (modp);
(ii) if p ≡ 3 (mod 4), then (−2x − 1)(y − 1) ≡ ±y (modp).

Now Cohen [11, p. 47] showed that, provided that p is suLciently large, there exist
primitive roots � and � of p such that �=2�− 2. In case (i) choose x=−�−1, y=�;
then x and y are primitive roots of p and

(2x − 1)(y − 1) =−(2�−1 + 1)(� − 1)

=−(2 + �)2−1 · 2(� − 1)�−1 =−� =−y:
In case (ii) choose x = �−1, y = �; then (−2x − 1)(y − 1) =−y:

Example 2.1. Z15 terrace with p=5, x= y=2; here y is of order p− 1= 4 (mod 5),
and z = 3, a= 4, and z5 = 35 = 31 (mod 15):

6 3 | 2 4 8 1 | 10 | 0 | 5 | 14 7 11 13 | 12 9

= 34 31 | 21 22 23 20 | 101 | 0 | negatives:

Consistently with Theorem 1 of [17, p. 112], the elements in segments 2, 3, 4 and 5
together constitute a diKerence set (mod 15), as therefore do the elements in segments
3, 4, 5 and 6.

Example 2.2. Z33 terrace with p= 11, x = 14, y = 4; here y is of order (p− 1)=2 =
5 (mod 11), and z = 6, a = 8 (giving w = 3, b = 4); also 612 = 62 (mod 33), i.e. 36 =
31 (mod 33):

15 12 3 9 27 | 14 31 5 4 23 25 20 16 26 1 | 22 | 0 | negatives

= 68 610 62 64 66 | 141 142 : : : 149 140 | 221 | 0 | negatives

= 34 35 31 32 33 | 141 142 : : : 149 140 | 221 | 0 | negatives:

For n = 3p with n¡ 70, the pairs of values (x; y) that satisfy Theorem 2.1 are as
follows, where the two x-values within braces {} are inverses of one another, and
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where a y-value marked with an asterisk is of order (p − 1)=2 (modp), which can
arise only if p ≡ 3 (mod 4).

n (x; y)

15 (2; 2)
21 (2; 5)
33 {(5; 2 or 8); (20; 4∗)}; {(14; 4∗); (26; 3∗ or 5∗)}
39 {(11; 11); (32; 2)}
51 {(5; 6); (41; 7 or 11)}; {(11; 7 or 11); (14; 3)}; (20; 14); (44; 12)
57 {(5; 13); (23; 17∗)}; {(17; 4∗ or 6∗); (47; 2)}; {(35; 17∗); (44; 3)}
69 {(8; 6∗ or 11); (26; 7 or 20)}; {(29; 8∗); (50; 5 or 21)};

{(32; 14 or 15); (41; 8∗)}; {(59; 2∗ or 16∗); (62; 6∗ or 11)};
(2; 13∗ or 18∗):

For 70¡n¡ 300, single or pairs of solutions (n; p; x; y) for each value of n are
as follows, the pairs being given where p ≡ 3 (mod 4), so as to provide one solution
where y is of order p − 1 (modp) and one where y (again asterisked) is of order
(p− 1)=2 (modp):

(n; p; x; y)

p ≡ 1 (mod 6) p ≡ 5 (mod 6)

(93; 31; 80; 22), (93; 31; 14; 7∗) (87; 29; 2; 8)
(111; 37; 2; 20) (123; 41; 17; 7)
(129; 43; 38; 26), (129; 43; 14; 24∗) (141; 47; 8; 45), (141; 47; 2; 25∗)
(183; 61; 26; 35) (159; 53; 2; 14)
(201; 67; 35; 2), (201; 67; 23; 33∗) (177; 59; 5; 38), (177; 59; 116; 16∗)
(219; 73; 14; 14) (213; 71; 8; 67), (213; 71; 29; 12∗)
(237; 79; 2; 60), (237; 79; 5; 72∗) (249; 83; 11; 55), (249; 83; 23; 10∗)
(291; 97; 14; 57) (267; 89; 23; 30)

3. Terraces with n = pq and �(n) = 2

If n = pq where p and q are distinct odd primes, we may have �(n) = 2, as for
n=33; 35; 39; 51; 55; 57; 69; 77; 87; 93; 95; : : : ; or �(n)=4, as for n=65; 85; : : : ; or �(n)=6,
as for n=91; : : : ; etc. We now generalise Theorem 2.1 to cover completely the Arst of
these possibilities.
As the restriction on �(n) requires gcd(p− 1; q− 1)= 2, it prevents us from having

both p and q congruent to 1 (mod 4). For x to be a primitive �-root of n we now
require lcm(ordp(x); ordq(x)) = (p − 1)(q − 1)=2, and so ordp(x) must be p − 1 or
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(p− 1)=2 and ordq(x) must be q− 1 or (q− 1)=2. Further, we require

(i) if p ≡ 1 (mod 4) then x is a primitive root of p;
(ii) if q ≡ 1 (mod 4) then x is a primitive root of q;
(iii) if p ≡ q ≡ 3 (mod 4) then x is a primitive root of at least one of p and q.

For x to be non-negating, (iii) must be replaced by

(iv) if p ≡ q ≡ 3 (mod 4) then x is a primitive root of precisely one of p and q,

for if x were a primitive root of both p and q we would have

x((p−1)=2)((q−1)=2) ≡ −1 (modpq):

Theorem 3.1. Let n be a positive integer satisfying n=pq where p and q are distinct
odd primes, q �≡ 1 (mod 8), such that �(n) = 2, and where 2 is a primitive root of
q or, if q ≡ 7 (mod 8), is of order (q − 1)=2 (mod q). Let x be a strong primitive
�-root of n with 2x ≡ 1 (mod q), and let y be an element from Zp that satis:es
(2x − 1)(y − 1) ≡ ±y (modp). Then the sequence

y(p−3)=2(2x − 1) y(p−5)=2(2x − 1) : : : y(2x − 1) (2x − 1) |
x x2 : : : xe(n)−1 1 |

20In;p 21In;p : : : 2(q−3)=2In;p | 0 | negatives

is a narcissistic half-and-half power-sequence terrace for Zn provided that y is a
primitive root of p if p ≡ 1 (mod 4), and has order p − 1 or (p − 1)=2 (modp) if
p ≡ 3 (mod 4). The :rst segment of the terrace can be written in power-sequence
form exactly as described in Theorem 2.1, and the third segment can be written in
power-sequence form similarly.

Proof. As in the proof of Theorem 2.1, we have to show that there is no integer i
such that xi ≡ −1 (modpq). For example, if p ≡ q ≡ 3 (mod 4) and x has order
(q− 1)=2 (mod q), then x=!2 for some primitive root ! of q, so that the congruence
xi ≡ −1 (mod q) would yield (!i)2 ≡ −1 (mod q), contradicting the fact that −1 is not
a square (mod q) when q ≡ 3 (mod 4).
As 2x ≡ 1 (mod q), we have ordq(2) = ordq(x) and so the elements In;p; 2In;p; : : : ;

2(q−3)=2In;p are distinct (mod q). Further, if 2iIn;p ≡ −2jIn;p (modpq) for some i; j sat-
isfying 06 i¡ j¡ (q− 1)=2, then 2j−i ≡ −1 (mod q). This is impossible if ordq(2)=
q−1, whereas if ordq(2)=(q−1)=2 it requires j− i=(q−1)=4, whence q ≡ 1 (mod 4),
contradicting q ≡ 7 (mod 8).

