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INTRODUCTION

Let DEC"” be a bounded pseudoconvex domain with C*-smooth
boundary bD and let ¥ be an analytic subvariety of a neighborhood of D.
Let &, denote the sheaf of ideals of V. From the general theory of Oka-
Cartan-Serre it follows that if f,,...f, € I'(D,&,) generate £, at every
point z € D, then they generate I'(D, £,,) over Z(D) (=I'(D, ?)).

Let A be a subalgebra (or more generally a vector subspace) of /(D)
containing f},...,f. It is a natural question to ask whether f],...,f, generate
I'(D,€,)M A over A. There are several results in this direction in the special
case V is a point and A4 is the algebra of holomorphic functions satisfying
some regularity condition at the boundary {3, 6, 7, 10, 14].

The situation becomes much more complicated when V has positive
dimension, as the following elementary example shows: the holomorphic
function f(z,,z,) = z,(1 —z,)~"* is continuous up to the boundary on the
unit ball B in C? but its factor in z, is not even bounded (and it can be easily
proved that the ideal of the complex line z, = 0 is not finitely generated over
A°(B), the algebra 2(B) N C°(B)).

The aim of the present paper is to prove that similar phenomena disappear
in a high regularity situation, i.e., for the algebra 4*(D)= (D) C*(D).
Namely, we prove that if D is strictly pseudoconvex, bD and V are
“regularly separated” (see Section 1) and V is smooth near bD then f...., f;
generate I°(V)=TI(D, £,) N C®(D) over A®(D). Some of these results were
announced in [5].
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1. THE LocAL AND SEMI-LoCAL CASES

1. From now on D will denote a bounded domain in C" with C*-smooth
boundary bD, D’ a neighborhood of D and V' <D’ a closed complex
analytic subset, such that Sing V' NbD =@.

Let £, be the ideal of germs of holomorphic functions vanishing on V.

A complete defining system for V' is a finite set of holomorphic functions
on D', f,,....f, such that for every z € D the germs f, _,.... f, . generate £,.. .
It is well known that such a system always exists if D’ is a Stein
neighborhood of D.

Let ¥ = V' N D+ @. For every relative open subset U of D we set

ePU) = /€ AU):fE CUU (BD N U))},
CEUNTV)={fE€CUNV)S=]lyny[ECU GD N U));

U @(U) and UN V- #$(UN V) define two sheaves on D and vV
respectively, °%> and i such that

(a{ﬁm)fn =0 and (mVOO)\V =0

Let £ < % be the ideal of germs vanishing on V. In particular we
have

APD)=T(D, 7", A*WV)=IF, ), I[°WV)=TFV.F&).

We say that V' and bD are regularly separated at p € bD NV’ if there
exist NE N, ¢ > 0 and a neighborhood U of p such that

dist(z, UNBD N V")¥ L Cdist(z, UN V") (%)

for every z € UM bD.

We say V' and bD are regularly separated if in the previous definition U
can be chosen in such a way as to be a neighborhood of bD.

Note that if bD is real analytic (%) is the well known Lojasiewicz’s
inequality [12]. It is worth noting also that (x) does not follow from strict
pseudoconvexity of D.

Suppose now V' is smooth near bD and let d be its complex dimension.
We say that V’ is transversal to bD at z € bD if V' M bD is smooth of real
dimension 2d — 1 and

TS(V' N bD) =TSV )N TH(bD)

(where TS(-) is the complex tangent space at z).
It is a very simple matter to prove that if V' and bD are transversal at z
then they are regularly separated at z.



164 DE BARTOLOMEIS AND TOMASSINI

2. We shall consider first the case where V' is a linear subspace: our first
statement is the following:

PROPOSITION 1. Let D be pseudoconvex and let V' ={z, ==
z,=0}. Assume V=V'N\D+@ and V' and bD are regularly separated.
Then for every f€ A®(D) such that f|, =0 there exist A, |, A, €EA®(D)
such that

J=k+1

We prove first the following result in codimension 1:

LEMMA 2. Let D < C" be a bounded domain with C*-smooth boundary
and let V' be the hyperplane z,,=0. Assume V=V'ND+*@ and V' and
bD are regularly separated. Then:

(i) every f€ A®(D) such that f|,=0 can be written as f=gz,,
where g € A°(D),

(ii) if D is pseudoconvex the restriction homomorphism A*(D)-
A® (V) is onto.

