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A subset X of vertices of a graph is a k-minimal P-set if X has property P, but the removal of 

any 1 vertices from X, where 1 s k, followed by the addition of any (I - 1) vertices destroys the 

property P. We note that 1-minimality is the usual minimality concept. In this paper we 

determine &(P,), the largest cardinality of a k-minimal dominating set of the n-vertex path P,. 
We also prove for any n-vertex graph G, &(G)r/(G) c n and finally a ‘Gallai-type’ theorem for 

/c-minimal parameters is established. 

1. Introduction 

The concept of minimality may be generalised as follows. Let S be a set and P a 

property enjoyed by some of the subsets of S. A subset of S with (without) 

property P is called a P-set (P-set). A subset X of S is called a k-minimal P-set if 

X has the property P, but for all 1 satisfying 1 =S 1 s k, all l-subsets U of X and all 

(I - 1)-subsets R of S, (X - U) U R is a P-set. We note that 1-minimality is the 

usual concept of minimality. In this paper the set S will be the vertex set V of a 

graph and a subset X c V has property P if and only if X is dominating. This 

specialization of the above defines a k-minimal dominating set of a graph. We 

define P,(G) to be the largest cardinality of a k-minimal dominating set of G. Let 

y(G) (T(G)) be the smallest (largest) cardinality of a minimal dominating set of 

G. The following inequalities are obvious for any graph G: 

~(G)s.-.s&(G)Q.. . s I”(G) =z T,(G) = T(G). 

In this work, we first strengthen the theorem of Jaeger and Payan [6] which 

asserts that the product of domination numbers of a graph and its complement is 

at most the number of vertices in the graph. The examination of their proof, in 

fact, motivated the new extended definitions of minimality given here. The 

principal result of the paper is the exact determination of Tk(P,). This calculation 

is surprisingly complex although the evaluations of y(P,) and T(P,) are trivial. 
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It is clear that many other parameters of graphs and more general structures, 
which are defined in terms of minimality may also be similarly generalized and 
that the maximality concept may also be extended. In [2], Cockayne, 
MacGillivray and Mynhardt compute &(Pn) and Pk(Cn) where &(G) is the 
smallest cardinality of a k-maximal independent set of vertices of G. The final 
result of this paper is a generalization of a theorem of Gallai [3] concerning 
certain k-maximal and k-minimal parameters. 

For an excellent bibliography of the study of domination in graphs, the reader 
is referred to [5]. Extensions of Gallai’s Theorem are given in [l]. 

2. The results 

2.1. The Jaeger-Payan generalisation 

In [6] Jaeger and Payan proved the following Nordhaus-Goddum type result 
for the domination number. 

Theorem 1 (Jaegar and Payan). For any n vertex graph G, y(G)y(G) c n. 

We show here that their proof may be adapted to prove the stronger result: 

Theorem 2. For any n-vertex graph G, T,(G)y(@ s n. 

Proof. The result is trivial for G(G) = 1, hence we assume T,(G) = t a 2. Let 
X= {Xi,. . . , x,} be a largest 2-minimal dominating set. Since X is dominating, 
there exists a partition of V(G) into classes V,, . . . , V,, such that for each 
i=l . . 3 t, Xi E K and Xi is adjacent to all other vertices in V. Let 9 be such a 
part&n such that the number of vertices which are adjacent to all other vertices 
in their class, is maximum. We show that each class of 9 is a dominating set of G. 

For suppose VI (say) does not dominate G. Then there exists a vertex x which 
is in V, (say) and is adjacent in G to all vertices of VI. Vertex x is not adjacent to 
all vertices of V,, for otherwise (X - {x,, x2}) U {x} dominates G, contrary to 
2-minimality. Therefore x +x2 and we now consider the partition 9’ = 

v;, . . . ) V: where Vi = V,U{x}, Vi=V,-{x}, Vj=y for 2<jst. We have 

XiEVffori=l,..., t and 9”’ has at least one extra vertex (the vertex x) which is 
adjacent to all other members of its class. This contradicts the maximum property 
of 9. Thus each V dominates G and 

n=i II& y(i?)=G(G)@). 0 
i=l i=l 

The domatic number d(G) of G is the largest order of a partition of V(G) into 
dominating sets of G. The following deduction from the proof of Theorem 2 is 
obvious. 
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Corollary 1. For any graph G, G(G) s d(G). 