Also, the Arst segment consists of multiples of q, and an argument exactly as for
Theorem 2.1 of the present paper shows that the proposed sequence contains each
multiple of q exactly once.
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Finally, the diKerences arising from the proposed terrace constitute all the possible
diKerences provided that

In;p − 1 ≡ ±(2x − 1)(y − 1)y(p−3)=2 (modpq)

i.e.

−1 ≡ ±(2x − 1)(y − 1)y(p−3)=2 (modp);

exactly as in the proof of Theorem 2.1.

Note on existence: As for Theorem 2.1, the existence of appropriate x and y follows
from [11, p. 47] for all suLciently large p. The only case needing further consideration
is when p ≡ 3 (mod 4) and q ≡ 7 (mod 8). Here, we need ordq(2)=ordq(x)=(q−1)=2
and so x has to be a primitive root of p. We now use the existence of primi-
tive roots � and � such that −� = 2� − 2. Taking x = �−1 and y = � we obtain
(2x − 1)(y − 1) =−y.

Example 3.1. Z35 terrace with p=7, q=5, x=y=3; here y is of order p−1=6 (mod 7):

10 15 5 | 3 9 27 11 33 29 17 16 13 4 12 1 | 21 7 | 0 | negatives

= 55 56 51 | 31 32 : : : 311 30 | 74 71 | 0 | negatives:

Consistently with Theorem 1 in [17, p. 112], the elements in segments 2, 3, 4 and 5
together constitute a diKerence set (mod 35).

Example 3.2. Z35 terrace with p = 7, q = 5, x = 3, y = 2; here y is of order
(p− 1)=2 = 3 (mod 7):

20 10 5 | 3 9 27 11 33 29 17 16 13 4 12 1 | 21 7 | 0 | negatives

= 53 55 51 | 31 32 : : : 311 30 | 74 71 | 0 | negatives:

The same comment applies as in Example 3.1.

Example 3.3. Z35 terrace with p=5, q=7, x=32, y=2; here y is of order p− 1=
4 (mod 5):

21 28 | 32 9 8 11 2 29 18 16 22 4 23 1 | 15 30 25 | 0 | negatives

= 284 281 | 321 322 : : : 3211 320 | 303 301 302 | 0 | negatives

= 284 281 | 321 322 : : : 3211 320 | 106 102 104 | 0 | negatives:

For n¡ 300 and p; q¿ 3, values of (p; q; x; y) for single or paired solutions for
each value of n with �(n) = 2 are as follows; we adopt the same procedure and
notation as in Section 2 to distinguish y-values of diKerent orders, and we now use
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dashes to indicate where a solution does not exist despite the conditions on p and q
being met:

n (p; q; x; y)

p¿q p¡q

35 (7; 5; 3; 3), (7; 5; 3; 2∗) (5; 7; 32; 2)
55 (11; 5; 13; 7), (11; 5; 13; 9∗) (5; 11; 17; 2)
77 (11; 7; 46; 7), (11; 7; 74; 5∗) (7; 11; 72; 5), (7; 11;—;—∗)
95 (19; 5; 53; 13), (19; 5; 3; 4∗) (5; 19; 67; 2)

115 (23; 5; 3; 7), (23; 5; 48; 13∗) (5; 23; 12; 2)
119 (17; 7; 116; 3)
143 (13; 11; 6; 2) (11; 13; 46; 7), (11; 13; 46; 9∗)
155 (31; 5; 133; 13), (31; 5; 103; 20∗)
161 (23; 7; 158; 5), (23; 7; 60; 9∗) (7; 23; 150; 3), (7; 23; 12; 2∗)
187 (17; 11; 105; 14)
203 (29; 7; 11; 26) (7; 29; 73; 3), (7; 29; 73; 2∗)
209 (19; 11; 6; 3), (19; 11; 61; 17∗) (11; 19; 181; 8), (11; 19; 48; 3∗)
215 (43; 5; 3; 12), (43; 5; 13; 10∗)
235 (47; 5; 3; 13), (47; 5; 13; 3∗) (5; 47; 212; 2)
253 (23; 11; 39; 11), (23; 11; 6; 8∗) (11; 23; 35; 7), (11; 23; 35; 9∗)
287 (41; 7; 53; 29)
295 (59; 5; 3; 50), (59; 5; 3; 16∗) (5; 59; 207; 2)
299 (23; 13; 7; 19), (23; 13; 33; 9∗) (13; 23; 58; 2)

The gaps above for (n; p; q) = (119; 7; 17), (187; 11; 17), (287; 7; 41) arise as 2 is a
square (mod q) if q ≡ 1 (mod 8) and so 2 cannot then be a primitive root of q. The
gaps for n=155 and 215 arise as 2 is not of order 15 (mod 31) and is not a primitive
root of 43.
As we have indicated for terraces obtainable from Theorem 3.1, the Arst and third

segments, although each consisting of a multiple of a sequence of successive powers
of an element, can each be rewritten merely as a sequence of successive powers. The
same is true for analogous segments from terraces given throughout the rest of this
paper. However, to avoid encumbering the text, we henceforth omit details of these
alternative representations.

4. Terraces with n = pq and �(n) = 4

If n=pq where p and q are distinct odd primes, and �(n) = 4, then p ≡ 1 (mod 4)
and q ≡ 1 (mod 4) but we cannot have p and q both congruent to 1 (mod 8). For such
a value of n, a narcissistic half-and-half power-sequence terrace for Zn must have,
on each side of the central zero, at least two segments for elements of Un, as well
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as at least one segment for elements of Wn;p and at least one segment for elements
of Wn;q.
We have found three elegant constructions for achieving the minimum number of

segments if 2 is a primitive root of q, which requires q ≡ 5 (mod 8). If 2 is a primitive
root of both p and q, which requires both p and q to be congruent to 5 (mod 8),
interchanging the roles of p and q enables these three constructions to give, in total,
six patterns that prima facie may be tried for a particular n. Thus a goodly number of
Zn terraces can be produced.
To describe a Zn terrace obtained from any one of the three constructions, we use

m1, m2, m3, m4 for the diKerences “missing” from, respectively, the Arst four segments
of the terrace, and f1, f2, f3, f4 for the diKerences arising at, respectively, the Arst
four “fences” between segments of the terrace. With this notation, the constructions
are as given in Theorems 4.1–4.3, as follows.

Theorem 4.1. Let n=pq where p, q are odd primes such that �(n)= 4, i.e. gcd(p−
1; q−1)=4, and where 2 is a primitive root of q. Suppose that x is a strong primitive
�-root of n such that gcd(2x−1; n)=1 and k is a unit such that (2x−1)k ≡ x (mod n)
where neither k nor −k is a power of x. Write v= k + x− 1. If v ≡ 0 (mod q) and if
an element y satisfying y ≡ v(v± 1)−1 (modp) is a primitive root of p, then

y(p−3)=2v y(p−5)=2v : : : yv v |
k kxe(n)−1 kxe(n)−2 : : : kx2 kx | x x2 : : : xe(n)−1 1 |

20In;p 21In;p : : : 2(q−3)=2In;p | 0 | negatives

is a narcissistic half-and-half power-sequence terrace for which m1 =±f3, m2 =−f2,
m3 =±f1.

