Finitely Generated Ideals in $A^{\infty}(D)$

Paolo de Bartolomeis

Istituto di Matematica Applicata, Università di Firenze, Florence, Italy
AND
Giuseppe Tomassinı

Department of Mathematics, Scuola Normale Superiore Pisa, Pisa, Italy

Introduction

Let $D \in \mathbb{C}^{n}$ be a bounded pseudoconvex domain with C^{∞}-smooth boundary $b D$ and let V be an analytic subvariety of a neighborhood of \bar{D}. Let \mathscr{F}_{V} denote the sheaf of ideals of V. From the general theory of Oka-Cartan-Serre it follows that if $f_{1}, \ldots, f_{k} \in \Gamma\left(\bar{D}, \mathcal{V}_{V}\right)$ generate $\mathscr{E}_{V, z}$ at every point $z \in D$, then they generate $\Gamma\left(D, \mathscr{F}_{v}\right)$ over $\mathcal{O}(D)(=\Gamma(D, \mathcal{Q}))$.

Let A be a subalgebra (or more generally a vector subspace) of $C(D)$ containing f_{1}, \ldots, f_{k}. It is a natural question to ask whether f_{1}, \ldots, f_{k} generate $\Gamma\left(D, \mathscr{g}_{V}\right) \cap A$ over A. There are several results in this direction in the special case V is a point and A is the algebra of holomorphic functions satisfying some regularity condition at the boundary $[3,6,7,10,14]$.

The situation becomes much more complicated when V has positive dimension, as the following elementary example shows: the holomorphic function $f\left(z_{1}, z_{2}\right)=z_{2}\left(1-z_{1}\right)^{-1 / 4}$ is continuous up to the boundary on the unit ball B in \mathbb{C}^{2} but its factor in z_{2} is not even bounded (and it can be easily proved that the ideal of the complex line $z_{2}=0$ is not finitely generated over $A^{0}(B)$, the algebra $\mathcal{O}(B) \cap C^{0}(\bar{B})$).

The aim of the present paper is to prove that similar phenomena disappear in a high regularity situation, i.e., for the algebra $A^{\infty}(D)=\mathscr{O}(D) \cap C^{\infty}(\bar{D})$. Namely, we prove that if D is strictly pseudoconvex, $b D$ and V are "regularly separated" (see Section 1) and V is smooth near $b D$ then f_{1}, \ldots, f_{k} generate $I^{\infty}(V)=\Gamma\left(D, \mathcal{R}_{V}\right) \cap C^{\infty}(D)$ over $A^{\infty}(D)$. Some of these results were announced in [5].

1. The Local and Semi-Local Cases

1. From now on D will denote a bounded domain in \mathbb{C}^{n} with C^{∞}-smooth boundary $b D, D^{\prime}$ a neighborhood of \bar{D} and $V^{\prime} \subset D^{\prime}$ a closed complex analytic subset, such that Sing $V^{\prime} \cap b D=\varnothing$.

Let $\mathcal{F}_{V^{\prime}}$ be the ideal of germs of holomorphic functions vanishing on V^{\prime}.
A complete defining system for V^{\prime} is a finite set of holomorphic functions on $D^{\prime}, f_{1}, \ldots, f_{k}$ such that for every $z \in D$ the germs $f_{1, z}, \ldots, f_{k, z}$ generate $\mathscr{E}_{1^{\prime \prime, z}}$. It is well known that such a system always exists if D^{\prime} is a Stein neighborhood of \bar{D}.

Let $V=V^{\prime} \cap D \neq \varnothing$. For every relative open subset U of \bar{D} we set

$$
\begin{aligned}
\rho \frac{(\infty)}{D}(U) & =\left\{f \in C(\dot{U}): f \in C^{\infty}(\dot{U} \cup(b D \cap U))\right\} \\
C \frac{(\infty)}{V}(U \cap \bar{V}) & =\left\{f \in C(\dot{U} \cap V): f=\left.\tilde{f}\right|_{U \cap V}, \tilde{f} \in C^{\infty}(U \cup(b D \cap U))\right\}
\end{aligned}
$$