2.2. The calculation of &(P,,) 

Define an l-subset Q of a dominating set X of a graph G to be stable (unstable) 
if and only if there does not exist (there exists) an (I - 1)-subset R of V - X such 
that (X - Q) U R is dominating. Notice that a dominating set X is k-minimal if 
for each 1 c 1 s k, all I-subsets of X are stable. Let P,, have the (left to right) 
vertex sequence v,, . . . , v,. The simple proof of the following proposition is 
omitted. 

Proposition 1. If X is a (k - 1)-minimal but not k-minimal dominating set of P,, 
then any unstable k-set in X consists of consecutive vertices of X, i.e. if 
X = {v,,,, , v,_, . . . , v,,} where m, c m2 6 . * * s m,, then any unstable k-set in X 

may be written as {v,,+,, v,,,,~, . . . , v,,+~} for some i. 

In what follows P,( i, m> where 1 s i s m =z n, will denote the subgraph of P, 

induced by the vertex subset {vi, Vi+l, . . . , v,}. Our first Lemmas l(a) and (b) 
give necessary conditions for consecutive vertices of P,, to appear in a k-minimal 
dominating set. 

Lemma l(a). For any k, n 2 1, if X is a k-minimal dominating set of P, such that 
{vi_,, vi} z X for some i, then exactly one of the following holds: 

(i) n < i + 3k, in which case n = i + 3r + 1, where 0 s r c k - 1 and 

V(P,(i,n))fIX={Vi+3Ij=O, 1,. . . , r}; 

(ii) n si+3kand 

V(P,(i, i + 3k)) fl X = {v;+~~ 1 j = 0, . . . , k}. 

Proof. By induction on k. Let k = 1 and let X be a l-minimal (i.e. minimal) 
dominating set of P,, with {v~_~, Vi} s X for some i. Suppose n < i + 3. If n = i, 
then X is not minimal, hence n 3 i + 1. If n = i + 2 then vi+2 = v, is dominated, 
therefore Vi+i or V~+~ is in X. In either case X is not minimal so the case n = i + 2 
cannot occur. Therefore n = i + 1 and (i) holds. If n 3 i + 3, it is easily seen that 

vi+l or vi+2 in X contradicts minimality and hence vi+3 must be in X so that vi+2 
is dominated. Hence the assertion (ii) holds. 

Now suppose that the result is true for k - 1 where k Z= 2 and let X be a 
k-minimal dominating set of P,, with {Vi-1, vi} c X. 

Case 1. Let n <i + 3(k - 1). Since X is (k - 1)-minimal, by the induction 
hypothesis, condition (i) holds. 

Case 2. Let i + 3(k - 1) < n. By the induction hypothesis, 

V(P,,(i,i+3(k-l)))nX={Vi+y(j==0,...,k-1}. 

If n = i + 3(k - l), then 

(1) 

X’ = (X - { Vi+3j ( j = 0, . . . 9 k - 1)) U {Vi+3j+2 1 j = 0, . . . , k - 2) 
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dominates P,, which contradicts the k-minimality of X. If n = i + 3(k - 1) + 2, 
then since v, is dominated, v, or v,_~ is in X. Again X’ dominates and we 
conclude that either n = i + 3(k - 1) + 1 in which case (i) is satisfied, or 
n 2 i + 3k. In this case, it follows from (1) and the 1-minimality of X, that neither 
v~+~(~_~)+~ nor Vi+3(k_1)+2 is in X. Therefore Vt+3k E X to dominate its predeces- 
sor and (ii) holds. This completes the proof of Lemma l(a). 0 

Lemma l(a) has a ‘dual’ form concerning the vertices to the left of a 
consecutive pair vi-l, vi in a k-minimal dominating set. The proof is similar to 
that of Lemma l(a) and is omitted. 

Lemma l(b). For any k, n 2 1, if X is a k-minimal dominating set of P,, such that 
{u~_.~, vi} E X for some i, then exactly one of the following hola!s: 

(i) i-l-3k<l ( i.e. i < 2 + 3k), in which case 1 = i - 1 - 3r - 1 (i.e. i = 3r) 

for some r, 1 G r c k, and 

V(P,(l,i-l))fIX={~~_~-~j~0~~~r-l}; 

(ii) i - 1 - 3k 2 1 (i.e. i 2 3k + 2) and 

V(P,,(i-1-3k,i-1))flX={v,_,_,j(0~~~k}. 

By a &-set we mean a k-minimal dominating set of largest cardinality. 

Theorem 3. For any k, n 2 1, P, has a &-set which is independent. 