Proof. The conditions on x and k ensure that

Un = {±1;±x; : : : ;±xe(n)−1} ∪ {±k;±kx; : : : ;±kxe(n)−1}:

As y is a primitive root of p, we have {v; yv; : : : ; yp−1v} =Wn;q; as 2 is a primitive
root of q, we have {In;p; 2In;p; : : : ; 2q−1In;p}=Wn;p.
Now m1 = v(y − 1)y(p−3)=2, m2 = k(x − 1), m3 = x − 1, f1 = v − k, f2 = x(k − 1)

and f3 = In;p − 1. Thus f1 =m3 since v= k + x− 1, and f2 =−m2 since (2x− 1)k ≡
x (mod n). Further, f1 = ±m1 if and only if v(y − 1)y(p−3)=2 ≡ ±(In;p − 1) (modpq)
and, as both sides are divisible by q and as In;p is a multiple of p, this condition
is equivalent to v(y − 1)y(p−3)=2 ≡ ±1 (modp), i.e. v(y − 1) ≡ ±y (modp), i.e.
y ≡ v(v± 1)−1 (modp).

Note: (a) The construction fails for p = 5 as we must then have (x; k) equal to
(1; 1) or (2; 4) or (4; 2). The last two of these possibilities yield v ≡ 0 (mod 5), which
is impossible, whereas the Arst gives only numbers that are congruent to 1 or 4, modulo
5, in Un.
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(b) If q = 5, we can take x to be any primitive root of p such that x ≡ 4 (mod 5).
Then k ≡ 2 (mod 5) and ±k cannot be a power of x. Further, v=k+x−1 is congruent
to 0 (mod 5). So the construction of Theorem 4.1 applies for q=5 provided v(v±1)−1

is a primitive root of p. Similarly, if q = 13, we can take x ≡ 3 (mod 13); then
k ≡ 11 (mod 13), so that ±k cannot be a power of x, and v = k + x − 1 is congruent
to 0 (mod 13).

Example 4.1. A Z65 terrace from Theorem 4.1 with (p; q) = (13; 5), x = 19, k = 62,
v= 15, y = 2:

25 45 55 60 30 15 | 62 58 27 63 17 18 42 33 12 28 22 8 |
19 36 34 61 54 51 59 16 44 56 24 1 | 52 | 0 | negatives:

Theorem 4.2. Let n=pq where p, q are primes with gcd(p− 1; q− 1) = 4 and with
2 a primitive root of q. Suppose that x is a strong primitive �-root of n such that
gcd(2x − 1; n) = 1, x ≡ 2 (mod q) and k is a unit such that kx ≡ 2x − 1 (mod n)
where neither k nor −k is a power of x. If v ≡ k(2− x) (mod n) and if an element y
satisfying y ≡ v(v ± 1)−1 (modp) is a primitive root of p, then the Zn sequence as
printed in Theorem 4.1 is a narcissistic half-and-half power-sequence terrace for Zn
with m1 =±f3, m2 =±f1, m3 =−f2.

Proof. Similar to the proof of Theorem 4.1.

Example 4.2. A Z65 terrace from Theorem 4.2 with (p; q) = (5; 13), x = 54, k = 8,
v= 39, y = 3:

52 39 | 8 17 28 27 33 62 18 22 63 12 58 42 |
54 56 34 16 19 51 24 61 44 36 59 1 | 40 15 30 60 55 45 |

0 | negatives:

Theorem 4.3. Let n=pq where p, q are primes with gcd(p−1; q−1)=4 and with 2
a primitive root of q. Write v=2x− 1 where x is a strong primitive �-root of n such
that v ≡ 0 (mod q). If an element y satisfying y ≡ v(v± 1)−1 (modp) is a primitive
root of p and if ky ≡ −1 (modp) for some k ∈Un such that neither k nor −k is a
power of x, then

k kxe(n)−1 kxe(n)−2 : : : kx2 kx |
y(p−3)=2v y(p−5)=2v : : : yv v | x x2 : : : xe(n)−1 1 |

20In;p 21In;p : : : 2(q−3)=2In;p | 0 | negatives

is a narcissistic half-and-half power-sequence terrace for Zn with m1=±f1, m2=±f3,
m3 =−f2.
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Proof. We have m1 = k(x− 1), m2 = v(y− 1)y(p−3)=2, m3 = x− 1, f1 =y(p−3)=2v− kx,
f2 = v− x, f3 = In;p−1. As v=2x−1 we have m3 =f2. The relationship m2 =±f3 is
dealt with as for Theorem 4.1. For m1=±f1 it suLces to have k(x−1)=vy(p−3)=2−kx,
i.e. (2x − 1)k ≡ vy(p−3)=2 (mod n). As q divides both sides and p does not divide v,
we need k ≡ y(p−3)=2 (modp), i.e. ky ≡ −1 (modp).

Note on alternative solutions: As k has only to satisfy ky ≡ −1 (modp) and must
not be a multiple of q, there are potentially q − 1 possible values of k (modpq).
However, some of these may be in {±xi: 06 i¡ e(n)}.
If x is a primitive root of p, the power sequence 1; x; : : : ; xe(n)−1, when considered

modulo p, consists of (q− 1)=4 subsequences each comprising 1; x; : : : ; xp−2 (modp).
Each of these (q − 1)=4 subsequences will contain one member that is congruent to
k (modp) and one that is congruent to −k (mod p). So each subsequence rules out
two values of k that are in {±xi}. Thus altogether 2× (q− 1)=4= (q− 1)=2 values of
k are ruled out, leaving (q− 1)=2 choices for k.
If ordp(x) = (p − 1)=2 (which is even), the sequence 1; x; : : : ; xe(n)−1, considered

modulo p, comprises (q− 1)=2 identical subsequences (modp) of length (p− 1)=2. If
neither k nor −k is in one of these, then no power of x is congruent to ±k (modp)
and there are q−1 choices for k. If k (and hence −k) occurs in the Arst subsequence,
then 2 × (q − 1)=2 choices of k are ruled out, so no choice of k is available for the
construction.
Finally, if ordp(x) = (p − 1)=4, which occurs only when p ≡ 5 (mod 8), then the

power sequence of x is, when considered modulo p, made up of q − 1 identical
subsequences of length (p−1)=4. As (p−1)=4 is odd, if k is in the subsequence then
−k is not. If ±k is in the Arst subsequence then all of the q−1 choices of k are ruled
out; if ±k is not in the subsequence then all q − 1 choices of k can be used in the
construction.
Note on existence: The primitive �-root x is a primitive root of q and, as v=2x−1,

we have v(v+1)−1=(2x−1)(2x)−1. In the case p ≡ 1 (mod 8), Cohen’s results [11, p.
47] again show that the construction in the theorem works for all suLciently large p.
For, with �=2�−2, take x=−�−1 and y=�. Then (2x−1)(2x)−1(2+�)2−1 =�=y
and, as x is a primitive root of p, the arguments in the previous note ensure that a
suitable choice of k is available.

