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Let DE C” be a bounded pseudoconvex domain with P-smooth 
boundary bD and let V be an analytic subvariety of a neighborhood of 0. 
Let KV denote the sheaf of ideals of V. From the general theory of Oka- 
Cartan-Serre it follows that if f, ,...,fk E r(D, &) generate KVy.; at every 
point z E D, then they generate T(D, &) over 4(D) (=T(D, @)). 

Let A be a subalgebra (or more generally a vector subspace) of P’(D) 
containing f, ,..., fk. It is a natural question to ask whether f, ,...,fJ generate 
T(D, &) nA over A. There are several results in this direction in the special 
case V is a point and A is the algebra of holomorphic functions satisfying 
some regularity condition at the boundary [3, 6, 7, 10, 141. 

The situation becomes much more complicated when V has positive 
dimension, as the following elementary example shows: the holomorphic 
function f (2,) z2) = z2( 1 - z,)- 1’4 is continuous up to the boundary on the 
unit ball B in Cz but its factor in z2 is not even bounded (and it can be easily 
proved that the ideal of the complex line z2 = 0 is not finitely generated over 
A O(B), the algebra e(B) n C’(g)). 

The aim of the present paper is to prove that similar phenomena disappear 
in a high regularity situation, i.e., for the algebra A”(D) = e(D) n Cm(~). 
Namely, we prove that if D is strictly pseudoconvex, bD and V are 
“regularly separated” (see Section 1) and V is smooth near bD then f, ,..., fk 
generate P( I’) = I’(D, &) n P(D) over A “O(D). Some of these results were 
announced in [5]. 
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1. THE LOCAL AND SEMI-LOCAL CASES 

1. From now on D will denote a bounded domain in C” with C-smooth 
boundary bD, D’ a neighborhood of D and V’ c D’ a closed complex 
analytic subset, such that Sing V’ n bD = 0. 

Let &, be the ideal of germs of holomorphic functions vanishing on V’. 
A complete defining system for V’ is a finite set of holomorphic functions 

on D', f,,...& such that for every z E D the germs f,,, ,..., fk.: generate g,.,.;. 
It is well known that such a system always exists if D’ is a Stein 
neighborhood of 0. 

Let V = V’ n D # 0. For every relative open subset U of D we set 

Pp’(U) = (j-E F(l$j-E Cm@J (bD n Or))}, 

Pp’(Un v) = (j-E F(lh V)ZJ-=$~~~~,~E C”(UU (bD c-7 U))}; 

UHP~‘(U) and Un VwPp)(Un v> define two sheaves on D and v 
respectively, Pbai”’ and ?k?) such that 

Pgy, = FD and Pgy,. = PI,. 

Let E-p) c Pkm’ be the ideal of germs vanishing on I? In particular we 
have 

A m(D) = Z-@, Pp’), Am(V) = Z-(v, Pbm’), I”(V) = T(V, Fp’). 

We say that V’ and bD are regularly separated at p E bD n V’ if there 
exist NE N, c > 0 and a neighborhood U of p such that 

dist(z, UfT bD n V’).” < C dist(z, Un V’) (*I 

for every z E U n bD. 
We say V’ and bD are regularly separated if in the previous definition U 

can be chosen in such a way as to be a neighborhood of bD. 
Note that if bD is real analytic (*) is the well known tojasiewicz’s 

inequality [ 121. It is worth noting also that (*) does not follow from strict 
pseudoconvexity of D. 

Suppose now V’ is smooth near bD and let d be its complex dimension. 
We say that V’ is transversal to bD at z E bD if V’ n bD is smooth of real 
dimension 2d - 1 and 

Z-F< V’ n bD) = T;( V’) n T;(bD) 

(where TF(.) is the complex tangent space at z). 
It is a very simple matter to prove that if V’ and bD are transversal at z 

then they are regularly separated at z. 
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2. We shall consider first the case where V’ is a linear subspace: our first 
statement is the following: 

PROPOSITION 1. Let D be pseudoconvex and let V’ = {zk+ , = es* = 
z, = 0). Assume V = V’ f~ D # 0 and V’ and bD are regularly separated. 
Then for every f E A*(D) such that f Ic. = 0 there exist &+, ,..., ,I,, E A”O(D) 
such that 

f = s AjZj. 
j=k+ 1 

We prove first the following result in codimension 1: 

LEMMA 2. Let D c C” be a bounded domain with ?-smooth boundary 
and let V’ be the hyperplane z, = 0. Assume V = V’ n D # 0 and V’ and 
bD are regularly separated. Then: 

(i) every f E A*(D) such that f Iy = 0 can be written as f = gz,, , 
where g E A O”(D), 

(ii) if D is pseudoconvex the restriction homomorphism A”O(D) + 
A m(V) is onto. 