$U \mapsto \rho \frac{(\infty)}{D}(U)$ and $U \cap \bar{V} \mapsto \rho^{(\infty)}(U \cap \bar{V})$ define two sheaves on \bar{D} and \bar{V} respectively, $C \frac{(\infty)}{D}$ and $C \frac{(\infty)}{\bar{V}}$ such that

$$
\left.Q \frac{(\infty)}{D}\right|_{D}=C_{D} \quad \text { and }\left.\quad C_{V}(\infty)\right|_{V}=C_{V} .
$$

Let $E^{(\infty)} \subset C^{(\infty)}$ be the ideal of germs vanishing on \bar{V}. In particular we have

$$
A^{\infty}(D)=\Gamma\left(\bar{D}, C_{\bar{D}}^{(\infty)}\right), \quad A^{\infty}(V)=\Gamma\left(\bar{V}, \propto \frac{(\infty)}{V}\right), \quad I^{\infty}(V)=\Gamma\left(\bar{V}, \mathscr{F}^{(\infty)}\left(\frac{\infty}{V}\right)\right.
$$

We say that V^{\prime} and $b D$ are regularly separated at $p \in b D \cap V^{\prime}$ if there exist $N \in \mathbb{N}, c>0$ and a neighborhood U of p such that

$$
\begin{equation*}
\operatorname{dist}\left(z, U \cap b D \cap V^{\prime}\right)^{N} \leqslant C \operatorname{dist}\left(z, U \cap V^{\prime}\right) \tag{*}
\end{equation*}
$$

for every $z \in U \cap b D$.
We say V^{\prime} and $b D$ are regularly separated if in the previous definition U can be chosen in such a way as to be a neighborhood of $b D$.

Note that if $b D$ is real analytic ($*$) is the well known Łojasiewicz's inequality [12]. It is worth noting also that $(*)$ does not follow from strict pseudoconvexity of D.

Suppose now V^{\prime} is smooth near $b D$ and let d be its complex dimension. We say that V^{\prime} is transversal to $b D$ at $z \in b D$ if $V^{\prime} \cap b D$ is smooth of real dimension $2 d-1$ and

$$
T_{z}^{\mathbb{C}}\left(V^{\prime} \cap b D\right)=T_{z}^{\mathbb{C}}\left(V^{\prime}\right) \cap T_{z}^{\mathbb{C}}(b D)
$$

(where $T_{z}^{\mathrm{C}}(\cdot)$ is the complex tangent space at z).
It is a very simple matter to prove that if V^{\prime} and $b D$ are transversal at z then they are regularly separated at z.
2. We shall consider first the case where V^{\prime} is a linear subspace: our first statement is the following:

Proposition 1. Let D be pseudoconvex and let $V^{\prime}=\left\{z_{k+1}=\cdots=\right.$ $\left.z_{n}=0\right\}$. Assume $V=V^{\prime} \cap D \neq \varnothing$ and V^{\prime} and $b D$ are regularly separated. Then for every $f \in A^{\infty}(D)$ such that $\left.f\right|_{v}=0$ there exist $\lambda_{k+1}, \ldots, \lambda_{n} \in A^{\infty}(D)$ such that

$$
f=\sum_{j=k+1}^{n} \lambda_{j} z_{j}
$$

We prove first the following result in codimension 1 :
Lemma 2. Let $D \subset \mathbb{C}^{n}$ be a bounded domain with C^{∞}-smooth boundary and let V^{\prime} be the hyperplane $z_{n}=0$. Assume $V=V^{\prime} \cap D \neq \varnothing$ and V^{\prime} and $b D$ are regularly separated. Then:
(i) every $f \in A^{\infty}(D)$ such that $\left.f\right|_{V}=0$ can be written as $f=g z_{n}$, where $g \in A^{\infty}(D)$,
(ii) if D is pseudoconvex the restriction homomorphism $A^{\infty}(D) \rightarrow$ $A^{\infty}(V)$ is onto.

Proof. We shall divide the proof into several steps.
(a) If $f \in C^{\infty}(\bar{D})$ satisfies $\left.f\right|_{V}=0$ then $f=g z_{n}+h \bar{z}_{n}$, where $g, h \in C^{\infty}(\bar{D})$.