Example 4.3. A Z65 terrace from Theorem 4.3 with (p; q)=(13; 5), x=3, k=7, v=5,
y = 11:

7 24 8 46 37 34 33 11 47 59 63 21 | 35 15 25 20 55 5 |
3 9 27 16 48 14 42 61 53 29 22 1 | 26 52 | 0 | negatives:

With the other parameter values unchanged, k can also be 46, 33 or 59, each of
which merely produces a diKerent ordering of the elements in the Arst segment. Here
ordp(x) = ord13(3) = 3 = (p− 1)=4.
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Example 4.4. A Z65 terrace from Theorem 4.3 with (p; q) = (5; 13), x = 59, k = 12,
v= 52, y = 2:

12 63 22 18 62 33 27 28 17 8 42 58 | 39 52 |
59 36 44 61 24 51 19 16 34 56 54 1 |

40 15 30 60 55 45 | 0 | negatives:

With the other parameter values unchanged, k can be any of the 1st, 3rd, 5th, : : :
entries in the Arst segment above, and it can be the negative of any of the 2nd, 4th,
6th, : : : entries. Here ordp(x) = ord5(59) = 2 = (p− 1)=2.

Example 4.5. A Z85 terrace from Theorem 4.3 with (p; q)=(17; 5), x=3, k=6, v=5,
y = 14:

6 2 29 38 41 42 14 33 32 39 13 61 77 54 18 |
30 75 60 65 35 45 70 5 |

3 9 27 81 73 49 62 16 59 7 21 63 19 57 1 |
51 17 | 0 | negatives:

With the other parameter values unchanged, k can also be 74; the Arst segment of the
terrace is then the negative of the Arst segment above, with its two halves swapped.
Here x is a primitive root of p.

Within the range n¡ 300, the values of n that are covered by the above theorems
are 65, 85, 145, 185, 205, 221 and 265. None of these 7 values is covered by Theorem
4 of [17, p. 119], which produces diKerence sets when n=pq and �(n)=4. Specimen
parameter sets (x; k; v; y) that yield terraces from the above constructions are as follows.

n (p; q) (x; k; v; y)

Theorem 4.1 Theorem 4.2 Theorem 4.3

65 (13; 5) (19; 62; 15; 2) (−;−;−;−) (3; 7; 5; 11)
(5; 13) (54; 8; 39; 3) (59; 12; 52; 2)

85 (17; 5) (29; 2; 30; 7) (7; 14; 15; 12) (3; 6; 5; 14)
145 (29; 5) (84; 17; 100; 3) (132; 69; 20; 27) (23; 66; 45; 18)

(5; 29) (89; 103; 29; 3) (44; 37; 87; 2)
185 (37; 5) (94; 47; 140; 5) (12; 79; 135; 35) (53; 79; 105; 22)

(5; 37) (39; 168; 74; 3) (19; 2; 37; 2)
205 (41; 5) (19; 67; 85; 11) (17; 14; 200; 35) (13; 104; 25; 13)
221 (17; 13) (29; 206; 13; 7) (54; 47; 208; 11) (7; 12; 13; 7)
265 (53; 5) (14; 187; 200; 5) (17; 189; 80; 18) (13; 141; 25; 3)

(5; 53) (214; 28; 159; 3) (239; 2; 212; 2)
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Each of the constructions from Theorems 4.1–4.3 can be generalised by replacing x
by x$, where $ is an integer satisfying 0¡$¡e(n) − 1 and gcd($; e(n)) = 1, in the
segment starting with the element k. We here do not discuss this possibility further. We
merely cite, as an example, that a terrace for (n; p; q)=(65; 13; 5) can be obtained from
the generalised Theorem 4.2 construction by taking (x; k; $; v; y) = (42; 54; 5; 25; 7); this
terrace compensates for the lack of a terrace obtainable from the ungeneralised Theorem
4.2 construction for (n; p; q) = (65; 13; 5).

5. Terraces with n = pq and �(n) = 6

We now move on to values of n such that constructions for Zn terraces can use
strong primitive �-roots of n that are not primitive roots of any factor of n.
If n=pq where p and q are distinct odd primes and �(n)=6, then p ≡ 1 (mod 6) and

q ≡ 1 (mod 6). Within the range n¡ 300 there are 5 such values of n, namely 91, 133,
217, 247 and 259. For such a value of n, a narcissistic half-and-half power-sequence
terrace must have, on each side of the central zero, at least three segments for elements
of Un.
For such a value of n, let H = {±1;±x; : : : ;±xe(n)−1} where x is a strong primitive

�-root of n and e(n) now satisAes e(n) = 1
6�(n). Then the set H is a subgroup of

Un of index 3. Thus the quotient group Un=H , being of order 3, is cyclic, whence Un

contains an element k such that Un = H ∪ kH ∪ k2H .

Theorem 5.1. Let n= pq where p and q are distinct odd primes such that �(n) = 6,
and where 2 has order q − 1 (mod q) if q ≡ 1 (mod 12) and has order q − 1 or
(q − 1)=2 (mod q) if q ≡ 7 (mod 12). Let x be a strong primitive �-root of n such
that Un = H ∪ kH ∪ k2H where H = {±1;±x; : : : ;±xe(n)−1} and k is an element of
Un such that (2x − 1)k ≡ 1 (mod n). If the value v given by v = k2x ± (x − 1) is a
non-zero multiple of q and if the unit y, de:ned by y= v(v±1)−1 (modp), has order
p− 1 (modp) if p ≡ 1 (mod 12) and has order p− 1 or (p− 1)=2 if p ≡ 7 (mod 12),
then

y(p−3)=2v y(p−5)=2v : : : yv v |
k2x1 k2x0 k2xe(n)−1 k2xe(n)−2 : : : k2x2 |
k1x1 k1x0 k1xe(n)−1 k1xe(n)−2 : : : k1x2 |

x1 x2 : : : xe(n)−1 x0 |

In;p 21In;p : : : 2(q−3)=2In;p | 0 | negatives

is a narcissistic half-and-half power-sequence terrace for Zn with m1=±f4, m2=±f2,
m3 =±f3, m4 =±f1.
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Proof. We have m1 = vy(p−3)=2(y−1), m2 = k2x(x−1), m3 = kx(x−1) and m4 = x−1.
Also f1 = v− k2x, f2 = kx(kx− 1), f3 = x(kx− 1) and f4 = In;p − 1. As (2x− 1)k ≡
1 (mod n), we have m2 =−f2 and m3 =−f3. As v= k2x± (x− 1) we have m4 =±f1.
We further require m1 =±f4, i.e. vy(p−3)=2(y− 1) ≡ ±(In;p− 1) (modpq). Both sides
are 0 (mod q), so we need vy(p−3)=2(y− 1) ≡ ±1 (modp), i.e. v(y− 1) ≡ ±y (modp)
since y(p−1)=2 ≡ ±1 (modp).
Finally, the conditions on the orders of x, y and 2 ensure that no member of the

left half of the terrace is equal to any other or its negative.