Proof. We shall divide the proof into several steps.

(a) If fEC®(D) satisfies f|,=0 then f=gz,+hz,, where

g, h € C™(D).
Using the fact that ¥’ and bD are regularly separated, via Whitney’s
extension theorem we can find a ball B containing D and F € C*(B) such
that Fly~, =0, Fy=/. Fix z € B and set ¢(t) = F(z,,..., z,,_,, tz,). We have

' dp 1 OF
F(Zypmz,)=0(1) :fo =] o Eien 2y 2,) de
_ N OF
+Z,,J; 52_—'1(21,..., z,,,l,tz,,)dt.

(b) Iff€C®(D)is fiflat on V (i.e., (8"f10z7)|, =0V m > 0) then for
any k € N there exist g, # € C®(D) such that f= gz, + hz¥.
By induction on k. Assume it is true for k; we have

&7 _is
ozt ozk

57 .
o7, i

k
Z, 4k R Y
i J

(k ) k! &'h
Jj=1

from the ri-flatness it follows that A|, = 0 and so by step (a) h=1z,u+ 2,0,
where u, v € A®(D) and f=z,(g + z%u) + 28+ 0.

(¢) Iffe€ C™(D)is aflat on V then z;'f€ C®(D).



IDEALS IN A®(D) 165

For any k € N we have z, 'f=g + 7%z 'h € CX(D). Now if f€ A (D)
and f|,-= 0 then f is fi-flat on ¥ and so setting g =fz, ' we have f=gz
where g € A¥(D): this proves (i).

Now let m: C"— V' be the natural projection; for every f€ A™(V) let
F:V'5C be a C*-smooth extension of f and let F=foz|;. We have
Fe C“O(ﬁ) and gﬁzzyzlb_,g'z‘j, where b,....,b, are a-flat on V. Then

=z, 'dF is C*-smooth on D so that we can find u € C*(D) such that
du=a [11]. Then F=F—z,u belongs to A°(D) and it is the required
extension of f (cf. also [8]).

We are now in a position to prove Proposition 1.

n*

Proof of Proposition 1. Let V, be defined by 2z, ;. ,= - =2,=0,
Il<p<n—k—1,andset D,=DNV].

We may assume (possibly after a linear transformation of coordinates)
that ¥, M bD is C*-smooth and V, and V,,, M bD are regularly separated.

Let f€ A*(D) be such that f|, =0. In view of Lemma 2 we have f|, =
Zy1 8k 1> Where g, is the restriction to D, of a function in 4*(D,).

It follows that f—z,, ,g,,, vanishes on D, so that on D, we have
S = 8k 1Zk41 =8k 2%k 2s BAC,

With the same notations, as a consequence of Proposition 1, we get the
following:

COROLLARY 3. Assume D is pseudoconvex, V' and bD are regularly
separated and Sing V' N bD = @. Let f,,..., [, be a complete defining system
Jor V'. Then the sheaf homomorphisms

(i) (@5 > & (given by (A, sy 1) XKL A, 15),
(i) 7§ — @) (given by “restriction to V) are onto.

2. THE GENERAL CASE

1. In view of Corollary 3 the problem we are dealing with is locally
solvable.

In order to get the global result, in the case V' is a global complete inter-
section (i.e., k=n-dim¢ V') cohomological techniques can be employed
proving that the sheaf # of Z§°'-relations between f),..., /, actually satisfies
H'(D, #)=0 [1].

In the general case here we use a construction which reduces the problem
to the linear case, via an extension theorem.