Using the fact that V^{\prime} and $b D$ are regularly separated, via Whitney's extension theorem we can find a ball B containing \bar{D} and $F \in C^{\infty}(\bar{B})$ such that $\left.F\right|_{B \cap V^{\prime}}=0, F_{\bar{D}}=f$. Fix $z \in B$ and set $\varphi(t)=F\left(z_{1}, \ldots, z_{n-1}, t z_{n}\right)$. We have

$$
\begin{aligned}
F\left(z_{1}, \ldots, z_{n}\right)= & \varphi(1)=\int_{0}^{1} \frac{d \varphi}{d t} d t=z_{n} \int_{0}^{1} \frac{\partial F}{\partial z_{n}}\left(z_{1}, \ldots, z_{n-1}, t z_{n}\right) d t \\
& +\bar{z}_{n} \int_{0}^{1} \frac{\partial F}{\partial \bar{z}_{n}}\left(z_{1}, \ldots, z_{n-1}, t z_{n}\right) d t
\end{aligned}
$$

(b) If $f \in C^{\infty}(\bar{D})$ is \bar{n}-flat on V (i.e., $\left.\left.\left(\partial^{m} f / \partial \bar{z}_{n}^{m}\right)\right|_{V}=0 \forall m \geqslant 0\right)$ then for any $k \in \mathbb{N}$ there exist $g, h \in C^{\infty}(\bar{D})$ such that $f=g z_{n}+h \bar{z}_{n}^{k}$.

By induction on k. Assume it is true for k; we have

$$
\frac{\partial^{k} f}{\partial \bar{z}_{n}^{k}}=\frac{\partial^{k} g}{\partial \bar{z}_{n}^{k}} z_{n}+k!h \stackrel{\wedge}{j=1}_{k}^{j=1}\binom{k}{j} \frac{k!}{j!} \frac{\partial^{j} h}{\partial \bar{z}_{n}^{j}} \bar{z}_{n}^{j}
$$

from the \bar{n}-flatness it follows that $\left.h\right|_{V}=0$ and so by step (a) $h=z_{n} u \mid \bar{z}_{n} v$, where $u, v \in A^{\infty}(\bar{D})$ and $f=z_{n}\left(g+\bar{z}_{n}^{k} u\right)+\bar{z}_{n}^{k+1} v$.
(c) If $f \in C^{\infty}(\bar{D})$ is \bar{n}-flat on V then $z_{n}^{-1} f \in C^{\infty}(\bar{D})$.

For any $k \in \mathbb{N}$ we have $z_{n}^{-1} f=g+\bar{z}_{n}^{k+2} z_{n}^{-1} h \in C^{k}(\bar{D})$. Now if $f \in A^{\infty}(\bar{D})$ and $\left.f\right|_{\nu}=0$ then f is \bar{n}-flat on V and so setting $g=f z_{n}^{-1}$ we have $f=g z_{n}$, where $g \in A^{\infty}(D)$: this proves (i).

Now let $\pi: \mathbb{C}^{n} \rightarrow V^{\prime}$ be the natural projection; for every $f \in A^{\infty}(V)$ let $\tilde{f}: V^{\prime} \rightarrow \mathbb{C}$ be a C^{∞} smooth extension of f and let $\tilde{F}=\left.\tilde{f} \circ \pi\right|_{\bar{D}}$. We have $\tilde{F} \in C^{\infty}(\bar{D})$ and $\bar{\partial} \tilde{F}=\sum_{j=1}^{n} b_{j} d \bar{z}_{j}$, where b_{1}, \ldots, b_{n} are \bar{n}-flat on V. Then $\alpha=z_{n}^{-1} \bar{\partial} \tilde{F}$ is C^{∞}-smooth on \bar{D} so that we can find $u \in C^{\infty}(\bar{D})$ such that $\bar{\partial} u=\alpha[11]$. Then $F=\bar{F}-z_{n} u$ belongs to $A^{\infty}(D)$ and it is the required extension of f (cf. also [8]).

