Operator Valued Weights in von Neumann Algebras, II

UFFE HAAGERUP

Matematisk Institut, Odense Universitet, Niels Bohrs Allé, DK-5230 Odense M, Denmark

Communicated by A. Connes

Received December 1977

Let M be a von Neumann algebra, and N a sub von Neumann algebra of M. We prove that if ω and ψ are n.f.s. weights on N and M respectively, such that ω extends ψ, then there is a unique n.f.s. operator valued weight T from M to N, such that $\psi = \omega \circ T$. Moreover we generalize the notion of modular automorphism groups associated with conditional expectations to operator valued weights.

Introduction

In [9] we defined operator valued weights from a von Neumann algebra M to a sub von Neumann algebra N. We refer the reader to [9] for definitions and notation. The sections of this paper are denoted sections 5 and 6, and all references to sections 1–4 should be understood as references to [9, sects. 1–4].

In the following we list the main results of this paper. In [9, sect. 4] we proved, that when T is a n.f.s. operator valued weight from M to N, and ϕ is a n.f.s. weight on N, then ϕ^T extends ϕ. The first theorem here proves the converse, namely:

Theorem (5.1). Let M, N be von Neumann algebras $N \subseteq M$, and let ω, ψ be n.f.s. weights on N and M respectively. If $\phi^T(x) = \phi^T(x)$ for any $x \in N$, then there exists a unique n.f.s. operator valued weight T such that $\psi = \omega \circ T$.

The proof of theorem 5.1 relies on a reduction of the problem to the case, where ϕ, ψ are traces on semifinite algebras by using the crossed products $R(M, \phi^*)$ and $R(N, \psi^*)$, which are semifinite (cf. [15]). From Theorem 5.1 we obtain a simple criterion for semifiniteness of the centralizer of a weight, namely:

Theorem (5.7). The centralizer M_ϕ of a n.f.s. weight ϕ on a von Neumann algebra M is semifinite if and only if there exists a ϕ^*-invariant n.f.s. operator valued weight from M to M_ϕ.
It should be noted, that there exists a n.f.s. weight ϕ on the hyperfinite type II$_\infty$ factor, such that M_ϕ is of type III (cf. [8]).

The following result is perhaps surprising, since it is in marked contrast to what is valid for conditional expectations. Recall that $P(M, N)$ is the set of all n.f.s. operator valued weights from M to N, $N \subseteq M$.

Theorem (5.9). $P(M, N) \neq \emptyset \iff P(N', M') \neq \emptyset$.

M' and N' are of course the commutant of M and N. As a corollary we obtain that there is always a n.f.s. operator valued weight from the algebra $B(H)$ of all bounded operators on a Hilbert space H to a von Neumann algebra N on H. Note that there is a normal conditional expectation from $B(H)$ to N if and only if N is a direct sum of type I factors (cf. [11]). In the last section (Section 6) we generalize some recent results due to Combes and Delaroche on conditional expectations (cf. [2]). The modular automorphism group σ^T, $T \in P(M, N)$ on $N^c = N' \cap M$ and the cocycle Radon Nikodym derivatives $(DT_2 : DT_1)$, $T_1, T_2 \in P(M, N)$ can be defined exactly as in [2].

Theorem (6.5). Let T_0 be a fixed element in $P(M, N)$. The map $T \to (DT : DT_0)$ is a bijection of $P(M, N)$ onto the set of σ^T-cocycles in the relative commutant N^c.

Not all results from [2] can be generalized to operator valued weights. For instance the restriction map $T \to T | N^c$ is a bijection of $P(M, N)$ onto $P(N^c, Z(N))$ if and only if there is a faithful family of conditional expectations from M to N (cf. Theorem 6.6). In general, however, the restriction of T to N^c need not to be semifinite. Using Connes' and Takesaki's relative commutant Theorem [5, Chap. II, Theorem 5.1] we show:

Corollary (6.11). If $M = R(N, \theta)$ is the continuous decomposition of a properly infinite von Neumann algebra due to Takesaki [15], then $P(M, N) \neq \emptyset$, but there is no normal conditional expectation from M to N (we identify N with its natural injection in the crossed product).