THEOREM 4. Assume D is strongly pseudoconvex and let Vi,V be
analytic subvarieties of D' such that if we set Vi =V MV} we have:

607/46/2-2
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(i) V; and bD are regularly separated, j =1, 2, 3.

Assume also that V| and V', intersect transversally along bD and let Z' =
Viuvs, V,=ViND, j=1,2,3. Then the restriction homomorphism
A®(D)—> A®(Z) is onto, where Z=Z' N D.

Proof. (1) First of all we prove that the restriction homomorphism
P - 7 is onto.

For this let p€bD and U be a small neighborhood of p. Let
fEA®(UNZ): in view of Corollary 3(ii) we may assume f|, ~,=0.
Assume for the moment we may choose complex coordinates z,,...,z, in
such a way that

VinU={zeU:z,=--=2,=0},
VinU={zeU:z,=:-- m

Il
I
N
Il
L
[~}
AN
2
+

Let f; =f|y,~y; from Corollary 3(i) we get

fi= N hz,  REAPV,NU), k+1<j<m,

j=k+1

and in view of part (ii) we can extend h; as H;E A (UN D). If we set F, =
3" ws1Hyz; we have F, € A®(UN D) and F |, ~p, =0.

In the same way we can construct F, € A°(UM D) extending f, and
vanishing on V', N U. The function F=F, + F, satisfies F|,~,=/f. This
shows that the sequence of sheaves

(00) (o0) (o0)
Oﬂg-z _;é,ﬂﬁ —»(‘?Z -0

is exact and so in order to conclude the proof we have to show that the
group H'(D, £ ) is actually zero. This amounts to proving the following
claim: let F be a (0, 1)-form, C®-smooth up to bD, J-closed and such that
F|, = 0; then there exists € C*(D) such that u = F and u|, = 0.

(2) The proof of this claim is based on a construction on the theme of
the “bumps lemma” of Andreotti and Grauert (2, p. 237] (cf. also [4] and
(9]

2. Consider a finite covering {B;}, 1 <j< g, of bD where B;= B({;,p) is
the open ball of radius p centered at {; € bD, in such a way that {B({;, p/2)},
1</j<g, is also a covering and Z N B, is holomorphically equivalent to a
plane crossing, 1 <j<g. In view of the bumps lemma we can find an
increasing family of pseudoconvex domains {D;}, 0 <j < g, with C*-smooth
boundary, such that Dy=D, D; ,U{{}cD;cD; ,\V B({;,p/2) and
DcD,eD'. )

Let a, € C®(D) be such that da, = F; in particular on Z\Sing Z we have
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da, =0 and so in view of a result of Malgrange |13] a,|, is holomorphic.
From part (1) we deduce that there exists g, €A (DM B,) such that
g1lzmg, = @5 it follows that u, =a, — g, € C°(DNB,), du,=Fon DN B,
and u, —0 on Z'MNB,. Let n, € CF(B,) be such that #, =0 on B((,, /2)
and set F, =3|(1 — ’71) u,]. We have the following: F, is C*-smooth on D,
oF, =0 and F,=0 on Z'ND,. Moreover on D we have F,=F—f,.
where f, = ,u, € C*(D) and B.lz = 0. By iteration we get a (0, 1)-form F,
C*-smooth on D such that 8F =0, F,=0o0n Z'ND, and on D, F,=
F— 3,6’q, where 8, E C*(D) and ,b’ |,=0.

Now let y € C®(D,) be such that dy = F_; then y|,. '~p, is holomorphic.
Let G be holomorphic on D, and such that G=y on Z’ﬂD and set
u=y—G+pf, Wehave u € C“C(D) ou = F and u vanishes on Z

Thus in order to establish Theorem 4 we only have to prove the following:

LemMma 5. Let V|, V, be germs of analytic submanifolds at p € C" such
that
(i) V,NV, is smooth,
(i) TSV, NV)=TYV)NTHV,).