We are now in a position to prove Proposition 1.
Proof of Proposition 1. Let V_{p}^{\prime} be defined by $z_{k+1+p}=\cdots=z_{n}=0$, $1 \leqslant p \leqslant n-k-1$, and set $D_{p}=D \cap V_{p}^{\prime}$.

We may assume (possibly after a linear transformation of coordinates) that $V_{p}^{\prime} \cap b D$ is C^{∞}-smooth and V_{p}^{\prime} and $V_{p+1}^{\prime} \cap b D$ are regularly separated.

Let $f \in A^{\infty}(D)$ be such that $\left.f\right|_{V}=0$. In view of Lemma 2 we have $\left.f\right|_{D_{1}}=$ $z_{k+1} g_{k+1}$, where g_{k+1} is the restriction to D_{1} of a function in $A^{\infty}\left(D_{2}\right)$.

It follows that $f-z_{k+1} g_{k+1}$ vanishes on D_{1} so that on D_{2} we have $f-g_{k+1} z_{k+1}=g_{k+2} z_{k+2}$, etc.

With the same notations, as a consequence of Proposition 1, we get the following:

Corollary 3. Assume D is pseudoconvex, V^{\prime} and $b D$ are regularly separated and Sing $V^{\prime} \cap b D=\varnothing$. Let f_{1}, \ldots, f_{k} be a complete defining system for V^{\prime}. Then the sheaf homomorphisms

(ii) $\frac{(\infty)}{n} \rightarrow \frac{(\infty)}{V}($ given by "restriction to V ") are onto.

2. The General Case

1. In view of Corollary 3 the problem we are dealing with is locally solvable.

In order to get the global result, in the case V^{\prime} is a global complete intersection (i.e., $k=n-\operatorname{dim}_{\odot} V^{\prime}$) cohomological techniques can be employed proving that the sheaf \mathscr{R} of $C \frac{(\infty)}{D}$-relations between f_{1}, \ldots, f_{k} actually satisfies $H^{1}(\bar{D}, \mathscr{R})=0[1]$.

In the general case here we use a construction which reduces the problem to the linear case, via an extension theorem.

Theorem 4. Assume D is strongly pseudoconvex and let $V_{1}^{\prime}, V_{2}^{\prime}$ be analytic subvarieties of D^{\prime} such that if we set $V_{3}^{\prime}=V_{1}^{\prime} \cap V_{2}^{\prime}$ we have:
(i) Sing $V_{j}^{\prime} \cap b D=\varnothing, j=1,2,3$,
(ii) V_{j}^{\prime} and $b D$ are regularly separated, $j=1,2,3$.

Assume also that V_{1}^{\prime} and V_{2}^{\prime} intersect transversally along $b D$ and let $Z^{\prime}=$ $V_{1}^{\prime} \cup V_{2}^{\prime}, V_{j}=V_{j}^{\prime} \cap D, j=1,2,3$. Then the restriction homomorphism $A^{\infty}(D) \rightarrow A^{\infty}(Z)$ is onto, where $Z=Z^{\prime} \cap D$.

Proof. (1) First of all we prove that the restriction homomorphism $O_{D}^{(\infty)} \rightarrow O \frac{(\infty)}{Z}$ is onto.

For this let $p \in b D$ and U be a small neighborhood of p. Let $f \in A^{\infty}(U \cap Z)$: in view of Corollary 3 (ii) we may assume $\left.f\right|_{V_{3} \cap U}=0$. Assume for the moment we may choose complex coordinates z_{1}, \ldots, z_{n} in such a way that

$$
\begin{aligned}
& V_{1}^{\prime} \cap U=\left\{z \in U: z_{1}=\cdots=z_{k}=0\right\}, \\
& V_{2}^{\prime} \cap U=\left\{z \in U: z_{s}=\cdots=z_{m}=0, s \leqslant k+1\right\} .
\end{aligned}
$$

Let $f_{i}=\left.f\right|_{V_{i} \cap U}$, from Corollary 3 (i) we get

$$
f_{1}=\sum_{j=\overline{k+1}}^{m} h_{j} z_{j}, \quad h_{j} \in A^{\infty}\left(V_{1} \cap U\right), k+1 \leqslant j \leqslant m,
$$

and in view of part (ii) we can extend h_{j} as $H_{j} \in A^{\infty}(U \cap D)$. If we set $F_{1}=$ $\sum_{j=k+1}^{m} H_{j} z_{j}$ we have $F_{1} \in A^{\infty}(U \cap D)$ and $\left.F_{1}\right|_{V_{2} \cap D}=0$.