5. Conditions for Existence of Operator Valued Weights

Theorem 5.1. Let M and N be von Neumann algebras, $N \subseteq M$, and let ϕ and ψ be n.f.s. weights on M and N respectively, such that $\phi(x) = \psi(x) \forall x \in N$. Then there exists a unique n.f.s. operator valued weight S from M to N such that $\phi = \psi \circ S$.

For the proof we need some results about crossed products from [15]: Let M be a von Neumann algebra, and ϕ a n.f.s. weight on M. The crossed
product $R(M, \sigma^\phi)$ is generated by M (or more precisely a subalgebra isomorphic to M) and a one parameter group of unitaries $\lambda(t), t \in \mathbb{R}$ such that

$$\sigma^\phi(t) = \lambda(t)x \lambda(t)^*, \quad x \in M.$$

There is a dual action $s \mapsto \theta_s^\phi$ of \mathbb{R} on $R(M, \sigma^\phi)$. The automorphisms θ_s^ϕ can be characterized by their action on the generators:

$$\theta_s^\phi(x) = x, \quad x \in M,$$

$$\theta_s^\phi(\lambda(t)) = e^{-ist}\lambda(t), \quad t \in \mathbb{R}.$$

In particular $M \subseteq \{y \in R(M, \sigma^\phi) \mid \theta_s^\phi y = y \ \forall s \in \mathbb{R}\}$. In fact M is exactly the fixed point algebra under θ_s^ϕ.

Lemma 5.2. In the above situation, put

$$T_x = \int_{-\infty}^{\infty} \theta_s^\phi x \ ds, \quad x \in R(M, \sigma^\phi)_+. $$

Then:

1. T is a n.f.s. operator valued weight from $R(N, \sigma^\phi)$ to M.
2. There is a (unique) n.f.s. trace τ on $R(M, \sigma^\phi)$ such that $(D\phi \circ T : D\tau)_t = \lambda(t), \quad t \in \mathbb{R}$.
3. The trace τ satisfies $\tau \circ \theta_s^\phi = e^{-s\tau}, \quad s \in \mathbb{R}$.

Proof. (1) The above integral defines an element in the extended positive part of $R(M, \sigma^\phi)$ by

$$\langle \phi, T_x \rangle = \int_{-\infty}^{\infty} \phi \circ \theta_s^\phi(x) \ ds, \quad \phi \in R(M, \sigma^\phi)_+. $$

We extend θ_s^ϕ to an automorphism group on $R(M, \sigma^\phi)_+$ as in the proof of proposition 4.9. Since

$$\langle \phi, \theta_s^\phi(T_x) \rangle = \langle \phi \circ \theta_s^\phi, T_x \rangle = \int_{-\infty}^{\infty} \phi \circ \theta_s^\phi \circ \theta_t^\phi(x) \ dt = \langle \phi, T_x \rangle$$

it follows that

$$\theta_s^\phi(T_x) = T_x, \quad s \in \mathbb{R}.$$

Let $T_x = \int_{0}^{\infty} \lambda d\lambda_1 + \infty p$ be the spectral resolution of T_x, then $\theta_s^\phi(e_\lambda) = e_\lambda$ and $\theta_s^\phi(p) = p$.

Hence $e_\lambda, \ p \in M$ (fixed point algebra under θ_s^ϕ), which proves that T_x can be regarded as an element of \hat{M}_+. It is easy to check that T is a normal, faithful operator valued weight from $R(M, \sigma^\phi)$ to M. To prove that T is semifinite, we consider $T(\lambda(f) \mu(f))$, where f is a continuous function with compact support,
and \(\lambda(f) = \int_{-\infty}^{\infty} f(t) \lambda(t) \, dt \). Put \(\phi_n(s) = \exp(s^2/2n^2) \), \(n \in \mathbb{N} \), then \(\phi_n(s) \not\to 1 \) for \(n \to \infty \) uniformly on compact sets.

