ADVANCES IN MATHEMATICS 46, 162-170 (1982)

Finitely Generated Ideals in $A^{\infty}(D)$

PAOLO DE BARTOLOMEIS

Istituto di Matematica Applicata, Università di Firenze, Florence, Italy

AND

GIUSEPPE TOMASSINI

Department of Mathematics, Scuola Normale Superiore Pisa, Pisa, Italy

INTRODUCTION

Let $D \in \mathbb{C}^n$ be a bounded pseudoconvex domain with C^{∞} -smooth boundary bD and let V be an analytic subvariety of a neighborhood of \overline{D} . Let \mathscr{C}_V denote the sheaf of ideals of V. From the general theory of Oka-Cartan-Serre it follows that if $f_1,...,f_k \in \Gamma(\overline{D}, \mathscr{C}_V)$ generate $\mathscr{C}_{V,z}$ at every point $z \in D$, then they generate $\Gamma(D, \mathscr{C}_V)$ over $\mathscr{O}(D)$ (= $\Gamma(D, \mathscr{O})$).

Let A be a subalgebra (or more generally a vector subspace) of $\mathcal{C}(D)$ containing $f_1, ..., f_k$. It is a natural question to ask whether $f_1, ..., f_k$ generate $\Gamma(D, \mathscr{C}_V) \cap A$ over A. There are several results in this direction in the special case V is a point and A is the algebra of holomorphic functions satisfying some regularity condition at the boundary [3, 6, 7, 10, 14].

The situation becomes much more complicated when V has positive dimension, as the following elementary example shows: the holomorphic function $f(z_1, z_2) = z_2(1 - z_1)^{-1/4}$ is continuous up to the boundary on the unit ball B in \mathbb{C}^2 but its factor in z_2 is not even bounded (and it can be easily proved that the ideal of the complex line $z_2 = 0$ is not finitely generated over $A^0(B)$, the algebra $\mathcal{O}(B) \cap C^0(\overline{B})$).

The aim of the present paper is to prove that similar phenomena disappear in a high regularity situation, i.e., for the algebra $A^{\infty}(D) = \mathcal{C}(D) \cap C^{\infty}(\overline{D})$. Namely, we prove that if D is strictly pseudoconvex, bD and V are "regularly separated" (see Section 1) and V is smooth near bD then $f_1,...,f_k$ generate $I^{\infty}(V) = \Gamma(D, \mathscr{C}_V) \cap C^{\infty}(D)$ over $A^{\infty}(D)$. Some of these results were announced in [5].

0001-8708/82/110162-09\$05.00/0 Copyright © 1982 by Academic Press, Inc. All rights of reproduction in any form reserved.

1. THE LOCAL AND SEMI-LOCAL CASES

1. From now on D will denote a bounded domain in \mathbb{C}^n with C^{∞} -smooth boundary bD, D' a neighborhood of \overline{D} and $V' \subset D'$ a closed complex analytic subset, such that Sing $V' \cap bD = \emptyset$.

Let $\mathcal{C}_{V'}$ be the ideal of germs of holomorphic functions vanishing on V'.

A complete defining system for V' is a finite set of holomorphic functions on $D', f_1, ..., f_k$ such that for every $z \in D$ the germs $f_{1,z}, ..., f_{k,z}$ generate $\mathscr{C}_{\Gamma',z}$. It is well known that such a system always exists if D' is a Stein neighborhood of \overline{D} .

Let $V = V' \cap D \neq \emptyset$. For every relative open subset U of \overline{D} we set

$$\mathscr{O}_{\overline{D}}^{(\infty)}(U) = \{ f \in \mathscr{O}(\dot{U}) : f \in C^{\infty}(\dot{U} \cup (bD \cap U)) \},$$
$$\mathscr{O}_{\overline{V}}^{(\infty)}(U \cap \overline{V}) = \{ f \in \mathscr{O}(\dot{U} \cap V) : f = \tilde{f}|_{\dot{U} \cap V}, \tilde{f} \in C^{\infty}(U \cup (bD \cap U)) \};$$