Note: (a) A special case is obtained by requiring the Arst element of the second
segment of the terrace to be 1 less than the last element of the second segment,
which in turn is then 1 less than the Arst element of the third segment. We then
require k2x2 − k2x = 1 and kx − k2x2 = 1. Using the fact that k(2x − 1) = 1, both
of the required relationships reduce to 3(x − x2) ≡ 1 (mod n) or, more elegantly, to
k2 ≡ −3 (mod n).
(b) It follows from k2x ± (x − 1) ≡ 0 (mod q) and k(2x − 1) ≡ 1 (mod q) that

k2(k + 1) ∓ (k − 1) ≡ 0 (mod q). If q = 7 this requires k ≡ 5 (mod 7) and hence x ≡
2 (mod 7). For (n; p; q) = (91; 13; 7) and (133; 19; 7) we can, as illustrated in Example
5.2, take x = 2, k = 3−1, leading to (x; k; v; y) = (2; 61; 70; 11) and (2; 89; 14; 4 or 6),
respectively. But there are other possiblities. For (n; p; q) = (91; 13; 7) we can take
(x; k; v; y) = (37; 5; 70; 11), (44; 68; 28; 2) or (86; 33; 21; 11); neither of the x-values 44
and 86 is a primitive root of either 7 or 13. For (n; p; q) = (133; 19; 7) we can take
(x; k; v; y)=(51; 54; 105; 13), (72; 40; 84; 3), (79; 61; 84; 3) or (128; 12; 84; 3); each of the
x-values here is a primitive root of 19 but not of 7.
(c) If q = 13, the congruence k2(k + 1) ∓ (k − 1) ≡ 0 (mod q) requires either (i)

k ≡ 6 (mod 13) and hence x ≡ 6 (mod 13), or (ii) k ≡ 2 (mod 13) and hence x ≡
4 (mod 13). However, a value x satisfying x ≡ 4 (mod 13) cannot be a primitive �-root
of 13p, so only possibility (i) yields terraces.
(d) Similarly, if q=19 the congruence requires k=3 or 6 (mod 19), giving x=7 or

18 (mod 19). No such choice of x is possible for a primitive �-root. If q=37, no value
of k satisAes the congruence. So the construction in Theorem 5.1 fails to produce any
terraces when q= 19 or q= 37.
(e) The requirement on ordq(x) shows that Theorem 5.1 cannot produce terraces

when q= 31.

Example 5.1. Z91 terrace for (n; p; q) = (91; 7; 13) with (x; k; v; y) = (6; 58; 78; 4) and
thus with 3(x − x2) ≡ 1 (mod n):

65 39 78 |
73 88 45 53 24 4 31 81 59 25 80 74 |
75 58 40 37 82 44 68 72 12 2 61 86 |
6 36 34 22 41 64 20 29 83 43 76 1 |

14 28 56 21 42 84 | 0 | negatives:
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Example 5.2. Z91 terrace for (n; p; q) = (91; 13; 7) with (x; k; v; y) = (2; 61; 70; 11):

35 28 77 7 42 70 |
71 81 86 43 67 79 85 88 44 22 11 51 |
31 61 76 38 19 55 73 82 41 66 33 62 |
2 4 8 16 32 64 37 74 57 23 46 1 |

78 65 39 | 0 | negatives:

Specimen parameter sets that yield terraces obtainable from Theorem 5.1 are as in
the following table, where a dagger indicates an x-value that is not a primitive root
of either p or q, and an asterisk on a y-value has the same meaning as previously.
Asterisked solutions can arise only if p ≡ 7 (mod 12); for such values of p the table
has two rows, respectively, for solutions without and with asterisks:

n (p; q) (x; k; v; y)

3(x − x2) ≡ 1 (mod n) 3(x − x2) �≡ 1 (mod n)

91 (13; 7) (86†; 33; 21; 11) (2; 61; 70; 11)
(7; 13) (−;−;−;−), (−;−;−;−)

(6; 58; 78; 4∗) (−;−;−;−∗)
133 (19; 7) (79; 61; 84; 3) (128; 12; 84; 3)

(−;−;−;−∗) (2; 89; 14; 4∗)
217 (31; 7) (23†; 82; 126; 11) (33; 207; 77; 21)

(−;−;−;−∗) (86; 33; 42; 19∗)
247 (19; 13) (188; 110; 117; 15) (32; 149; 91; 14)

(136; 175; 221; 17∗) (6; 45; 52; 6∗)
259 (37; 7) (−;−;−;−) (163; 208; 77; 20)

6. Terraces with n = 32p and �(n) = 2

For n = pqt , the number of possible constructions for narcissistic half-and-half
power-sequence terraces can be expected to increase as t increases. A restriction to
terraces with particularly elegant constructions therefore now seems natural, unless this
should eliminate terraces with other appealing characteristics.
In all the terraces given so far in this paper, the three middle segments, taken to-

gether, constitute a multiple of another narcissistic half-and-half power-sequence terrace.
For example, the three middle segments of the Z65 terrace from Example 4.2 are

40 15 30 60 55 45 | 0 | negatives;

which make up 5 times the Z13 terrace

8 3 6 12 11 9 | 0 | negatives:
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This nesting of a multiple of one narcissistic half-and-half terrace in the centre of
another resembles the enclosing of one wooden Russian doll inside another, and so
we describe a narcissistic half-and-half terrace that has such nesting within it as a
matryoshka terrace. In an obvious notation, the example just given is a (65 ⊃ 13)
matryoshka terrace for Z65.

A narcissistic half-and-half power-sequence terrace having as few segments as possi-
ble is not necessarily a matryoshka terrace. This is readily illustrated by the following
Z45 terrace:

30 | 205 206 201 | 381 382 : : : 3811 380 |
272 273 | 3:20 3:21 3:22 3:23 | 0 | negatives

= 30 | 5 10 20 | 38 4 17 16 23 19 2 31 8 34 32 1 |
9 18 | 3 6 12 24 | 0 | negatives:

Matryoshka power-sequence terraces for Zn are, however, easy to construct when
n=32p and p ≡ 5 (mod 6). Then �(n)=6(p−1) and e(n)=3(p−1) so that �(n)=2;
also �(3p)= 2(p− 1) and e(3p)=p− 1, so that �(3p)= 2. Thus each terrace needs,
on each side of the central zero, just one segment for elements of Un and just one for
multiples of 3 that are not multiples of 9 or 3p.
Within the range n¡ 300 there are Ave such values of n, namely 45, 99, 153, 207

and 261. For each of these values, either of the following two schemes can be used to
produce (n ⊃ 9 ⊃ 3) matryoshka power-sequence terraces with n= 32p. Each scheme
gives terraces whose middle Ave segments constitute p times a Z9 terrace, and whose
middle three segments constitute 3p times a Z3 terrace.
To avoid cumbersome notation, we now use I to denote the identity element of the

group of elements from Zn that are multiples of p but not of 3p; we again use x for
a strong primitive �-root of n; we use y for a unit having order p − 1 (mod 3p); we
use w for a multiple of 9, and v for a multiple of 3 that is not a multiple of 9:

Scheme 6.1.
z(p−3)=2w z(p−5)=2w : : : zw w | yp−2v yp−3v : : : yv v |
x x2 : : : xe(n)−1 1 | I 2−1I 2−2I | 3p | 0 | negatives

with m1 =±f3, m2 =±f1, m3 =±f2, m4 =±f4.

Scheme 6.2.
yp−2v yp−3v : : : yv v | z(p−3)=2w z(p−5)=2w : : : zw w |
x x2 : : : xe(n)−1 1 | I 2−1I 2−2I | 3p | 0 | negatives

with m1 =±f1, m2 =±f3, m3 =±f2, m4 =±f4.