Put
\[
g_n(t) = \int_{-\infty}^{\infty} \exp(s^2/2n^2) e^{-ist} \, ds = (2\pi)^{1/2} n \exp(\pi t^2/2).
\]

Note that \(g_n(t) \geq 0 \) and \(\int_{-\infty}^{\infty} g_n(t) \, dt = 2\pi \). Since by Lebesgue's monotone convergence theorem:
\[
T(\lambda(f)^* \lambda(f)) = \sup_{n \in \mathbb{N}} \int_{-\infty}^{\infty} \theta_s \phi(\lambda(f)^* f) \phi_n(s) \, ds
= \sup_{n \in \mathbb{N}} \int_{-\infty}^{\infty} \lambda(f)^* f(t) e^{-ist} \phi_n(s) \, ds
= \sup_{n \in \mathbb{N}} \lambda((f)^* f) g_n
\]
and \(\| \lambda((f)^* f) g_n \| \leq \| f^* f \|_\infty \cdot \| g_n \|_1 \leq 2\pi \| f \|_2^2 \), it follows that
\[
\| T(\lambda(f)^* \lambda(f)) \| \leq 2\pi \| f \|_2^2.
\]
In particular \(\lambda(f) \in n_T \). Since \(n_T \) is a right module over \(M \) we have
\[
\lambda(f) a \in n_T \quad f, a \in M.
\]
which proves that \(n_T \) is \(\sigma \)-weakly dense in \(R(M, \sigma^\theta) \), i.e. \(T \) is semifinite.

(2) Let \(x \in R(M, \sigma^\theta)_+ \). Then for any \(t \in \mathbb{R} \):
\[
T(\lambda(t) x \lambda(t)^*) = \int_{-\infty}^{\infty} \theta_s \phi(\lambda(t) x \lambda(t)^*) \, ds = \int_{-\infty}^{\infty} \theta_s \phi(x) \, ds = Tx.
\]
Therefore
\[
\phi \circ T(\lambda(t) x \lambda(t)^*) = \phi \circ T(x) \quad x \in R(M, \sigma^\theta)_+.
\]

Hence by [3, lemma 1.2.3(c)] we have \(\sigma_t^\phi \sigma_T(\lambda(s)) = \lambda(s) \), \(s, t \in \mathbb{R} \). Together with Theorem 4.7(1) we get
\[
\sigma_t^\phi \sigma_T(x) = \sigma_t^\phi(x) = \lambda(t) x \lambda(t)^* \quad x \in M, \quad t \in \mathbb{R},
\]
\[
\sigma_t^\phi \sigma_T(\lambda(s)) = \lambda(s) = \lambda(t) \lambda(s) \lambda(t)^* \quad s, t \in \mathbb{R}.
\]
Since \(M \) and \(\lambda(s) \) generate \(R(M, \sigma^\theta) \) it follows that
\[
\sigma_t^\phi \sigma_T(x) = \lambda(t) x \lambda(t)^* \quad x \in R(M, \sigma^\theta).
\]
Hence by [12, Theorem 7.4] there is a n.f.s. trace \(\tau \) on \(R(M, \sigma^\theta) \) such that
\(\phi \circ T = \tau(h^\ast) \) where \(h \) is the positive selfadjoint operator for which \(h^\ast t = \lambda(t) \).