 $U \mapsto \mathscr{C}_{\overline{D}}^{(\infty)}(U)$ and $U \cap \overline{V} \mapsto \mathscr{C}_{\overline{V}}^{(\infty)}(U \cap \overline{V})$ define two sheaves on \overline{D} and \overline{V} respectively, $\mathscr{C}_{\overline{D}}^{(\infty)}$ and $\mathscr{C}_{\overline{V}}^{(\infty)}$ such that

$$\mathscr{O}_{\overline{D}}^{(\infty)}|_{D} = \mathscr{O}_{D}$$
 and $\mathscr{O}_{\overline{V}}^{(\infty)}|_{V} = \mathscr{O}_{V}.$

Let $\mathscr{C}_{\overline{V}}^{(\infty)} \subset \mathscr{C}_{\overline{D}}^{(\infty)}$ be the ideal of germs vanishing on \overline{V} . In particular we have

$$A^{\infty}(D) = \Gamma(\overline{D}, \mathcal{C}_{\overline{D}}^{(\infty)}), \qquad A^{\infty}(V) = \Gamma(\overline{V}, \mathcal{C}_{\overline{V}}^{(\infty)}), \qquad I^{\infty}(V) = \Gamma(\overline{V}, \mathscr{E}_{\overline{V}}^{(\infty)}).$$

We say that V' and bD are regularly separated at $p \in bD \cap V'$ if there exist $N \in \mathbb{N}$, c > 0 and a neighborhood U of p such that

$$\operatorname{dist}(z, U \cap bD \cap V')^N \leqslant C \operatorname{dist}(z, U \cap V') \tag{(*)}$$

for every $z \in U \cap bD$.

We say V' and bD are regularly separated if in the previous definition U can be chosen in such a way as to be a neighborhood of bD.

Note that if bD is real analytic (*) is the well known Łojasiewicz's inequality [12]. It is worth noting also that (*) does not follow from strict pseudoconvexity of D.

Suppose now V' is smooth near bD and let d be its complex dimension. We say that V' is *transversal* to bD at $z \in bD$ if $V' \cap bD$ is smooth of real dimension 2d-1 and

$$T_z^{\mathbb{C}}(V' \cap bD) = T_z^{\mathbb{C}}(V') \cap T_z^{\mathbb{C}}(bD)$$

(where $T_z^{\mathbb{C}}(\cdot)$ is the complex tangent space at z).

It is a very simple matter to prove that if V' and bD are transversal at z then they are regularly separated at z.

2. We shall consider first the case where V' is a linear subspace: our first statement is the following:

PROPOSITION 1. Let D be pseudoconvex and let $V' = \{z_{k+1} = \cdots = z_n = 0\}$. Assume $V = V' \cap D \neq \emptyset$ and V' and bD are regularly separated. Then for every $f \in A^{\infty}(D)$ such that $f|_V = 0$ there exist $\lambda_{k+1}, \dots, \lambda_n \in A^{\infty}(D)$ such that

$$f = \sum_{j=k+1}^n \lambda_j z_j.$$

We prove first the following result in codimension 1:

LEMMA 2. Let $D \subset \mathbb{C}^n$ be a bounded domain with C^{∞} -smooth boundary and let V' be the hyperplane $z_n = 0$. Assume $V = V' \cap D \neq \emptyset$ and V' and bD are regularly separated. Then:

(i) every $f \in A^{\infty}(D)$ such that $f|_{v} = 0$ can be written as $f = gz_{n}$, where $g \in A^{\infty}(D)$,

(ii) if D is pseudoconvex the restriction homomorphism $A^{\infty}(D) \rightarrow A^{\infty}(V)$ is onto.

Proof. We shall divide the proof into several steps.

(a) If $f \in C^{\infty}(\overline{D})$ satisfies $f|_{v} = 0$ then $f = gz_{n} + h\overline{z}_{n}$, where $g, h \in C^{\infty}(\overline{D})$.

Using the fact that V' and bD are regularly separated, via Whitney's extension theorem we can find a ball B containing \overline{D} and $F \in C^{\infty}(\overline{B})$ such that $F|_{B \cap V'} = 0$, $F_{\overline{D}} = f$. Fix $z \in B$ and set $\varphi(t) = F(z_1, ..., z_{n-1}, tz_n)$. We have

$$F(z_1,...,z_n) = \varphi(1) = \int_0^1 \frac{d\varphi}{dt} dt = z_n \int_0^1 \frac{\partial F}{\partial z_n} (z_1,...,z_{n-1}, tz_n) dt$$
$$+ \bar{z}_n \int_0^1 \frac{\partial F}{\partial \bar{z}_n} (z_1,...,z_{n-1}, tz_n) dt.$$

(b) If $f \in C^{\infty}(\overline{D})$ is \overline{n} -flat on V (i.e., $(\partial^m f/\partial \overline{z}_n^m)|_V = 0 \ \forall m \ge 0$) then for any $k \in \mathbb{N}$ there exist $g, h \in C^{\infty}(\overline{D})$ such that $f = gz_n + h\overline{z}_n^k$.