In the same way we can construct $F_{2} \in A^{\infty}(U \cap D)$ extending f_{2} and vanishing on $V_{1} \cap U$. The function $F=F_{1}+F_{2}$ satisfies $\left.F\right|_{Z \cap U}=f$. This shows that the sequence of sheaves

$$
0 \rightarrow \mathcal{F} \frac{(\infty)}{Z} \rightarrow \Theta_{\frac{1(0)}{D}}^{(\infty)} \rightarrow C_{\bar{Z}}^{(\infty)} \rightarrow 0
$$

is exact and so in order to conclude the proof we have to show that the group $H^{1}\left(\bar{D}, \not \subset \frac{(\infty)}{Z}\right)$ is actually zero. This amounts to proving the following claim: let F be a $(0,1)$-form, C^{∞}-smooth up to $b D, \bar{\partial}$-closed and such that $\left.F\right|_{z}=0$; then there exists $u \in C^{\infty}(\bar{D})$ such that $\bar{\partial} u=F$ and $\left.u\right|_{z}=0$.
(2) The proof of this claim is based on a construction on the theme of the "bumps lemma" of Andreotti and Grauert [2, p. 237] (cf. also [4] and [9]).
2. Consider a finite covering $\left\{B_{j}\right\}, 1 \leqslant j \leqslant q$, of $b D$ where $B_{j}=B\left(\zeta_{j}, \rho\right)$ is the open ball of radius ρ centered at $\zeta_{j} \in b D$, in such a way that $\left\{B\left(\zeta_{j}, \rho / 2\right)\right\}$, $1 \leqslant j \leqslant q$, is also a covering and $Z \cap B_{j}$ is holomorphically equivalent to a plane crossing, $1 \leqslant j \leqslant q$. In view of the bumps lemma we can find an increasing family of pseudoconvex domains $\left\{D_{j}\right\}, 0 \leqslant j \leqslant q$, with C^{∞}-smooth boundary, such that $D_{0}=D, D_{j-1} \cup\left\{\zeta_{j}\right\} \subset D_{j} \subset D_{j-1} \cup B\left(\zeta_{j}, \rho / 2\right)$ and $\bar{D} \subset D_{q} \Subset D^{\prime}$.

Let $\alpha_{1} \in C^{\infty}(\bar{D})$ be such that $\bar{\partial} \alpha_{1}=F$; in particular on $Z \backslash \operatorname{Sing} Z$ we have
$\bar{\partial} \alpha_{1}=0$ and so in view of a result of Malgrange [13] $\left.\alpha_{1}\right|_{z}$ is holomorphic. From part (1) we deduce that there exists $g_{1} \in A^{\infty}\left(D \cap B_{1}\right)$ such that $\left.g_{1}\right|_{Z_{\cap} \cap B_{1}}=\alpha_{1}$; it follows that $u_{1}=\alpha_{1}-g_{1} \in C^{\infty}\left(\overline{D \cap B_{1}}\right), \bar{\partial} u_{1}=F$ on $D \cap B_{1}$ and $u_{1}=0$ on $Z^{\prime} \cap B_{1}$. Let $\eta_{1} \in C_{0}^{\infty}\left(B_{1}\right)$ be such that $\eta_{1}=0$ on $B\left(\zeta_{1}, \rho / 2\right)$ and set $\left.F_{1}=\bar{\partial} \mid\left(1-\eta_{1}\right) u_{1}\right]$. We have the following: F_{1} is C^{∞}-smooth on \bar{D}, $\bar{\partial} F_{1}=0$ and $F_{1}=0$ on $Z^{\prime} \cap D_{1}$. Moreover on \bar{D} we have $F_{1}=F-\bar{\partial} \beta_{1}$, where $\beta_{1}=\eta_{1} u_{1} \in C^{\infty}(\bar{D})$ and $\left.\beta_{1}\right|_{z}=0$. By iteration we get a $(0,1)$-form F_{q}, C^{∞}-smooth on \bar{D}_{q} such that $\bar{\partial} F_{q}=0, F_{q}=0$ on $Z^{\prime} \cap D_{q}$ and on $\bar{D}, F_{q}=$ $F-\bar{\partial} \beta_{q}$, where $\beta_{q} \in C^{\infty}(\bar{D})$ and $\left.\beta_{q}\right|_{Z}=0$.