From [3, lemma 1.2.3(b)] it follows that:

\[
(D\phi \circ T : DT)_t = \lambda(t), \quad t \in \mathbb{R}.
\]

(3) Since \(\theta_s^\phi(\lambda(t)) = e^{ist}\lambda(t) \) we have \(\theta_s^\phi(h) = e^{ist}h \). By the definition of \(T \) the weight \(\phi \circ T \) is \(\theta_s^\phi \)-invariant. Hence for \(x \in R(M, \sigma^\phi)_+ \):

\[
\tau \circ \theta_s^\phi(x) = \phi \circ T(h^{-1} \cdot \theta_s^\phi(x)) = \phi \circ T(\theta_s^\phi(h^{-1}) \cdot x) = e^{-s}\phi \circ T(h^{-1} \cdot x) = e^{-s}\tau(x).
\]

Remark. In [15] Takesaki proved that \(R(M, \sigma^\phi) \) is semifinite. Note that lemma 5.2 gives a proof of this result without using Hilbert algebra technique. In [10] we will prove that \(\phi \circ T \) is proportional to the dual weight \(\tilde{\phi} \) constructed in [15].

Proof of Theorem 5.1. Assume that \(M, N, \phi \) and \(\psi \) satisfy the conditions of the Theorem.

Since \(\sigma_1^\phi \subseteq \sigma_1^\psi \) we can regard \(R(N, \sigma^\psi) \) as a subalgebra of \(R(M, \sigma^\phi) \) namely the von Neumann algebra generated by \(N \) and the one parameter group \(\lambda(t) \in R(M, \sigma^\phi) \). Let \(\theta_s^\phi \) be the dual action on \(R(M, \sigma^\phi) \). Then

\[
\theta_s^\phi(x) = x \quad \forall x \in N,
\]

\[
\theta_s^\phi(\lambda(t)) = e^{-ist}\lambda(t), \quad t \in \mathbb{R}.
\]

Hence the dual action \(\theta_s^\phi \) on \(R(N, \sigma^\psi) \) is just the restriction of \(\theta_s^\phi \).

Put

\[
T_1x = \int_{-\infty}^{\infty} \theta_s^\phi(x) \, ds, \quad x \in R(M, \sigma^\phi)_+;
\]

and

\[
T_2x = \int_{-\infty}^{\infty} \theta_s^\psi(x) \, ds, \quad x \in R(N, \sigma^\psi)_+.
\]

Then \(T_2 \subseteq T_1 \). According to lemma 5.2 there exist n.f.s. traces \(\tau_1 \) and \(\tau_2 \) on \(R(M, \sigma^\phi) \) and \(R(N, \sigma^\psi) \) respectively such that

\[
(D\phi \circ T_1 : D\tau_1)_t = \lambda(t) = (D\phi \circ T_2 : D\tau_2)_t, \quad t \in \mathbb{R}.
\]

By Theorem 2.7 there is a unique n.f.s. operator valued weight \(\tilde{S} \) from \(R(M, \sigma^\phi) \) to \(R(N, \sigma^\psi) \) such that \(\tau_1 = \tau_2 \circ \tilde{S} \). Put \(\tilde{S}_s = \theta_s^\phi \circ \tilde{S} \circ \theta_s^\phi, \quad s \in \mathbb{R} \) then for \(a \in R(N, \sigma^\psi) \) and \(x \in R(M, \sigma^\phi)_+ \):

\[
R_s(a^*xa) = \theta_s^\psi \circ \tilde{S}(\theta_s^\phi(a)^*\theta_s^\phi(x) \theta_s^\phi(a)) = \theta_s^\phi(\theta_s^\psi(a)^*\tilde{S}(\theta_s^\phi(x)) \theta_s^\phi(a)) = a^*R_s(x)a.
\]
Hence for $s \in \mathbb{R}$, R_s is an operator valued weight from $R(M, \sigma^\phi)$ to $R(N, \sigma^\psi)$. Since $\tau_1 \circ \theta^\phi_s = e^{-s} \tau_1$, and $\tau_2 \circ \theta^\phi_s = e^{-s} \tau_2$ it follows that $\tau_2 \circ R_s = \tau_1$. Thus $R_s = \mathcal{S}$ for any $s \in \mathbb{R}$, or equivalently

$$\mathcal{S} \circ \theta^\phi_s(x) = \theta^\phi_s \circ \mathcal{S}(x), \ x \in R(M, \sigma^\phi)_+.$$