By induction on k. Assume it is true for k; we have

$$\frac{\partial^k f}{\partial \bar{z}_n^k} = \frac{\partial^k g}{\partial \bar{z}_n^k} z_n + k! h \sum_{j=1}^k \binom{k}{j} \frac{k!}{j!} \frac{\partial^j h}{\partial \bar{z}_n^j} \bar{z}_n^j;$$

from the \bar{n} -flatness it follows that $h|_{v} = 0$ and so by step (a) $h = z_{n}u + \bar{z}_{n}v$, where $u, v \in A^{\infty}(\bar{D})$ and $f = z_{n}(g + \bar{z}_{n}^{k}u) + \bar{z}_{n}^{k+1}v$.

(c) If $f \in C^{\infty}(\overline{D})$ is \overline{n} -flat on V then $z_n^{-1}f \in C^{\infty}(\overline{D})$.

For any $k \in \mathbb{N}$ we have $z_n^{-1}f = g + \overline{z}_n^{k+2}z_n^{-1}h \in C^k(\overline{D})$. Now if $f \in A^{\infty}(\overline{D})$ and $f|_{V} = 0$ then f is \overline{n} -flat on V and so setting $g = fz_n^{-1}$ we have $f = gz_n$, where $g \in A^{\infty}(D)$: this proves (i).

Now let $\pi: \mathbb{C}^n \to V'$ be the natural projection; for every $f \in A^{\infty}(V)$ let $\tilde{f}: V' \to \mathbb{C}$ be a C^{∞} -smooth extension of f and let $\tilde{F} = \tilde{f} \circ \pi|_{\overline{D}}$. We have $\tilde{F} \in C^{\infty}(\overline{D})$ and $\bar{\partial}\tilde{F} = \sum_{j=1}^{n} b_j d\bar{z}_j$, where $b_1, ..., b_n$ are \bar{n} -flat on V. Then $\alpha = z_n^{-1} \bar{\partial}\tilde{F}$ is C^{∞} -smooth on \overline{D} so that we can find $u \in C^{\infty}(\overline{D})$ such that $\bar{\partial}u = \alpha$ [11]. Then $F = \tilde{F} - z_n u$ belongs to $A^{\infty}(D)$ and it is the required extension of f (cf. also [8]).

We are now in a position to prove Proposition 1.

Proof of Proposition 1. Let V'_p be defined by $z_{k+1+p} = \cdots = z_n = 0$, $1 \le p \le n-k-1$, and set $D_p = D \cap V'_p$.

We may assume (possibly after a linear transformation of coordinates) that $V'_p \cap bD$ is C^{∞} -smooth and V'_p and $V'_{p+1} \cap bD$ are regularly separated.

Let $f \in A^{\infty}(D)$ be such that $f|_{V} = 0$. In view of Lemma 2 we have $f|_{D_{1}} = z_{k+1}g_{k+1}$, where g_{k+1} is the restriction to D_{1} of a function in $A^{\infty}(D_{2})$.

It follows that $f - z_{k+1}g_{k+1}$ vanishes on D_1 so that on D_2 we have $f - g_{k+1}z_{k+1} = g_{k+2}z_{k+2}$, etc.

With the same notations, as a consequence of Proposition 1, we get the following:

COROLLARY 3. Assume D is pseudoconvex, V' and bD are regularly separated and Sing $V' \cap bD = \emptyset$. Let $f_1, ..., f_k$ be a complete defining system for V'. Then the sheaf homomorphisms

(i)
$$(\mathscr{C}_{\overline{D}}^{(\infty)})^{\oplus k} \to \mathscr{E}_{\overline{V}}^{(\infty)}$$
 (given by $(\lambda_1, ..., \lambda_k) \mapsto \sum_{i=1}^k \lambda_i f_i$),

(ii) $\mathscr{O}_{\overline{D}}^{(\infty)} \to \mathscr{O}_{V}^{(\infty)}$ (given by "restriction to V") are onto.