Now let $\gamma \in C^{\infty}\left(D_{q}\right)$ be such that $\bar{\partial} \gamma=F_{q}$; then $\left.\gamma\right|_{Z^{\prime} \cap D_{q}}$ is holomorphic. Let G be holomorphic on D_{q} and such that $G=\gamma$ on $Z^{\prime} \cap D_{q}$ and set $u=\gamma-G+\beta_{q}$. We have $u \in C^{\infty}(\bar{D}), \bar{\partial} u=F$ and u vanishes on Z.

Thus in order to establish Theorem 4 we only have to prove the following:
Lemma 5. Let V_{1}, V_{2} be germs of analytic submanifolds at $p \in \mathbb{C}^{n}$ such that
(i) $V_{1} \cap V_{2}$ is smooth,
(ii) $T_{p}^{\subset}\left(V_{1} \cap V_{2}\right)=T_{p}^{\mathrm{C}}\left(V_{1}\right) \cap T_{p}^{\mathcal{C}}\left(V_{2}\right)$.

Then we can choose complex coordinates z_{1}, \ldots, z_{n} in a neighborhood U of p in such a way that

$$
\begin{aligned}
& V_{1} \cap U=\left\{z \in \mathbb{C}^{n}: z_{1}=\cdots=z_{k}=0\right\} \\
& V_{2} \cap U=\left\{z \in \mathbb{C}^{n}: z_{s}=\cdots=z_{m}=0, s \leqslant k+1\right\}
\end{aligned}
$$

Proof. We shall consider first the case where $\operatorname{dim}_{\mathrm{C}}\left(T_{p}^{\mathbb{C}}\left(V_{1}\right)+T_{p}^{\mathbb{C}}\left(V_{2}\right)\right)=n$.
Let V_{1} be defined (in a neighborhood U of p) by $z_{1}=\cdots=z_{n-d}=0$ and V_{2} by $f_{1}=\cdots=f_{n-k}=0$; it follows that $V_{1} \cap V_{2}$ has dimension $d+k-n$ and $\partial f_{1} \wedge \ldots \wedge \partial f_{n-k} \wedge \partial z_{1} \wedge \cdots \wedge \cdots \wedge \partial z_{n-d}(p) \neq 0$. Then there is a system of local (holomorphic) coordinates $\zeta_{1}, \ldots, \zeta_{n}$ such that $\zeta_{j}=z_{j}$ for $1 \leqslant j \leqslant k$ and $\zeta_{k+1}=f_{1}, \ldots, \zeta_{n}=f_{n-k}$.

In order to reduce the general case to the previous one we only have to check that under our assumptions $T_{p}^{\mathrm{C}}\left(V_{1}\right)+T_{p}^{\mathrm{C}}\left(V_{2}\right)$ is the Zariski tangent space $T_{p}^{c}\left(V_{1} \cup V_{2}\right)$ of $V_{1} \cup V_{2}$ at p. We have $T_{p}^{c}\left(V_{1}\right)+T_{p}^{\complement}\left(V_{2}\right) \subset$ $T_{p}^{C}\left(V_{1} \cup V_{2}\right)$: in order to prove the opposite inclusion we must prove the following: given a \mathbb{C}-linear map $L: \mathbb{C}^{n} \rightarrow \mathbb{C}$ vanishing on $T_{p}^{\mathbb{C}}\left(V_{1}\right)+T_{p}^{\mathbb{C}}\left(V_{2}\right)$ there is a local holomorphic function g such that $g=0$ on $V_{1} \cup V_{2}$ and $\partial g(p)=L$.