Extending T_1, T_2 and \mathcal{S} as in remark 2.4 we get for any $x \in R(M, \sigma^\phi)_+$:

$$\mathcal{S} \circ T_1(x) = \int_{-\infty}^{x} \mathcal{S} \circ \theta^\phi_s(x) \, ds = \int_{-\infty}^{x} \theta^\phi_s \circ \mathcal{S}(x) \, ds = T_2 \circ \mathcal{S}(x).$$

Hence we have the following commutative diagram

$$
\begin{array}{ccc}
R(M, \sigma^\phi)_+ & \xrightarrow{\mathcal{S}} & R(N, \sigma^\psi)_+ \\
T_1 \downarrow & & T_2 \downarrow \\
\hat{M}_+ & \xrightarrow{\mathcal{S}} & \hat{N}_+.
\end{array}
$$

According to proposition 2.5, T_1 maps $R(M, \sigma^\phi)_+$ onto \hat{M}_+. Hence $\mathcal{S}(\hat{M}_+) \subseteq \hat{N}_+$. Let S be the restriction of \mathcal{S} to M_+.

It is easy to check that S is a normal operator valued weight from M_+ to N_+. Since $\tau_1 = \tau_2 \circ \mathcal{S}$ and since \mathcal{S} preserves cocycle Radon Nikodym derivatives we get using the formula

$$(D\phi \circ T_1 : D\tau_1) = (D\psi \circ T_2 : D\tau_2)$$

that

$$\phi \circ T_1 = (\psi \circ T_2) \circ \mathcal{S}.$$

Thus for any $x \in R(M, \sigma^\phi)_+$:

$$(\psi \circ S) \circ T_1(x) = \psi \circ T_2 \circ \mathcal{S}(x) = \phi \circ T_1(x).$$

Since T_1 maps $R(M, \sigma^\phi)_+$ onto \hat{M}_+ it follows that

$$\psi \circ S(y) = \phi(y) \ \forall y \in M_+.$$

By lemma 2.6 S is semifinite and faithful. The uniqueness of S follows from lemma 4.8.

By Theorem 4.7(1) and Theorem 5.1 we get:

Corollary 5.3. Let M, N be von Neumann algebras, $N \subseteq M$. Then $P(M, N)$ is non empty if and only if there exist n.f.s. weights ϕ, ψ on M and N respectively such that

$$\sigma^\phi_t(x) = \sigma^\psi_t(x) \ \forall x \in N.$$
The following is a converse of theorem 4.7:

Corollary 5.4. Let M, N be von Neumann algebras, $N \subseteq M$, and let $\phi \to \bar{\phi}$ be a map of $P(N)$ into $P(M)$ satisfying

1. $\omega_{\phi}(x) = \omega_{\bar{\phi}}(x)$, $x \in N, \phi \in P(N)$,
2. $(D\bar{\phi} : D\bar{T})_{\phi} = (D\phi : D\phi)_{\phi}, \phi, \psi \in P(N)$.

Then there is a unique operator valued weight $T \in P(M, N)$ such that $\bar{\phi} = \phi \circ T$ for any $\phi \in P(N)$.

Proof. We choose $\phi_0 \in P(N)$. By Theorem 5.1 there is a unique $T \in P(M, N)$ such that $\phi_0 \circ T = \bar{\phi}_0$. For any $\phi \in P(N)$ we get by Theorem 4.7(2) that

$$(D\phi \circ T : D\phi_0 \circ T) = (D\phi : D\phi_0) = (D\bar{\phi} : D\phi_0 \circ T).$$

Hence $\phi \circ T = \bar{\phi}_0$ (cf. [3, Theorem 1.2.4]).