2. The General Case

1. In view of Corollary 3 the problem we are dealing with is locally solvable.

In order to get the global result, in the case V' is a global complete intersection (i.e., k = n-dim_C V') cohomological techniques can be employed proving that the sheaf \mathscr{R} of $\mathscr{C}_{\overline{D}}^{(\infty)}$ -relations between $f_1, ..., f_k$ actually satisfies $H^1(\overline{D}, \mathscr{R}) = 0$ [1].

In the general case here we use a construction which reduces the problem to the linear case, via an extension theorem.

THEOREM 4. Assume D is strongly pseudoconvex and let V'_1, V'_2 be analytic subvarieties of D' such that if we set $V'_3 = V'_1 \cap V'_2$ we have:

- (i) Sing $V'_i \cap bD = \emptyset, j = 1, 2, 3,$
- (ii) V'_i and bD are regularly separated, j = 1, 2, 3.

Assume also that V'_1 and V'_2 intersect transversally along bD and let $Z' = V'_1 \cup V'_2$, $V_j = V'_j \cap D$, j = 1, 2, 3. Then the restriction homomorphism $A^{\infty}(D) \rightarrow A^{\infty}(Z)$ is onto, where $Z = Z' \cap D$.

Proof. (1) First of all we prove that the restriction homomorphism $\mathscr{O}_{\overline{D}}^{(\infty)} \to \mathscr{O}_{\overline{Z}}^{(\infty)}$ is onto.

For this let $p \in bD$ and U be a small neighborhood of p. Let $f \in A^{\infty}(U \cap Z)$: in view of Corollary 3(ii) we may assume $f|_{V_3 \cap U} = 0$. Assume for the moment we may choose complex coordinates $z_1, ..., z_n$ in such a way that

$$V'_{1} \cap U = \{ z \in U : z_{1} = \dots = z_{k} = 0 \},$$

$$V'_{2} \cap U = \{ z \in U : z_{s} = \dots = z_{m} = 0, s \leq k+1 \}.$$

Let $f_i = f|_{V_i \cap U}$; from Corollary 3(i) we get

$$f_1 = \sum_{j=k+1}^m h_j z_j, \qquad h_j \in A^{\infty}(V_1 \cap U), \ k+1 \leq j \leq m,$$

and in view of part (ii) we can extend h_j as $H_j \in A^{\infty}(U \cap D)$. If we set $F_1 = \sum_{i=k+1}^{m} H_i z_i$ we have $F_1 \in A^{\infty}(U \cap D)$ and $F_1|_{V_2 \cap D} = 0$.

In the same way we can construct $F_2 \in A^{\infty}(U \cap D)$ extending f_2 and vanishing on $V_1 \cap U$. The function $F = F_1 + F_2$ satisfies $F|_{Z \cap U} = f$. This shows that the sequence of sheaves

$$0 \to \mathscr{C}_{\overline{Z}}^{(\infty)} \to \mathscr{O}_{\overline{D}}^{(\infty)} \to \mathscr{O}_{\overline{Z}}^{(\infty)} \to 0$$

is exact and so in order to conclude the proof we have to show that the group $H^1(\overline{D}, \mathscr{E}_{\overline{Z}}^{(\infty)})$ is actually zero. This amounts to proving the following claim: let F be a (0, 1)-form, C^{∞} -smooth up to bD, $\overline{\partial}$ -closed and such that $F|_{\mathbb{Z}} = 0$; then there exists $u \in C^{\infty}(\overline{D})$ such that $\overline{\partial u} = F$ and $u|_{\mathbb{Z}} = 0$.

(2) The proof of this claim is based on a construction on the theme of the "bumps lemma" of Andreotti and Grauert [2, p. 237] (cf. also [4] and [9]).