Proof. Let n and k be such that the statement is false. Since the result follows 
easily if k = 1, it is clear that k 2 2. Let X be a &-set in P,, such that P,,(X) has as 
few edges as possible and let i be the largest integer such that vi-i, vi E X. By the 
choice of X and Lemma 1, respectively, neither vi+i nor Vi+2 is an end vertex of 
P,, and {Vi+17 v~+~} flX = 0; hence n 2 i + 3 and q+3 EX. Consider the set 
X’ = (X - {vi}) U {v~+~} which clearly dominates P,,. By the choice of X, X’ is 
not k-minimal. Hence there is a smallest integer 1 s k for which there exists an 
f-set Q G X’ such that (X’ - Q) U R dominates P, for some (I - 1)-set R E V(P,). 

Suppose q+i E Q. By the choice of 1, vi+i $ R. But then (X - ((Q - {q+i}) U 
{vi})) U R = (X’ - Q) U R which dominates P,,, contradicting the k-minimality of 
X. Hence vi+i $ Q. By the choice of 1 and by Proposition 1, either Q G 

{ vi, v2, . . . 9 vi-l} or Q E {ui+3, rJi+4, . . . , v,}. If Q c (~1, ~2, . . . , Vi-l}, then 
since (X’ - Q) U R dominates P,,, it is clear that (X - Q) U R dominates P,,. 

Hence Q s {vi+3, vt+4, . . . , v,}. If Vi+3 4 Q then vi+3 E (X’ - Q) U R in which 
case (X - Q) U R dominates P,. 

Hence, again by Proposition 1 and Lemma 1, Q = {Vi+3j 1 j = 1,2, . . . , 1). By 
the choice of i, Vi+31+1 $X’. Hence at least 31- 3 + 1 vertices of P are not 
dominated by X’ - Q and since Y(P~~-~+~) = [(3(1- 1) + 1)/31, no (I - 1)-set 
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R c_ V(Pn) exists such that (X’ - Q) U R dominates P,. This contradiction 
completes the proof. 0 

We now state and prove the principal result of the paper. 

Theorem 4. For all k 2 1 and n 2 2, 

r,(PJ = I 

n 

vk+l) 3k + 1 1 ifn=3l+l(mod3k+l) 

forsomel~{O, 1,. . . ,k-1}, 

I 
(k + l(n + 1) 

3k + 1 I 
otherwbe 

Proof of lower bound. Write n as n = h + r, where h = rn(3k + 1) for some 
integer rn, and 0 < r < 3k. Let 

X={vj~V(P,))i=1(mod3k+1)ori=31(mod3k+1),1~l~k}. 

Clearly, X dominates P,, unless r = 31+ 2 for some I, 1~ I c k - 1. Define 

(x - tvh+3j 1 1 <j C I}) U {v~+~~+~ 1 1 <j <l} 

Y= 

{ 

ifr=31+2forsomel,l~I<k-1, 

X otherwise. 

Then Y dominates P,, for all n. Moreover, we show that Y is k-minimal unless 
r=31forsomel, lclsk-1. 

In order to see this, suppose firstly that r = 31 for some I, 1 c 1 s k - 1. Let 

Q = {u/z+11 U {v/z+3j (l<j<l}. Then lQl=l+l<kandexactly31verticesofP,, 
the vertices of P, (h + 1, n), are not dominated by Y - Q. But Y(P~~) = [31/3] = 1 
and hence there exists an f-set R such that (Y - Q) U R dominates P,. In 
particular, R = {Uh+3j_l 1 1 s j s I}. 

Now suppose r # 31 for any 1, 1 < 1~ k - 1. Let S be any subset of Y consisting 
of k consecutive vertices of Y. Note that at least 3(k - 1) + 1 consecutive vertices 
of P,, are not dominated by Y - S and since y(P3ck_-1j+1) = [(3(k - 1) + 1)/3] = k, 
no set T with fewer than k vertices exists such that (Y - S) U T dominates P,. 
Hence S is stable and therefore any subset of Y consisting of fewer than k 
consecutive vertices of P,, is also stable. Now let s be the smallest integer such 
that Y is not s-stable. By Proposition 1, any unstable s-subset of Y consists of s 
consecutive vertices of Y. Since any set of k or fewer consecutive vertices of Y is 
stable, s > k and Y is k-minimal as asserted. 