Theorem 5.5. Let M_1, M_2 be von Neumann algebras and let N_{1}, N_2 be sub von Neumann algebras of M_1 and M_2 respectively. Let $T_i \in P(M_i, N_i)$ $i = 1, 2$. There is a unique operator valued weight $T \in P(M_1 \otimes M_2, N_1 \otimes N_2)$ such that

$$(\phi_1 \circ T_1) \otimes (\phi_2 \circ T_2) = (\phi_1 \otimes T_1) \otimes (\phi_2 \circ T_2)$$

for any pair (ϕ_1, ϕ_2) of n.f.s. weights on N_1 and N_2 respectively.

Proof. Let ψ_1 and ψ_2 be fixed n.f.s. weights on N_1 and N_2 then for $x \in N_1$ and $y \in N_2$

$$\sigma_{\phi_1 T_1}(x \otimes y) = \sigma_{\psi_1 T_1}(x) \otimes \sigma_{\psi_2 T_2}(y)$$

Hence by theorem 5.1 there is a unique operator valued weight T from $M_1 \otimes M_2$ to $N_1 \otimes N_2$ such that

$$(\psi_1 \circ T_1) \otimes (\psi_2 \circ T_2) = (\psi_1 \otimes T_1) \otimes (\psi_2 \circ T_2).$$

Since the map $\omega \to \omega \circ T$ preserves cocycle Radon Nikodym derivatives (Theorem 4.7(2)) it follows from the formula in [2, lemma 1.5]:

$$(D\phi_1 \circ T_1 : D\phi_2 \circ T_2) = (D\phi_1 : D\psi_1) \otimes (D\phi_2 : D\psi_2),$$

for $\phi_i \in P(N_i), i = 1, 2$, that

$$(\phi_1 \circ T_1) \otimes (\phi_2 \circ T_2) = (\phi_1 \circ T_1) \otimes (\phi_2 \circ T_2)$$

for any $\phi_1 \in P(N_1)$ and $\phi_2 \in P(N_2)$.
Definition 5.6. The operator valued weight \(T \) in proposition 5.4 is called the tensor product of \(T_1 \) and \(T_2 \) and is denoted by \(T_1 \otimes T_2 \).

Note that when \(T_1 \) and \(T_2 \) are normal faithful conditional expectations, then our definition of \(T_1 \otimes T_2 \) coincides with the usual definition of the tensor product (cf. [2, proposition 2.1]).

Theorem 5.7. Let \(\phi \) be a n.f.s. weight on a von Neumann algebra \(M \). The centralizer \(M_\phi \) of \(\phi \) is semifinite if and only if there exists a \(\sigma_\phi \)-invariant n.f.s. operator valued weight from \(M \) to \(M_\phi \).

Proof. Assume that \(M_\phi \) is semifinite and choose a n.f.s. trace \(\tau \) on \(M_\phi \). Then by Theorem 5.1 there exists a unique \(T \in P(M, M_\phi) \) such that \(\phi = \tau \circ T \).

It is easily seen that for any \(t \in \mathbb{R} \) the map \(S_t = T \circ \sigma_t^\phi \) is also a n.f.s. operator valued weight from \(M \) to \(M_\phi \) such that \(\phi = \tau \circ S_t \). Hence by lemma 4.8 \(S_t = T \).

Therefore \(T \) is \(\sigma_\phi \)-invariant.

Conversely, assume that there is a \(\sigma_\phi \)-invariant operator valued weight \(T \in P(M, M_\phi) \), and let \(\psi \in P(M_\phi) \). Clearly the weight \(\psi \circ T \) on \(M \) is \(\sigma_\phi \)-invariant. Hence by [12, Theorem 5.12] there exists a positive selfadjoint operator \(h \) affiliated with \(M_\phi \), such that \(\psi \circ T = \phi(h) \) and thus by [12, Theorem 4.6]:

\[
\sigma_t^\phi T(x) = h^{it}xh^{-it}, \quad x \in M.
\]

In particular

\[
\sigma_t^\phi(y) = h^{it}y h^{-it}, \quad y \in M_\phi.
\]

Since \(\sigma_\phi \) is inner, we conclude that \(M_\phi \) is semifinite [12, Theorem 7.4].