2. Consider a finite covering $\{B_j\}$, $1 \le j \le q$, of bD where $B_j = B(\zeta_j, \rho)$ is the open ball of radius ρ centered at $\zeta_j \in bD$, in such a way that $\{B(\zeta_j, \rho/2)\}$, $1 \le j \le q$, is also a covering and $Z \cap B_j$ is holomorphically equivalent to a plane crossing, $1 \le j \le q$. In view of the bumps lemma we can find an increasing family of pseudoconvex domains $\{D_j\}$, $0 \le j \le q$, with C^{∞} -smooth boundary, such that $D_0 = D$, $D_{j-1} \cup \{\zeta_j\} \subset D_j \subset D_{j-1} \cup B(\zeta_j, \rho/2)$ and $\overline{D} \subset D_q \subseteq D'$.

Let $\alpha_1 \in C^{\infty}(\overline{D})$ be such that $\overline{\partial}\alpha_1 = F$; in particular on $Z \setminus \text{Sing } Z$ we have

 $\bar{\partial}\alpha_1 = 0$ and so in view of a result of Malgrange [13] $\alpha_1|_Z$ is holomorphic. From part (1) we deduce that there exists $g_1 \in A^{\infty}(D \cap B_1)$ such that $g_1|_{Z' \cap B_1} = \alpha_1$; it follows that $u_1 = \alpha_1 - g_1 \in C^{\infty}(\overline{D \cap B_1})$, $\bar{\partial}u_1 = F$ on $D \cap B_1$ and $u_1 = 0$ on $Z' \cap B_1$. Let $\eta_1 \in C_0^{\infty}(B_1)$ be such that $\eta_1 = 0$ on $B(\zeta_1, \rho/2)$ and set $F_1 = \bar{\partial}[(1 - \eta_1)u_1]$. We have the following: F_1 is C^{∞} -smooth on \overline{D} , $\bar{\partial}F_1 = 0$ and $F_1 = 0$ on $Z' \cap D_1$. Moreover on \overline{D} we have $F_1 = F - \bar{\partial}\beta_1$, where $\beta_1 = \eta_1 u_1 \in C^{\infty}(\overline{D})$ and $\beta_1|_Z = 0$. By iteration we get a (0, 1)-form F_q , C^{∞} -smooth on \overline{D}_q such that $\bar{\partial}F_q = 0$, $F_q = 0$ on $Z' \cap D_q$ and on \overline{D} , $F_q = F - \bar{\partial}\beta_q$, where $\beta_q \in C^{\infty}(\overline{D})$ and $\beta_q|_Z = 0$.

Now let $\gamma \in C^{\infty}(D_q)$ be such that $\overline{\partial}\gamma = F_q$; then $\gamma|_{Z' \cap D_q}$ is holomorphic. Let G be holomorphic on D_q and such that $G = \gamma$ on $Z' \cap D_q$ and set $u = \gamma - G + \beta_q$. We have $u \in C^{\infty}(\overline{D})$, $\overline{\partial}u = F$ and u vanishes on Z.

Thus in order to establish Theorem 4 we only have to prove the following:

LEMMA 5. Let V_1, V_2 be germs of analytic submanifolds at $p \in \mathbb{C}^n$ such that

- (i) $V_1 \cap V_2$ is smooth,
- (ii) $T_p^{\mathbb{C}}(V_1 \cap V_2) = T_p^{\mathbb{C}}(V_1) \cap T_p^{\mathbb{C}}(V_2).$

Then we can choose complex coordinates $z_1, ..., z_n$ in a neighborhood U of p in such a way that

$$V_1 \cap U = \{ z \in \mathbb{C}^n : z_1 = \dots = z_k = 0 \},$$

$$V_2 \cap U = \{ z \in \mathbb{C}^n : z_s = \dots = z_m = 0, s \leq k+1 \}.$$

Proof. We shall consider first the case where $\dim_{\mathbb{C}}(T_p^{\mathbb{C}}(V_1) + T_p^{\mathbb{C}}(V_2)) = n$. Let V_1 be defined (in a neighborhood U of p) by $z_1 = \cdots = z_{n-d} = 0$ and V_2 by $f_1 = \cdots = f_{n-k} = 0$; it follows that $V_1 \cap V_2$ has dimension d + k - n and $\partial f_1 \wedge \cdots \wedge \partial f_{n-k} \wedge \partial z_1 \wedge \cdots \wedge \cdots \wedge \partial z_{n-d}(p) \neq 0$. Then there is a system of local (holomorphic) coordinates ζ_1, \dots, ζ_n such that $\zeta_j = z_j$ for $1 \leq j \leq k$ and $\zeta_{k+1} = f_1, \dots, \zeta_n = f_{n-k}$.