Then we can choose complex coordinates z,.,..., z, in a neighborhood U of p
in such a way that

ViNU={z€C"z,=-.- =z, =0},
V,nU={z€eC"z;=-=2,=0,s<k +1}.
Proof. We shall consider first the case where dim(TS(V,) + T5(V,)) = n.
Let ¥, be defined (in a neighborhood U of p) by z,=--- =2z, _,=0 and
V, by fi=-=f,_«=0; it follows that V', "V, has dimension d + k —n

and Y A ANy Nz, AN+ Ao Nz, _Ap)#0. Then there is a
system of local (holomorphic) coordinates (,,...,{, such that {;=z; for
1 <J< k and Ck+l =fl""’ Cn =fn—k

In order to reduce the general case to the previous one we only have to
check that under our assumptions TC(V )+ TC(VZ) is the Zariski tangent
space TC(V UV,) of VUV, at p. We have TC(V)+ TC(VZ)C
TC(V U V,): in order to prove the opposite inclusion we must prove the
following: given a C-linear map L: C" - C vanishing on TC(V )+ TC(V )
there is a local holomorphic function g such that g=0 on V,\UV, and

og(p)=L.
With the above notations we may suppose that on U

||

Vi={z€U:z;=0,1j<k},
Vi={ze U:f(z)= - =f,(2)=0,s <k + 1}
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and
Vinvy={zeUiz,==z,=f,,(2) = =f,(z) =0},
where

YN Nof(P)#0, 92y A NOZENGfi N NEfu(p) # 0

and dimc(TS(V,) + TS(Vy) =n+s—k— L.
In particular

VinV,={z€V, fi(z)="=f,(2)=0}

Let ¢ be a local holomorphic function such that 9¢(p)=L and g|,, =0;
set &1 =&y,
Then g, =37, ., a;f;, where a; € ®(V}), and

8y, 8:(p)=8(p)| To(V\)=LIT5(V)) =0

0y, being the d-operator for V', and so a;(p) =0, k + 1 <j < m. Extend q; by
A; (holomorphically), k +1<j<m, and set G=}7_,,  4;f;; we have
Gl,, =8, Gl,,=0, dG(p)=0. The function we are looking for is now
g=£6—-0G.

3. We are now in a position to prove our main theorem.

Let D« C” be a bounded domain with C*-smooth boundary 5D and let
V' be a complex analytic subvariety of an open neighborhood D’ of D such
that V=V'N D+ . Let f,,....f, be a complete defining system for V.

THEOREM 6. Assume

(i) D is strongly pseudoconvex,
(ii)) Sing V' NbD =g and V', bD are regularly separated.

Then every f € A® (D) vanishing on V can be written as
k
f= L hif}a
j=1

where h ,.., h, € A® (D).

Proof. Consider the holomorphic map F:D’— C* given by F(z)=
(f1(2)ssfi(2)) and let I' be its graph. Consider in D’ X C* a bounded
domain B with C*-smooth boundary, strongly pseudoconvex and such that
BN (D' X {0})=D and I intersects bB transversally. From the fact
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{f1sJi} 1s a complete defining system for ¥’ it follows that the jacobian
matrix of F has rank n-dim¢ V' near bD and in particular I" intersects D’
transversally along bB. Let Z= (D' Ul N B and let f€ A*(D) be such
that f=0 on V.

Let f be defined by: f=f on D and f=0 on I' M B; because of the
transversality, f is holomorphic on Z and f'€ A®(Z).

By Theorem 4 applied to Z we can find G € A*(B) such that G|, =/ In
particular G=0 on ' B. Now I\ B is holomorphically equivalent to a
plane section and thus, using Proposition 1 we can find #,,..., i, € 4°(B)
such that G=Y%_, A(f;—w,) (... w, complex coordinates in C¥). By
restriction to D we get /=3 %_, h,f;, where hj:ﬁ}|5. This concludes the
proof of our main theorem.

COROLLARY 7. In the above hypothesis assume f€ A (V) vanishes on
V of order g > 0. Then f can be written as

f= Y h S f

Ji+ e tik=q

Where hjljkEAw(D)’jl + ve +jk:q'
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