Proof We shall divide the proof into several steps. 

(a) If f E P(o) satisfies f IV = 0 then f =gz, + hYn, where 
g, h E P(D). 

Using the fact that V’ and bD are regularly separated, via Whitney’s 
extension theorem we can find a ball B containing D and FE C”O@) such 
that FJ Bny, = 0, F,-=f Fix z E B and set q(t) = F(z, ,..., z,-, , tz,). We have 

F(Z ~,-.,z~)=q(l)= ‘*dt=z I o dt n I 
‘~(zl,...,z,&z,)dt 
0 az, 

i 

’ aF 
+ z;, -(z, ,..., znplr tz,) dt. 

0 az;, 

(b) Iff E C”(B) is ii-flat on V (i.e., (amf/&r)IY = 0 V m > 0) then for 
any k E N there exist g, h E P(o) such that f = gz, t hli. 

By induction on k. Assume it is true for k; we have 

a”f akg 
at=szntk!h 

n n 

from the E-flatness it follows that h IV = 0 and so by step (a) h = z,u t mv, 
where u, v E A O”@) and f = z,J g t Ft u) + Yj’ ‘v. 

(c) If f E Cm@) is %-flat on V then z; ‘fE P(D). 
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For any k E N we have z;‘f=g + 5i”z;‘h E C?(o). Now iffE A”‘(D) 
and f/,. = 0 then f is ti-flat on V and so setting g = fz; ’ we have f = gz,,, 
where g E A”(D): this proves (i). 

Now let rr: C”- V’ be the natural projection: for every fE A”(V) let 
f’: V’ + C be a C-smooth extension of f and let F=ro 7~1~. We have 
FE C”(D) and aF= xi”=, b,id5j. where b, ,..., b, are ii-flat on I’. Then 
a = z, -’ ~~ is C%mooth on D so that we can lind u E C’=(B) such that 
& = (r ] 111. Then F = F - Z,U belongs to A”(D) and it is the required 
extension off (cf. also IS]). 

We are now in a position to prove Proposition 1. 

Proof of Proposition 1. Let V; be defined by zktIfp=...=z,=O, 
1 <p<n-k- 1, and set D,=Dn Vi. 

We may assume (possibly after a linear transformation of coordinates) 
that VL n bD is C-smooth and VI, and Vi,, n bD are regularly separated. 

Let f EA”(D) be such that flc = 0. In view of Lemma 2 we have f /,j1 = 
Zk+lgk+l, where g,, , is the restriction to D, of a function in A”(D,). 

It follows that f - zk+, gk+ 1 vanishes on D, so that on D, we have 

f-g ktlZk+l =gktZZkt2r etc. 

With the same notations, as a consequence of Proposition 1, we get the 
following: 

COROLLARY 3. Assume D is pseudoconvex, V’ and bD are regularly 
separated and Sing V’ ~7 bD = 0. Let f,,...,fk be a complete defining system 
for V’. Then the sheaf homomorphisms 

(i) ((dyp))Ok + Kp’ (given b-y (A, ,..., A,) H CT=, lj&), 

(ii) /“p) -+ c”k?) (given by “restriction to V’) are onto. 

2. THE GENERAL CASE 

1. In view of Corollary 3 the problem we are dealing with is locally 
solvable. 

In order to get the global result, in the case V’ is a global complete inter- 
section (i.e., k = n-dim,: V’) cohomological techniques can be employed 
proving that the sheaf 9 of ccPba’-relations between f, ,..., fk actually satisfies 
H’(D,9)=0 [l]. 

In the genera1 case here we use a construction which reduces the problem 
to the linear case, via an extension theorem. 