In order to reduce the general case to the previous one we only have to check that under our assumptions $T_p^{\mathbb{C}}(V_1) + T_p^{\mathbb{C}}(V_2)$ is the Zariski tangent space $T_p^{\mathbb{C}}(V_1 \cup V_2)$ of $V_1 \cup V_2$ at p. We have $T_p^{\mathbb{C}}(V_1) + T_p^{\mathbb{C}}(V_2) \subset T_p^{\mathbb{C}}(V_1 \cup V_2)$: in order to prove the opposite inclusion we must prove the following: given a \mathbb{C} -linear map $L: \mathbb{C}^n \to \mathbb{C}$ vanishing on $T_p^{\mathbb{C}}(V_1) + T_p^{\mathbb{C}}(V_2)$ there is a local holomorphic function g such that g = 0 on $V_1 \cup V_2$ and $\partial g(p) = L$.

With the above notations we may suppose that on U

$$V_1 = \{ z \in U : z_j = 0, 1 \le j \le k \},\$$

$$V_2 = \{ z \in U : f_s(z) = \dots = f_m(z) = 0, s \le k+1 \}$$

$$V_1 \cap V_2 = \{z \in U : z_1 = \dots = z_k = f_{k+1}(z) = \dots = f_m(z) = 0\},\$$

where

$$\partial f_s \wedge \cdots \wedge \partial f_m(p) \neq 0, \qquad \partial z_1 \wedge \cdots \wedge \partial z_k \wedge \partial f_{k+1} \wedge \cdots \wedge \partial f_m(p) \neq 0$$

and $\dim_{\mathbb{C}}(T_p^{\mathbb{C}}(V_1) + T_p^{\mathbb{C}}(V_2)) = n + s - k - 1$. In particular

$$V_1 \cap V_2 = \{z \in V_1 : f_{k+1}(z) = \dots = f_m(z) = 0\}.$$

Let \tilde{g} be a local holomorphic function such that $\partial \tilde{g}(p) = L$ and $\tilde{g}|_{\nu_2} = 0$; set $\tilde{g}_1 = \tilde{g}|_{\nu_1}$.

Then $\tilde{g}_1 = \sum_{j=k+1}^m \alpha_j f_j$, where $\alpha_j \in \mathcal{O}(V_1)$, and

$$\partial_{V_1} \tilde{g}_1(p) = \partial \tilde{g}(p) | T_P^{\mathbb{C}}(V_1) = L | T_P^{\mathbb{C}}(V_1) = 0$$

 ∂_{V_1} being the ∂ -operator for V_1 and so $\alpha_j(p) = 0$, $k + 1 \leq j \leq m$. Extend α_j by A_j (holomorphically), $k + 1 \leq j \leq m$, and set $G = \sum_{j=k+1}^m A_j f_j$; we have $G|_{V_1} = \tilde{g}_1$, $G|_{V_2} = 0$, $\partial G(p) = 0$. The function we are looking for is now $g = \tilde{g} - G$.

3. We are now in a position to prove our main theorem.

Let $D \subset \mathbb{C}^n$ be a bounded domain with C^{∞} -smooth boundary bD and let V' be a complex analytic subvariety of an open neighborhood D' of D such that $V = V' \cap D \neq \emptyset$. Let f_1, \dots, f_k be a complete defining system for V'.

THEOREM 6. Assume

- (i) D is strongly pseudoconvex,
- (ii) Sing $V' \cap bD = \emptyset$ and V', bD are regularly separated.

Then every $f \in A^{\infty}(D)$ vanishing on V can be written as

$$f = \sum_{j=1}^{k} h_j f_j,$$

where $h_1, ..., h_k \in A^{\infty}(D)$.

Proof. Consider the holomorphic map $F: D' \to \mathbb{C}^k$ given by $F(z) = (f_1(z),...,f_k(z))$ and let Γ be its graph. Consider in $D' \times \mathbb{C}^k$ a bounded domain B with C^{∞} -smooth boundary, strongly pseudoconvex and such that $B \cap (D' \times \{0\}) = D$ and Γ intersects bB transversally. From the fact

 $\{f_1,...,f_k\}$ is a complete defining system for V' it follows that the jacobian matrix of F has rank n-dim_C V' near bD and in particular Γ intersects D' transversally along bB. Let $Z = (D' \cup \Gamma) \cap B$ and let $f \in A^{\infty}(D)$ be such that f = 0 on V.