With the above notations we may suppose that on U

$$
\begin{aligned}
& V_{1}=\left\{z \in U: z_{j}=0,1 \leqslant j \leqslant k\right\} \\
& V_{2}=\left\{z \in U: f_{s}(z)=\cdots=f_{m}(z)=0, s \leqslant k+1\right\}
\end{aligned}
$$

and

$$
V_{1} \cap V_{2}=\left\{z \in U: z_{1}=\cdots=z_{k}=f_{k+1}(z)=\cdots=f_{m}(z)=0\right\},
$$

where

$$
\partial f_{s} \wedge \cdots \wedge \partial f_{m}(p) \neq 0, \quad \partial z_{1} \wedge \cdots \wedge \partial z_{k} \wedge \partial f_{k+1} \wedge \cdots \wedge \partial f_{m}(p) \neq 0
$$

and $\operatorname{dim}_{C}\left(T_{p}^{C}\left(V_{1}\right)+T_{p}^{C}\left(V_{2}\right)\right)=n+s-k-1$.
In particular

$$
V_{1} \cap V_{2}=\left\{z \in V_{1}: f_{k+1}(z)=\cdots=f_{m}(z)=0\right\} .
$$

Let \tilde{g} be a local holomorphic function such that $\partial \tilde{g}(p)=L$ and $\left.\tilde{g}\right|_{V_{2}}=0$; set $\tilde{g}_{1}=\left.\tilde{g}\right|_{V_{1}}$.

Then $\tilde{g}_{1}=\sum_{j=k+1}^{m} a_{j} f_{j}$, where $\alpha_{j} \in C\left(V_{1}\right)$, and

$$
\partial_{V_{1}} \tilde{g}_{1}(p)=\partial \tilde{g}(p)\left|T_{P}^{C}\left(V_{1}\right)=L\right| T_{P}^{C}\left(V_{1}\right)=0
$$

$\partial_{V_{1}}$ being the ∂-operator for V_{1} and so $\alpha_{j}(p)=0, k+1 \leqslant j \leqslant m$. Extend α_{j} by A_{j} (holomorphically), $k+1 \leqslant j \leqslant m$, and set $G=\sum_{j=k+1}^{m} A_{j} f_{j}$; we have $\left.G\right|_{V_{1}}=\tilde{g}_{1},\left.G\right|_{V_{2}}=0, \partial G(p)=0$. The function we are looking for is now $g=\tilde{g}-G$.
3. We are now in a position to prove our main theorem.

Let $D \subset \mathbb{C}^{n}$ be a bounded domain with C^{∞}-smooth boundary $b D$ and let V^{\prime} be a complex analytic subvariety of an open neighborhood D^{\prime} of D such that $V=V^{\prime} \cap D \neq \varnothing$. Let f_{1}, \ldots, f_{k} be a complete defining system for V^{\prime}.

Theorem 6. Assume

(i) D is strongly pseudoconvex,
(ii) Sing $V^{\prime} \cap b D=\varnothing$ and $V^{\prime}, b D$ are regularly separated.

Then every $f \in A^{\infty}(D)$ vanishing on V can be written as

$$
f=\sum_{j=1}^{k} h_{j} f_{j}
$$

where $h_{1}, \ldots, h_{k} \in A^{\infty}(D)$.
Proof. Consider the holomorphic map $F: D^{\prime} \rightarrow \mathbb{C}^{k}$ given by $F(z)=$ $\left(f_{1}(z), \ldots, f_{k}(z)\right)$ and let Γ be its graph. Consider in $D^{\prime} \times \mathbb{C}^{k}$ a bounded domain B with C^{∞}-smooth boundary, strongly pseudoconvex and such that $B \cap\left(D^{\prime} \times\{0\}\right)=D$ and Γ intersects $b B$ transversally. From the fact
$\left\{f_{1}, \ldots, f_{k}\right\}$ is a complete defining system for V^{\prime} it follows that the jacobian matrix of F has rank n - $\operatorname{dim}_{\mathbb{C}} V^{\prime}$ near $b D$ and in particular Γ intersects D^{\prime} transversally along $b B$. Let $Z=\left(D^{\prime} \cup \Gamma\right) \cap B$ and let $f \in A^{\infty}(D)$ be such that $f=0$ on V.