For the values n=99, 153, 207 and 261, and indeed more generally, these schemes
can be used with y= x, but this is not possible for n= 45. Accordingly, we Arst give
examples for n=45; then we prove the theorems that establish the circumstances under
which the schemes, with y = x, produce terraces of the desired form.
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Example 6.1. A (45 ⊃ 9 ⊃ 3) matryoshka terrace obtained from Scheme 6.1 by taking
(x; v; y; w; z) = (2; 3; 8; 9; 3):

27 9 | 6 12 24 3 | 2 4 8 16 32 19 38 31 17 34 23 1 |
10 5 25 | 15 | 0 | negatives:

Example 6.2. A (45 ⊃ 9 ⊃ 3) matryoshka terrace obtained from Scheme 6.2 by taking
(x; v; y; w; z) = (32; 24; 2; 18; 2):

12 6 3 24 | 36 18 | 32 34 8 31 2 19 23 16 17 4 38 1 |
10 5 25 | 15 | 0 | negatives:

For n=45, 99, 153, 207 and 261, parameter sets giving solutions with y �= x include
the following:

n (x; v; y; w; z)

Scheme 6.1 Scheme 6.2

45 (2; 3; 8; 9; 3) (32; 24 or 39; 2; 18; 2)
99 (38; 75; 20; 81; 3) (86; 21 or 87; 5; 72; 4)
153 (29; 57; 5; 27; 3) (5; 60 or 111; 41; 9; 6)
207 (2; 3; 35; 9; 4) (32; 66 or 204; 2; 63; 14)
261 (2; 3; 44; 9; 27) (14; 78 or 165; 2; 27; 2)

Theorem 6.1. Let n = 9p where p is a prime satisfying p ≡ 5 (mod 6). Choose an
element x from Un that satis:es x ≡ 2 (mod 9), x �= 2, and is a primitive root of p
if p ≡ 5 (mod 12) or has order (p − 1)=2 (modp) if p ≡ 11 (mod 12). Then x is a
strong primitive �-root of n. Let v=2x−1 and w=vx−1(2−x). If a value z satisfying
z ≡ w(w ± 1)−1 (modp) is a primitive root of p and if I denotes the multiple of
p that is congruent to 1 (mod 9), then Scheme 6.1, with y = x, yields a narcissistic
half-and-half matryoshka power-sequence terrace for Zn.

Proof. We note Arst that v ≡ 3 (mod 9) and w ≡ 0 (mod 9), and that the conditions on
x ensure that x is a strong primitive �-root of 9p.
We have m1 = z(p−3)=2w(z − 1), m2 = vyp−2(p− 1), m3 = x− 1, m4 = 2−2I − 2−3I ,

f1=yp−2v−w, f2=v−x, f3=I−1, f4=3p−2−2I . As v=2x−1 we have m3=−f2.
For m2 =f1 we need w ≡ 2vyp−2 − vyp−1 (mod 9p). Modulo p, this is equivalent to
yw = 2v− vy (modp), i.e. w = vy−1(2− y), which is satisAed if y = x. Modulo 9, it
is equivalent to 2v ≡ vy (mod 9), i.e. y ≡ 2 (mod 3), which too is satisAed if y = x.

For m1=±f3, we need z(p−3)=2w(z−1) ≡ ±(I−1) (mod 9p). This is true modulo 9
as 9|w and I ≡ 1 (mod 9). So we need z(p−3)=2w(z− 1) ≡ ±1 (modp), i.e. w(z− 1) ≡
±z (modp).
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For m4 =f4 we need 2−2I − 2−3I ≡ 3p− 2−2I (mod 9p), i.e. 3I ≡ 24p (mod 9p),
i.e. I ≡ 8p (mod 3p). As p|I this is true modulo p; as I ≡ 1 (mod 3) we need
8p ≡ 1 (mod 3), i.e. p ≡ 2 (mod 3), which is true.

As ord9(2−1)=6, no member of the fourth segment equals another or its inverse.

Theorem 6.2. Let n be of the form n = 9p where p is a prime satisfying p ≡
5 (mod 6). For n, choose a strong primitive �-root x satisfying x ≡ 5 (mod 9) and such
that x is a primitive root of p if p ≡ 5 (mod 12) and has order (p− 1)=2 (modp) if
p ≡ 11 (mod 12). Let w = 2x − 1. If the element z given by z = w(w ± 1)−1 (modp)
is a primitive root of p, choose v ≡ −xz−1 (modp) where v is a multiple of 3 but
not of 9. Then Scheme 6.2, with y= x, yields a narcissistic half-and-half matryoshka
power-sequence terrace for Zn.

Proof. The condition m3=±f2 is satisAed if w=2x−1. As x ≡ 5 (mod 9), the element
w is a multiple of 9. The condition m2 =±f3 requires w(z − 1) ≡ ±z (modp), as in
Theorem 6.1. The condition m1 =±f1 will be satisAed if

yp−2v(y − 1) ≡ z(p−3)=2w − v (mod 9p)

i:e: z(p−3)=2w ≡ v{1 + yp−2(y − 1)} (mod 9p):

Modulo 9 this requires yp−2(y − 1) ≡ 2 (mod 3), so we need y ≡ 2 (mod 3), and this
will be satisAed if we choose y = x, as x ≡ 5 (mod 9). We then need

−w ≡ vz(2− yp−2) (modp)

i:e: −wy ≡ 2vzy − vz (modp);

i:e: wy ≡ −vz(2y − 1) (modp);

i:e: wx ≡ −vzw (modp);

i:e: v ≡ −xz−1 (modp):

Note on alternative solutions: As Theorem 6.2 requires v to be a multiple of 3 but
not of 9, the above congruence yields two values of v (mod 9p). For p ≡ 11 (mod 12),
changing from one value to the other is equivalent to interchanging the two halves
of the Arst segment of the terrace; for p ≡ 5 (mod 12), changing the value of v is
equivalent to negating the Arst segment of the terrace and then interchanging its two
halves.
Note on existence: We now show that it follows from [11, p. 47] that the construc-

tion in Scheme 6.2 works for all suLciently large p. We chose x as a primitive root
of p if p ≡ 1 (mod 4) and as the negative of a primitive root of p if p ≡ 3 (mod 4).
The construction works provided that z satisfying z ≡ w(w ± 1)−1 is a primitive root
of p. Assume that there are primitive roots � and � of p with � = 2� − 2. If p ≡
1 (mod 4) choose x=−�−1 and z=�. Then w(w+1)−1 = (2x−1)(2x)−1 =1+�2−1 =
(2 + �)2−1 = � = z. If p ≡ 3 (mod 4), make the same choice of x and z, with x now
the negative of a primitive root.
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For n = 99, 153, 207 and 261, parameter sets giving solutions with y = x are as
follows:

n (x; v; y; w; z)

Theorem 6.1 Theorem 6.2

99 (20; 39; 20; 54; 6) (5; 3 or 69; 5; 9; 2)
153 (29; 57; 29; 63; 14) (5; 87 or 138; 5; 9; 6)
207 (29; 57; 29; 54; 11) (32; 24 or 93; 32; 63; 14)
261 (11; 21; 11; 54; 11) (14; 51 or 138; 14; 27; 2)