In view of the above, define 

Z= (Y-Q)UR 

1 

ifr=3lforsomel,lcl<k-1, 

Y otherwise, 

where Q and R are as above. Z is a k-minimal dominating set of P, for all n ; 
hence &(P,,) 3 (ZI. Moreover, 

IZI = (k + 1)m + (Z II V(Pn(h + 1, n))l (2) 
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(where rr = h + r with h = m(3k + 1) and 0 < r < 3k), and 

if r = 31 for some 1, 1~ 1 s k - 1, 

lZnV(P,(h+l,n))J= k+l ifr=3kJ 
l+l ifr=31+2forsomel,O~l<k-1, (3) 

l+l ifr=3l+lforsomel,O<l<k-1. 

It is easily verified from (2) and (3), that in the first three cases of (3) 
IZ( = [(k + l)(n + 1)/(3k + l)] and in the fourth case IZI = [(k + l)n/(3k + l)]. 
This completes the proof of the lower bound. 

Proof of upper bound. We first prove the following lemma. 

Lemma 2. Zf X is an independent r, set of P,, then among any 3k + 1 consecutive 
vertices of P,,, at most k + 1 are in X. 

Proof. Suppose there are 3k + 1 consecutive vertices S = {vi, v~+~, . . . , v~+~~} 

of P, such that IS n X( 2 k + 2. Let j (1 respectively) be the smallest (largest) integer 
such that vj E S tl X (vI E S fl X) and let S’ = {vi+*, Vj+3, . . . , v~_~). Then IS’ fl 
XI = (S n XI - 2 3 k while IS’I s 3k - 3. But Y(P+~) = [(3k - 3)/3] = k - 1 and 
therefore there exists a set R with JR1 s k - 1 which dominates S’. Clearly 

(X-(.S’nX))UR d ominates P,, contradicting the k-minimality of X. Hence 

the lemma is proved. Cl 

To continue with the proof of the 
h = m(3k + 1) for some integer m, 

result, 

T,(C) > 

I 
([f$+y 1) 

12 

3k + 1 I 

i.e., 
(k+l)m+l+l 

r,(Pn) 2 
(k+l)m+1+2 

(k+l)m+l+2 

(k+l)m+k+2 

upper bound, we again put n = h + r with 
and 0~ r s 3k. Suppose, contrary to the 

ifr=31+1forsomeI,Osl<k-1, 

otherwise, 

ifr=31forsomel,lGl<k-1, 

ifr=3l+lforsomel,O~l~k-1, 

ifr=31+2forsomel,O<l<k-1, 

if r = 3k. 

By Theorem 3, P, has an independent r-set X. Let X’ = X fl V(Pn( 1, h)). By 
Lemma 2, IX’1 < (k + l)m, which implies 

1+1 ifr=3lforsomel,16l~k-1, 

IX-X’IS 
1 + 2 if r = 31+ 1 for some 1, 0 s 1 =S k - 1, 

1+2 ifr=31+2forsomel,O~l~k-1, 

k+2 ifr=3k. 
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The last case, i.e. IX - X’I 2 k + 2 for I = 3k, contradicts Lemma 2 applied to 
P, (h, n ). Hence three cases remain. 

Case 1. Let r = 31+ 1 for some I, 0 G 16 k - 1 and consider the 3(k - I) 
vertices of the subgraph P,(h - 3(k - f) + 1, h) of P,,. At least 3(k -I) - 2 of 
these are not dominated by X - V(P,(h - 3(k - 1) + 1, h)) and therefore 

(X’ II V(Pn(h - 3(k -I) + 1, h))( a [3(k -:’ - “I= k - 1. 

But then 

JXfW(P,(h-3(k-I)+l,n))Jz-k-l+Z+2=k+2 

while IV(P,(h - 3(k - 1) + 1, n))I = 3k + 1, contradicting Lemma 2. 
Cuse2. Letr=31wherel<lsk-1. If~~EX’orv~_~eX’, thenX-X’is 

unstable since y(P3[) = [31/3] = I <I + 1. Hence {vh_i, vh} II X’ = 0 and there- 
forev,_,eX’,~~+iEX-X’. Considerthe3(k-Z)+lverticesofP,(h-3(k- 
I), h). At least 3(k - 1) - 1 of these are not dominated by X - V(P,(h - 3(k - 
I), h)) and therefore 

IX’ n V(P,(h - 3(k - I), h))( 2 [3(k -;) - ‘I= k - 1. 