THEOREM 4. Assume D is strongly pseudoconvex and let Vi, Vi be 
analytic subvarieties of D’ such that if we set Vj = Vi n Vi we have: 
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(i) Sing VjnbD=a,j= 1,2,3, 

(ii) V; and bD are regularly separated, j = 1, 2, 3. 

Assume also that Vi and Vi intersect transversally along bD and let Z’ = 
v; u v;, Vi = Vi’ n D, j = 1, 2, 3. Then the restriction homomorphism 
A”O(D) + A”O(Z) is onto, where Z = Z’ CID. 

ProoJ (1) First of all we prove that the restriction homomorphism 
F@’ -+ Fp’“’ is onto. D 

For th;s let p E bD and U be a small neighborhood of p. Let 
f~ A”O(UfIZ): in view of Corollary 3(ii) we may assume flYlnu= 0. 
Assume for the moment we may choose complex coordinates z, ,..., z, in 
such a way that 

V~nU={zEU:z,=...=z,=O}, 

v;nu= {ZE u:zs=... =z,=O,s<k+ l}. 

Let.6 =flvjnu; from Corollary 3(i) we get 

f, = f! h,z,, 
j=k+l 

h,EA”O(V,nU), k+ l<j<m, 

and in view of part (ii) we can extend hj as Hj E AOC(Un 0). If we set F, = 
Cjm,k+l Hjzj we have F, E Am(Un D) and F,/,,, = 0. 

In the same way we can construct F, E A*(U n D) extending fi and 
vanishing on V, n U, The function F = F, + F, satisfies FIznu =J This 
shows that the sequence of sheaves 

0 -+ a”’ + ep + c”p + 0 
Z 

is exact and so in order to conclude the proof we have to show that the 
group H’(fi, Wgm’) is actually zero. This amounts to proving the following 
claim: let F be a (0, 1)-form, P-smooth up to bD, klosed and such that 
FI, = 0; then there exists u E Cm@) such that $U = F and u], = 0. 

(2) The proof of this claim is based on a construction on the theme of 
the “bumps lemma” of Andreotti and Grauert 12, p. 2371 (cf. also [4] and 
191). 

2. Consider a finite covering {Bj}, 1 <j,< q, of bD where Bj = B(Cj,p) is 
the open ball of radius p centered at rj E bD, in such a way that {B(rj, p/2)}, 
1 <j < q, is also a covering and Z n Bj is holomorphically equivalent to a 
plane crossing, 1 Q j < q. In view of the bumps lemma we can find an 
increasing family of pseudoconvex domains {Dj), 0 <j < q, with Coo-smooth 
boundary, such that D, = D, DjP, U {cj} c Dj c Dj~, U B(rj, p/2) and 
DCD,CD~. 

Let a, E Cm(D) be such that 8a, = F; in particular on Z\Sing Z we have 
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go, = 0 and so in view of a result of Malgrange [ 13 ] a, Iz is holomorphic. 
From part (1) we deduce that there exists g, E A “‘(D fl B,) such that 

g, lz’ml = a, ; it follows that U, = a, -g, E P(m), &, = F on D f’ B, 
and U, = 0 on- Z’ n B,. Let q, E CF(B,) be such that 11, = 0 on B(i, ,p/2_) 
and set F, =a[(1 - ~7,) u,]. We have the following: F, is C%mooth on D, 
aF, = 0 and F, = 0 on Z’ f? D,. Moreover on D we have F, = F- $3,, 
where /I, = q1 u1 E Coc(fi) and /J, Iz = 0. By iteration we get a (0, I)-form F,, 
P-smooth on 09 such that 3F, =O, Fq= 0 on Z’ n D, and on L?, F, = 
F - ;58,, where /I, E P(D) and /3& =-0. 

Now let y E CcsI(Dq) be such that 8y = F, ; then Y]~,~,,, is holomorphic. 
Let G be holomorphic on D, and such that G = y on Z’ n D, and set 
u=y-G~+~.WehaveuEC~(~),&=FanduvanishesonZ. 

Thus in order to establish Theorem 4 we only have to prove the following: 

LEMMA 5. Let V, , V, be germs of analytic submanifolds at p E C” such 
that 

(i) V, n VZ is smooth, 

(ii) T,“( V, n V,) = T,“( V,) n T,“( V,). 