Remark. It is known that \(M_\phi \) is semifinite for two classes of n.f.s. weights on a von Neumann algebra \(M \), namely for strictly semifinite weights (cf. [11]) and for integrable weights (cf. [5, Sect. 2]). In these two cases it is easy to give an explicit formula for a \(\sigma_\phi \)-invariant operator valued weight \(T \in P(M, M_\phi) \). If \(\phi \) is strictly semifinite, there is a faithful family of \(\sigma_\phi \)-invariant normal states on \(M \). Hence by [13] \(\sigma_t^\phi \) acts weakly almost periodic on the predual of \(M \). Let \(m \) be a left invariant mean on the weakly almost periodic functions (cf. [7, Sect. 3.1]), then it is easy to check that

\[
E_{\phi}x = \int_{-\infty}^{\infty} \sigma_t^\phi x \, dm(t) = \lim_{\mu \to +\infty} \frac{1}{2\mu} \int_{-\mu}^{\mu} \sigma_t^\phi x \, dt \quad (\sigma\text{-weakly})
\]

defines a normal, \(\sigma_\phi \)-invariant conditional expectation from \(M \) to \(M \) (see also [16, Sect. 3]). Moreover \(E_{\phi} \) is faithful, because its support projection is \(\sigma_\phi \)-invariant, and thus belongs to \(M_\phi \). If \(\phi \) is integrable, then by definition the set

\[
\text{span} \left\{ x \in M_+ \left| \int_{-\infty}^{\infty} \sigma_t^\phi x \, dt \in M_\phi \right. \right\}
\]
is σ-weakly dense in M. Hence

$$T_\phi x = \int_{-\infty}^{\infty} \sigma_t^\phi(x) \, dt$$

defines a n.f.s. operator valued weight from M to M_ϕ. (Same proof as in lemma 5.2(1)).

In [8] we gave an example of a n.f.s. weight ϕ on the hyperfinite factor of type II_∞ such that M_ϕ is of type III. Using a lemma from [8] we can prove

Proposition 5.8. Let R be the hyperfinite factor of type II_∞. There exists a sub von Neumann algebra N of R, such that $P(R, N)$ is empty.

Proof. By [8, lemma 2], there exists an abelian subalgebra A of R, such that the relative commutant $N = A' \cap R$ is of type III. Assume that there exists an operator valued weight $T \in P(R, N)$. Let τ be the trace on R and let $\phi \in P(N)$. Then $\phi \circ T = \tau(h \cdot)$ for a positive selfadjoint operator h affiliated with R. Since $A \subset Z(N) \subset N$ we get by [12, Theorem 4.6] that

$$h^{it}ah^{-it} = \sigma_t^\phi T(a) = \sigma_t^{\phi T}(a) = a \quad \forall a \in A.$$

Hence h is affiliated with $A' \cap R = N$. However

$$\sigma_t^{\phi T}(x) = \sigma_t^{\phi T}(x) = h^{it}xh^{-it} \quad \forall x \in N.$$

Thus $t \rightarrow \sigma_t^{\phi}$ is inner, which contradicts that N is of type III.

Theorem 5.9. Let M and N be von Neumann algebras on a Hilbert space H, such that $N \subset M$. Then

$$P(M, N) \neq \Leftrightarrow P(N', M') \neq \mathcal{C}.$$

Lemma 5.10. Let M be a von Neumann algebra on a Hilbert space H. There exists a strongly continuous one parameter group of unitary operators $(u_t)_{t \in \mathbb{R}}$ on H such that

$$\sigma_t^\phi(x) = u_t x u_t^* \quad x \in M,$$

$$\sigma_t^\psi(y) = u_t^* y u_t \quad y \in M'$$

for some pair ϕ, ψ of n.f.s. weights on M and M' respectively.