If IX’1 < (k + l)m, then IX - X’J 2 1+ 2 so that 

IXnV(P,(h-3(k-l),n))lsk-l+l+2=k+2 

while IV(Pn (h - 3(k - I), n))I = 3k + 1, contradicting Lemma 2. Hence (X’I = 
(k + 1)m. Since {vh_i, vh} fl X’ = 0, 

(X’nV(P,(l,h-2))(=(k+l)m. 

Consider the subgraphs P,,( 1, 3k - 1) and P,(3k, h - 2) of P,. Clearly, 
P,(3k, h -2) h as order (3k + l)(m - 1) so that 

(X’ tl V(P,(3k, h - 2))( s (k + l)(m - 1) by Lemma 2. 

Therefore IX’ fl V(P,( 1, 3k - 1))l 2 k + 1. 

Let j be the largest integer such that Vi E X’ n V(P,( 1, 3k - 1)) =X” and 
consider P, (1, j - 2). Clearly X” tl V(P, (1, j - 2)) = Q satisfies IQ1 Z= k, while 
P,, (1, j - 2) has order at most 3k - 3. Since Y(P~~_~) = k - 1, There exists a set R 
containing k - 1 vertices which dominates P,, (1, j - 2). But then (X - Q’) U R 
dominates P,, where Q’ is any k-subset of Q, contradicting the k-minimality of 
A. 

Case 3. Let r = 31+ 2 where 0 <I G k - 1. If {vh-*, vh-i, vh} rl X # 0, then at 
most 31+ 3 vertices remain to be dominated by Q = X - X’ which has at least 
I+ 2 vertices. But Y(P~~+J = 1 -I- 1; hence there exists an (I + 1)-element subset R 
of V(P,,) such that (X - Q) U R dominates P,,, contradicting the k-minimality of 
X if I < k - 2. Hence in this case, {v h _ & uh__l, uh} n X’ = 0 implying that vh-l is 
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not dominated which is impossible. If 1= k - 1, then by Lemma 2, {vh_i, uh} fl 
X’=0and(X-XfI=I+2=k+1,sothatv,_,EX’andIX’I=(k+l)m.Asin 
Case 2, a contradiction of the k-minimality of X can now be obtained. 0 

2.3. A generalization of Gallai’s Theorem 

The point covering number a(G) of a graph G (i.e. smallest number of vertices 
which cover all the edges) and the independence number /3(G) (i.e. largest 
cardinality of an independent set of vertices) are related by the well-known result 
of Gallai [3]. 

Theorem 5 (Gallai). For any n vertex graph, a(G) + p(G) = n. 

In order to generalize this result we need three definitions. Let P be a property 
associated with the subsets of a set S. The subset X of S is a k-maximal P-set if X 
is a P-set but the addition of any I elements to X where 1 s k, followed by the 
removal of any 1 - 1 elements, yields a P-set. 

Let Y c S be a Q-set if and only if it intersects every P-set (i.e. it is a 
transversal of the family of P-sets. 

Finally property P is hereditary if each subset of a P-set is also a P-set. 

Theorem 6. Let P be a hereditary property. Then X is a k-maximal P-set if and 

only if S - X is a k-minimal Q-set. 

Proof. Let X be a k-maximal P-set and Y = S -X. Y is a transversal of the 
P-sets for otherwise there is a P-set entirely contained in X contrary to the 
hereditary property. Suppose Y is not a k-minimal Q-set. Then for some I-subset 
T of Y where I c k and an (I - 1)-subset U of S - Y, (Y - T) U U is a Q-set. 

Consider the set (X U T) - U. It is not a P-set since it does not intersect the 
Q-set (Y - T) U U. Hence (X U T) - U is a P-set which contradicts the k- 

maximality of X. Therefore Y is a k-minimal Q-set. The proof of the converse is 
similar and omitted. Cl 

If +(S, P) and /$.(S, P) denote the smallest cardinality of a k-minimal Q-set 
and the largest cardinality of a k-maximal P-set, we have immediately: 

Corollary 2. If P is a hereditary property on the subsets of S, then 

%(S, P) + MS, P) = ISI. 

In the special case where k = 1, S = V(G) and P-sets are independent sets of 
vertices, Corollary 2 reduces to Gallai’s Theorem. 
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Finally we note that Hedetniemi [4] has also obtained some generalisations of 
Gallai’s Theorem. Most of these may be deduced from Corollary 2 by taking 
k = 1 and P to be a suitable hereditary property associated with the subsets of the 
set S which is either the vertex set or edge set of a graph. 
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