7. Terraces with n = 32p and �(n) = 6

The previous Section considered terraces with n = 9p where the prime p satisAes
p ≡ 5 (mod 6). We now turn to n=9p with the prime p satisfying p ≡ 1 (mod 6). We
now have �(n) = 6(p− 1) and e(n) =p− 1, so that �(n) = 6; also �(3p) = 2(p− 1)
and e(3p)=p−1, so that �(3p)=2. Thus a narcissistic half-and-half power-sequence
terrace for Zn now needs, on each side of the central zero, at least three segments for
elements of Un, but may need no more than one segment for multiples of 3 that are
not multiples of 9 or 3p.
Within the range n¡ 300, we are now dealing with n= 63, 117, 171 and 279.
We have found constructions producing (n ⊃ 9 ⊃ 3) matryoshka power-sequence

terraces based on a strong primitive �-root x satisfying x ≡ 2 (mod 3). With I denoting
the identity element of the group of multiples of p that are not multiples of 3p, the
constructions are of the following forms, where w is a multiple of 9 and v is a multiple
of 3 but not of 9:

Scheme 7.1.

k2x1 k2x0 k2xp−2 k2xp−3 : : : k2x2 | yp−2v yp−3v : : : yv v |
z(p−3)=2w z(p−5)=2w : : : z0w | kx1 kx0 kxp−2 kxp−3 : : : kx2 |
x1 x2 : : : xp−2 1 | I 2−1I 2−2I | 6p | 0 | negatives

with m1 =±f4, m2 =±f2, m3 =±f5, m4 =±f3, m5 =±f1.

Example 7.1. A (63 ⊃ 9 ⊃ 3) matryoshka terrace obtained using Scheme 7.1 with
(n; p) = (63; 7), (x; k) = (11; 19), (v; w) = (24; 9), y = z = 11−1 (mod 21):

2 46 50 16 53 22 | 12 6 3 33 48 24 |
36 18 9 | 20 19 59 34 26 31 |

11 58 8 25 23 1 | 28 14 7 | 42 | 0 | negatives:

In this example, the Arst segment may be reversed.
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Scheme 7.2.

k2x1 k2x0 k2xp−2 k2xp−3 : : : k2x2 | z(p−3)=2w z(p−5)=2w : : : z0w |
yp−2v yp−3v : : : yv v | kx1 kx0 kxp−2 kxp−3 : : : kx2 |
x1 x2 : : : xp−2 1 | I 2−1I 2−2I | 6p | 0 | negatives

with m1 =±f4, m2 =±f5, m3 =±f2, m4 =±f3, m5 =±f1.

Example 7.2. A (63 ⊃ 9 ⊃ 3) matryoshka terrace obtained using Scheme 7.2 with
(n; p) = (63; 7), (x; k) = (53; 40), (v; w) = (51; 27), y = z = 11 (mod 21):

2 25 29 16 11 43 | 54 45 27 |
39 15 30 60 57 51 | 41 40 59 13 5 31 |

53 37 8 46 44 1 | 28 14 7 | 42 | 0 | negatives:

In this example as in Example 7.1, the Arst segment may be reversed. Also, the 2nd
and 3rd segments of Example 7.1 are the 13th and 14th segments of Example 7.2, and
vice versa.

Parameter sets that yield terraces available from Schemes 7.1 and 7.2 include the
following, where a dagger indicates a primitive �-root that is a primitive root of 3 but
is not a primitive root of either p or 9, where asterisks have their usual meaning, and
where parameter sets marked with a hash # yield terraces whose Arst segments are
reversible:

(n; p) Scheme (x; k; v; w; y; z)

k = (x − 1)−1 k �= (x − 1)−1

(63; 7) 7.1 (11; 19; 24; 9; 2∗; 2∗)# (11; 61; 3; 9; 2∗; 2∗)
7.2 (53†; 40; 51; 27; 11∗; 11∗)# (−;−;−;−;−;−)

(117; 13) 7.1 (−;−;−;−;−;−) (−;−;−;−;−;−)
7.2 (89; 4; 33; 90; 11∗; 7) (32; 40; 93; 9; 11∗; 6)

(171; 19) 7.1 (137; 127; 15; 162; 5∗; 13) (47; 88; 102; 99; 5∗; 16∗)
7.2 (161†; 31; 42; 144; 17∗; 3) (5; 58; 156; 18; 47∗; 10)

(279; 31) 7.1 (227; 100; 60; 153; 80∗; 11) (38; 187; 147; 27; 20∗; 22)
7.2 (71†; 4; 213; 108; 50∗; 21) (71†; 94; 123; 198; 59∗; 18∗)

8. Other terraces with n = pq2 and �(n) = 2

If p and q are distinct odd primes satisfying n = pq2, the only values of n with
n=pq2 within the range n¡ 300 that have not so far been considered in this paper are
75, 147, 175 and 245, i.e. 3:52, 3:72, 7:52 and 5:72, all of which have �(n)=�(pq)=2.
A single general construction is available that produces (n ⊃ pq ⊃ p) matryoshka
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power-sequence terraces for each of these values. A further general construction pro-
duces (n ⊃ q2 ⊃ q) matryoshka power-sequence terraces for values that include
n = 175; 245. The terraces obtained from the respective constructions have units from
Zn in, respectively, the Arst and third segments.

Construction 8.1. We start with a Zpq terrace, as in Section 2 or Section 3 above, and
multiply each entry by q. Let the Arst entry in the resulting sequence be apq. With
n= pq2, we aim for a Zn terrace of the form

x x2 : : : 1 | vy(q(q−1)=2)−1 vy(q(q−1)=2)−2 : : : vy v |
apq : : : : : : | 0 | negatives;

where p divides v but q does not divide v. Putting v = rp we aim to satisfy the
requirements m1 = −f1 and m2 = −f2. The Arst of these reduces to (2y − 1)r ≡
aqy (mod q2), so we require 2y = 1 +  q and  r ≡ ay (mod q). Choosing a suitable
y so that 2y ≡ 1 (mod q), we solve  r ≡ ay (mod q) for r and hence obtain v. Then,
provided that x = z − vy(q(q−1)=2)−1 is a strong primitive �-root of pq2, we satisfy
m2 =−f2 too.

Example 8.1. A (75 ⊃ 15 ⊃ 3) matryoshka terrace from Construction 8.1:

381 382 : : : 3819 380 | 39:33 38:33 : : : 30:33 |
21:15 20:15 | 21:5 22:5 23:5 20:5 | 20:50 | 0 | negatives

= 38 19 47 : : : 4 2 1 | 39 63 21 57 69 48 66 72 24 33 |
30 15 | 10 20 40 5 | 50 | 0 | negatives:

The second segment has 30:33 =−310:33.

Example 8.2. A (147 ⊃ 21 ⊃ 3) matryoshka terrace from Construction 8.1:

741 742 : : : 7441 740 | 8120:48 8119:48 : : : 810:48 |
52:42 51:42 50:42 | 21:14 22:14 : : : 25:14 20:14 |

20:98 | 0 | negatives:

The second segment has 810:48 = +8121:48.