Let \tilde{f} be defined by: $\tilde{f}=f$ on D and f=0 on $\Gamma \cap B$; because of the transversality, \tilde{f} is holomorphic on Z and $\tilde{f} \in A^{\infty}(Z)$.

By Theorem 4 applied to Z we can find $G \in A^{\infty}(B)$ such that $G|_{Z} = \tilde{f}$. In particular G = 0 on $\Gamma \cap B$. Now $\Gamma \cap B$ is holomorphically equivalent to a plane section and thus, using Proposition 1 we can find $\tilde{h}_{1},...,\tilde{h}_{k} \in A^{\infty}(B)$ such that $G = \sum_{j=1}^{k} \tilde{h}_{j}(f_{j} - w_{j})$ $(w_{1},...,w_{k}$ complex coordinates in \mathbb{C}^{k}). By restriction to \tilde{D} we get $f = \sum_{j=1}^{k} h_{j}f_{j}$, where $h_{j} = \tilde{h}_{j}|_{\overline{D}}$. This concludes the proof of our main theorem.

COROLLARY 7. In the above hypothesis assume $f \in A^{\infty}(V)$ vanishes on V of order q > 0. Then f can be written as

$$f = \sum_{j_1 + \cdots + j_k = q} h_{j_1 \cdots j_k} f_1^{j_1} \cdots f_k^{j_q},$$

where $h_{j_1...j_k} \in A^{\infty}(D), j_1 + \cdots + j_k = q$.

REFERENCES

- 1. E. AMAR, $\bar{\partial}$ -cohomologie C^{∞} et applications, preprint.
- A. ANDREOTTI AND H. GRAUERT, Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France 90 (1962), 193-259.
- P. DE BARTOLOMEIS, "Hardy-like" estimates for the θ-operator and scripture theorems for functions in *H^p* in strictly pseudo-convex domains, *B.U.M.I.* (5) 16-B (1979), 430-450.
- P. DE BARTOLOMEIS, Some constructions for relative approximation of holomorphic functions, in "Proceedings, International Conferences, Cortona, Italy, 1976–1977," pp. 65–73, Scuola Normale Superiore Pisa, 1978.
- 5. P. DE BARTOLOMEIS AND G. TOMASSINI, Idéaux de type fini dans $A^{\infty}(D)$, C.R. Acad. Sci. Paris 293 (1981), 133–134.
- 6. H. GRAUERT AND I. LIEB, Das Ramirezsche Integral und die Lösung der Gleichung $\bar{\partial}u = f$ im Bereich des beschränkten Formen, *Rice Univ. Stud.* 56(2) (1971), 29–50.
- 7. G. M. HENKIN, Approximation of functions in pseudo-convex domain and the theorem of Z. L. Leibenson, *Bull. Polskoi Ak. Nauk* 19(1) (1971), 37–42. [In Russian.]
- G. M. HENKIN, Continuation of bounded holomorphic functions from submanifolds in general position to strictly pseudo-convex domain, *Izv. Akad. Nauk SSSR Ser. Mat.* 36 (1972), 540–567. [In Russian.]
- 9. N. KERZMAN, Hölder and L_p estimates for solutions of $\bar{\partial}u = f$, Comm. Pure Appl. Math. 24 (1971), 301-379.
- N. KERZMAN AND A. NAGEL, Finitely generated ideals in certain function algebras, J. Funct. Anal. 7 (1971), 212-215.
- J. KOHN, Harmonic integrals on strongly pseudo-convex manifolds, Ann of Math. 78 (1963), 112-148; 79 (1964), 450-472.

DE BARTOLOMEIS AND TOMASSINI

- 12. S. ŁOJASIEWICZ, Sur le problème de la division, Studia Math. 18 (1959), 87-136.
- 13. B. MALGRANGE, Sur les fonctions differentiables et les ensembles analytiques, Bull. Soc. Math. France 91 (1963), 113-127.
- 14. N. ØVRELID, Generators of the maximal ideals of $A(\overline{D})$, Pacific J. Math. 39(1) (1971), 219-223.