Then we can choose complex coordinates z,,..., z, in a neighborhood I/ of p 
in such a way that 

Proof We shall consider first the case where dimc(T,“( VI) + Ti( V,)) = n. 
Let V, be defined (in a neighborhood U of p) by zi = . . . = z,-~ = 0 and 

V, by f,= ..a = fn-k = 0; it follows that V, n V, has dimension d + k - n 
and 3fl A ..a A i?fnpk A az, A ... A ... A&_,(p) # 0. Then there is a 
system of local (holomorphic) coordinates cl,..., <, such that cj = zj for 
l<j<kandc k+, =f,w c, =fn-k* 

In order to reduce the general case to the previous one we only have to 
check that under our assumptions Tt(V,) + TF(V,) is the Zariski tangent 
space c(V, U V,) of V, U V, at p. We have TF( V,) + TF( Vz) c 
c(V, U V,): in order to prove the opposite inclusion we must prove the 
following: given a C-linear map L: C” -+ C vanishing on Ti(V,) + TF(V,) 
there is a local holomorphic function g such that g = 0 on V, U V, and 

ag(P) = L. 
With the above notations we may suppose that on U 

V, = {z E U: zj = 0, 1 <j < k}, 

v,= {ZE U:&(z)= ... =f,,,(z)=O,s<k+ 1) 
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and 

where 

afs A . . . r\af,(p)#o, aZ,r\ . . . Aaz,Aaf,+,r\...Aaf,(p)#o 

and dim,(c(V,) + c(V,)) = n + s -k - 1. 
In particular 

v, n v2= {z E v,:fk+l(z)= .** =f&>=O}. 

Let g’ be a local holomorphic function such that &f(p) = L and glyz = 0; 
set g, =g(,,,. 

Then g, = Cm , k+I ajfj, where oj E P( I’,), and 

4+5(p)=an4 CW,)=w+W3=0 

a,, being the &operator for V, and so ai = 0, k + 1 <j < m. Extend aj by 
Aj (holomorphically), k + 1 <j< m, and set G = Cjm_k+, A,&; we have 
GI,, = g,, GI,, = 0, aG(p) = 0. The function we are looking for is now 
g=g-G. 

3. We are now in a position to prove our main theorem. 
Let D c C” be a bounded domain with P-smooth boundary bD and let 

V’ be a complex analytic subvariety of an open neighborhood D’ of D such 
that V = V’ f7 D # 0. Let f, ,..., fk b e a complete defining system for V’. 

THEOREM 6. Assume 

(i) D is strongly pseudoconvex, 

(ii) Sing V’ ~7 bD = 0 and V’, bD are regularly separated. 

Then every f E A”(D) vanishing on V can be written as 

where h 1 ,..., h, E Am(D). 

Proof. Consider the holomorphic map F: D’ + Ck given by F(z) = 
(f,(z),...,fk(z)) and let I’ be its graph. Consider in D’ x Ck a bounded 
domain B with P-smooth boundary, strongly pseudoconvex and such that 
B f-l (D’ x {0)) = D and r intersects bB transversally. From the fact 
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(f,,...,&} is a complete defining system for V’ it follows that the jacobian 
matrix of F has rank n-dim, V’ near bD and in particular r intersects D’ 
transversally along bB. Let 2 = (D’ U r) n B and let fE A”(D) be such 
thatf= 0 on V. 

Let f be defined by: T=f on D and f = 0 on rn B; because of the 
transversality, f’is holomorphic on Z and TE A “(Z). 

By Theorem 4 applied to Z we can find G E A m(B) such that GI, =r In 
particular G = 0 on rfI B. Now r n B is holomorphically equivalent to a 
plane section and thus, using Proposition 1 we can find h; ,..., h;, E A”(B) 
such that G =-JJ;= r h(fj - wj) (w, ,..., wk complex coordinates in C”). By 
restriction to D we get f = CT=, hjfi, where hj = I&. This concludes the 
proof of our main theorem. 

COROLLARY 7. In the above hypothesis assume f E A”O( V) vanishes on 
V of order q > 0. Then f can be written as 

f= 1 hj,.. .j,f{’ “‘fk? 

j, + . . tjk=9 

where hj,. .jk E A”O(D),j, + ... tj, = q. 
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