Example 8.3. A (175 ⊃ 35 ⊃ 7) matryoshka terrace from Construction 8.1:

581 582 : : : 5859 580 | 89:98 88:98 : : : 80:98 |
21:70 20:70 | 321:115 322:115 : : : 3211:115 320:115 |

20:150 21:150 22:150 | 0 | negatives:

The second segment has 80:98 =−810:98.
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Example 8.4. A (245 ⊃ 35 ⊃ 5) matryoshka terrace from Construction 8.1:

1371 1372 : : : 13783 1370 | 3920:125 3919:125 : : : 390:125 |
22:35 21:35 20:35 | 31:7 32:7 : : : 311:7 30:7 |

20:147 21:147 | 0 | negatives:

The second segment has 390:125 = +3921:125.

Construction 8.2. We start with a Zq2 terrace as in [3, Section 2], which we multiply
throughout by a suitable multiple of p so that the Arst entry is ap where ap ≡
1 (mod q2). We then aim for a terrace of the form

z(p−3)=2q2 z(p−5)=2q2 : : : zq2 q2 |

(2x − 1)y((p−1)(q−1)=2)−1 (2x − 1)y((p−1)(q−1)=2)−2 : : : (2x − 1)y (2x − 1) |

x x2 : : : 1 | ap : : : : : : | 0 | negatives;

where 2x ≡ 1 (mod q) and where we have to satisfy m1 = ±f3 and m2 = ±f1. (The
condition m3 =±f2 is already satisAed.)

Example 8.5. Two (175 ⊃ 25 ⊃ 5) matryoshka terraces from Construction 8.2:

(a) Constructed from a Z25 terrace from Theorem 2.2 of [3]:

122:25 121:25 120:25 | 1211:5 1210:5 : : : 120:5 |
31 32 : : : 359 30 | 30:126 3−1:126 : : : 3−9:126 |

20:70 21:70 | 0 | negatives:

(b) Constructed from a Z25 terrace from Theorem 2.4 of [3]:

122:25 121:25 120:25 | 1211:5 1210:5 : : : 120:5 |
31 32 : : : 359 30 | 120:126 121:126 : : : 129:126 |

20:105 21:105 | 0 | negatives:

Example 8.6. A (245 ⊃ 49 ⊃ 7) matryoshka terrace from Construction 8.2; it is
constructed from the Z49 terrace of Example 2.7 of [3]:

31:49 30:49 | 2311:28 2310:28 : : : 230:28 |
1371 1372 : : : 13783 1370 | 4620:95 4619:95 : : : 460:95 |
462:42:95 461:42:95 460:42:95 | 0 | negatives:

9. Easily constructed terraces for n = 275

If n satisAes n=pqt where p and q are distinct odd primes and where t is a positive
integer, the values of �(n) that occur in the range n¡ 300 are 2, 4, 6 and 10. This last
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occurs just once in the range, namely for n=pq2 = 11:52 = 275, for which �(pq) = 2.
Six (275 ⊃ 25 ⊃ 5) matryoshka power-sequence terraces are easily constructed for this
value of n, which has 96 primitive �-roots. They use the strong primitive �-root 2, and
the method of construction of the sequence of segments of units is strongly reminiscent
of the construction in Theorem 5.1 of [3]. With I written for the identity element 176
of the group of multiples of 11 that are not multiples of 55, one of the terraces is as
follows:

24:200 23:200 : : : 20:200 | 2619:210 2618:210 : : : 260:210 |
3−4:219 3−4:218 : : : 3−4:20 | 3−3:219 3−3:218 : : : 3−3:20 |
3−2:219 3−2:218 : : : 3−2:20 | 3−1:219 3−1:218 : : : 3−1:20 |

219 218 : : : 20 | I 3−1I 3−2I : : : 3−9I |
20:220 21:220 | 0 | negatives

= 175 225 250 125 200 | 205 115 : : : 195 210 |
73 174 : : : 17 146 | 219 247 : : : 51 163 |
107 191 : : : 153 214 | 46 23 : : : 184 92 |
138 69 : : : 2 1 | 176 242 : : : 66 22 |

220 165 | 0 | negatives:

Another possibility is the same as this save that the powers of 2 in the Arst segment
are replaced by the corresponding powers of 8. A third possibility is also the same
save that it has the entries 3i :125 (i = 4; 3; : : : ; 0) in the Arst segment and 7j:210
(j=19; 18; : : : ; 0) in the second. These three possibilities are all constructed from a Z25

terrace from Theorem 2.2 of [3]. A further three possibilities are obtained by using
instead Theorem 2.4 of [3], so that segments 8 and 9 of the Z275 terrace become

I 121I 122I : : : 129I | 20:55 21:55

i.e.

176 187 44 253 11 132 209 33 121 77 | 55 110:

The value n=275 is from a series of values n=pq2 = (4'− 1)(2'− 1)2 for which
4'−1 and 2'−1 are primes so that �(n)=2(2'−1) and �(pq)=2. (With 4'−1 and
2'− 1 both prime, 2'− 1 is a Sophie Germain prime [5, p. 184] and 4'− 1 is a safe
prime [16, p. 249]. Whether there are inAnitely many Sophie Germain primes is not
known [5, p. 184].) After n = 275, the next value of n such that 2' − 1 ≡ 1 (mod 4)
is n = 59:292, each of whose prime factors does indeed have 2 as a primitive root.
However, this value of n is so large that any attempt to generalise our results for
n= 275 would be well beyond the remit of this paper.
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10. Terraces with n = 33p and �(n) = 2

Amongst the values of n with n= pq3 where p and q are distinct odd primes, the
range n¡ 300 contains just two values with �(n)=�(pq2)=�(pq)=2, namely n=135
and 297, i.e. 33:5 and 33:11. Matryoshka power-sequence terraces for Z135 and Z297 are
easily obtained by extending ideas already presented in this paper, so we now present
them without further ado; they use the strong primitive �-root 2 of n, and are based
on a Z27 terrace that is obtainable from Theorem 2.2 of [3]:

Example 10.1. A (135 ⊃ 27 ⊃ 9 ⊃ 3) matryoshka power-sequence terrace for Z135,
where element 55 is the identity element of the group of multiples of 5 that are not
multiples of 15:

21:27 20:27 | 2−3:9 2−2:9 2−1:9 20:9 | 2−11:3 2−10:3 : : : 20:3 |
21 22 : : : 235 20 | 20:55 2−1:55 : : : 2−8:55 |
20:105 2−1:105 2−2:105 | 90 | 0 | negatives:

Example 10.2. A (297 ⊃ 27 ⊃ 9 ⊃ 3) matryoshka power-sequence terrace for Z297,
where the element 55 is the identity element of the group of multiples of 11 that are
not multiples of 33:

74:162 73:162 : : : 70:162 | 5−9:117 5−8:117 : : : 50:117 |
529:3 528:3 : : : 50:3 |

21 22 : : : 289 20 | 20:55 2−1:55 : : : 2−8:55 |
20:132 2−1:132 2−2:132 | 198 | 0 | negatives:

11. Terraces with n = 33p and �(n)=�(32p) = 6

Amongst the values of n satisfying n= pqt where p and q are distinct odd primes
and t is a positive integer, there remains just one value to be considered from the
range n¡ 300. This value is n = 33:7 = 189, which has �(n) = 108, e(n) = 18 and
�(n) = �(32:7) = 6, and has 54 primitive �-roots, of which only 12 are strong. A
narcissisitic half-and-half power-sequence terrace for Zn for this value of n, and for
other values of n satisfying n=33p with �(n)=�(32p)=6 and �(3p)=2, must contain
at least 23 segments. No such terrace has been found.
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