Let \tilde{f} be defined by: $\tilde{f}=f$ on D and $f=0$ on $\Gamma \cap B$; because of the transversality, \tilde{f} is holomorphic on Z and $\tilde{f} \in A^{\infty}(Z)$.

By Theorem 4 applied to Z we can find $G \in A^{\infty}(B)$ such that $\left.G\right|_{Z}=\tilde{f}$. In particular $G=0$ on $\Gamma \cap B$. Now $\Gamma \cap B$ is holomorphically equivalent to a plane section and thus, using Proposition 1 we can find $\tilde{h}_{1}, \ldots, \tilde{h}_{k} \in A^{\infty}(B)$ such that $G=\sum_{j=1}^{k} \tilde{h}_{j}\left(f_{j}-w_{j}\right)\left(w_{1}, \ldots, w_{k}\right.$ complex coordinates in $\left.\mathbb{C}^{k}\right)$. By restriction to \bar{D} we get $f=\sum_{j=1}^{k} h_{j} f_{j}$, where $h_{j}=\left.\tilde{h_{j}}\right|_{\bar{D}}$. This concludes the proof of our main theorem.

Corollary 7. In the above hypothesis assume $f \in A^{\infty}(V)$ vanishes on V of order $q>0$. Then f can be written as

$$
f=\sum_{j_{1}+\cdots+j_{k}=q} h_{j_{1} \cdots j_{k}} f_{1}^{j_{1}} \cdots f_{k}^{j_{q}},
$$

where $h_{j_{1} \ldots j_{k}} \in A^{\infty}(D), j_{1}+\cdots+j_{k}=q$.

References

1. E. Amar, $\bar{\partial}$-cohomologie C^{∞} et applications, preprint.
2. A. Andreotti and H. Grauert, Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France 90 (1962), 193-259.
3. P. de Bartolomeis, "Hardy-like" estimates for the $\bar{\partial}$-operator and scripture theorems for functions in \mathscr{H}^{0} in strictly pseudo-convex domains, R.U.M.I. (5) 16-R (1979), 430-450.
4. P. de Bartolomeis, Some constructions for relative approximation of holomorphic functions, in "Proceedings, International Conferences, Cortona. Italy, 1976-1977," pp. 65-73, Scuola Normale Superiore Pisa, 1978.
5. P. de Bartolomeis and G. Tomassini, Idéaux de type fini dans $A^{x}(D), C . R . A c a d . S c i$. Paris 293 (1981), 133-134.
6. H. Grauert and I. Lieb, Das Ramirezsche Integral und die Lösung der Gleichung $\bar{\partial} u=f$ im Bereich des beschränkten Formen, Rice Univ. Stud. 56(2) (1971), 29-50.
7. G. M. Henkin, Approximation of functions in pseudo-convex domain and the theorem of Z. L. Leibenson, Bull. Polskoi Ak. Nauk 19(1) (1971), 37-42. [In Russian.]
8. G. M. Henkin, Continuation of bounded holomorphic functions from submanifolds in general position to strictly pseudo-convex domain, Izv, Akad. Nauk SSSR Ser. Mat. 36 (1972), 540-567. [In Russian.]
9. N. Kerzman. Hölder and L_{p} estimates for solutions of $\bar{\partial} u=f$, Comm. Pure Appl. Math. 24 (1971), 301-379.
10. N. Kerzman and A. Nagel, Finitely generated ideals in certain function algebras, J. Funct. Anal. 7 (1971), 212-215.
11. J. Kонn, Harmonic integrals on strongly pseudo-convex manifolds, Ann of Math. 78 (1963), 112-148; 79 (1964), 450-472.
12. S. Łojasiewicz, Sur le problème de la division, Studia Math. 18 (1959), 87-136.
13. B. Malgrange, Sur les fonctions differentiables et les ensembles analytiques, Bull. Soc. Math. France 91 (1963), 113-127.
14. N. Øvrelid, Generators of the maximal ideals of $A(\bar{D})$, Pacific J. Math. 39(1) (1971), 219-223.