Proof. Note first that if $(e_i)_{i \in I}$ is a partition of 1 in projections in the center $Z(M)$ of M, then the lemma is true for M iff it is true for each of the von Neumann algebras $e_i M$ acting on the Hilbert spaces $e_i H$. If M is a semifinite, M' is also semifinite. Hence in this case $u_t = 1$ can be used. Thus we may assume that M is of type III. We treat first the case where M and M' are σ-finite. By [6, Chap.
III, Sect. 8, Corollary 11 and Sect. 1 corollary de proposition 4] M has a cyclic
and separating vector ξ_0. Put
\[\phi(x) = (x\xi_0 | \xi_0), \quad x \in M, \]
\[\psi(y) = (y\xi_0 | \xi_0), \quad y \in M'. \]
and let Δ be the modular operator associated with the left Hilbert algebra
$M\xi_0$ (cf. [14]).

Then Δ^{-1} is the modular operator associated with $M'\xi_0$. Hence:
\[\sigma_1^\phi(x) = \Delta^{it}x\Delta^{-it}, \quad x \in M, \]
\[\sigma_1^\psi(y) = \Delta^{-it}y\Delta^{it}, \quad y \in M'. \]

Therefore $u_t = \Delta^{it}$ can be used in this case. We return now to the general
case (M still of type III). Using [6, Chap. III, Sect. 1, lemma 7] on both M
and M' it follows that there exists a partition $(e_i)_{i \in I}$ of 1 into central projections,
such that e_iM and e_iM' both contain partitions of e_i into equivalent σ-finite
projections. Thus it is no loss of generality to assume that M (resp. M')
contains a partition of 1 into equivalent σ-finite projections $(p_i)_{i \in I}$
(resp. $(q_i)_{i \in I}$).

Let α and β be fixed elements in I and J respectively. Put $r = p_\alpha q_\beta, K = l^p(I)$
and $L = l^p(J)$. Then using [6, Chap. I, Sect. 2, prop. 5] twice the Hilbert space
H is isomorphic to $r(H) \otimes K \otimes L$. The corresponding factorizations of M and
M' are:
\[M = (rMr) \otimes B(K) \otimes C_1, \]
\[M' = (rMr)' \otimes C_K \otimes B(L). \]

However, rMr is isomorphic to $p_\alpha M p_\alpha$ and $(rMr)' = rM' r$ is isomorphic to
$q_\alpha M' q_\alpha$. Hence by the first part of the proof there exist positive, normal,
faultful functionals ϕ, ψ on rMr and $rM' r$ respectively, and a strongly con-
tinuous one parameter group $(u_t)_{t \in \mathbb{R}}$ of unitary operators on $r(H)$ such that
\[\sigma_t^\phi(x) = u_t x u_t^*, \quad x \in rMr, \]
\[\sigma_t^\psi(y) = u_t^* y u_t, \quad y \in rM' r. \]

Let tr_1 and tr_2 be the traces on $B(K)$ and $B(L)$, and put $v_t = u_t \otimes 1 \otimes 1$ on
$H = r(H) \otimes K \otimes L$, then
\[u_t^\phi \otimes tr_1(x) = v_t x v_t^*, \quad x \in M, \]
\[\sigma_t^\psi \otimes tr_2(y) = v_t^* y v_t, \quad y \in M'. \]

This completes the proof.
Lemma 5.11. Let M be a von Neumann algebra on a Hilbert space H.

(a) Let $\phi \in P(M)$ and $\psi \in P(M')$. There exists a strongly continuous one parameter group of unitary operators $(u_t)_{t \in \mathbb{R}}$ on H, such that

$$u_t^\phi(x) = v_t x v_t^*, \quad x \in M,$$
$$\sigma_t^\phi(y) = v_t^* y v_t, \quad y \in M'.$$

(b) Let $(u_t)_{t \in \mathbb{R}}$ be a strongly continuous one parameter group of unitary operators on H. The following conditions are equivalent

1. $\exists \phi \in P(M) : \sigma_t^\phi(x) = u_t x u_t^*, \quad x \in M$,
2. $\exists \psi \in P(M') : \sigma_t^\psi(y) = u_t^* y u_t, \quad y \in M'$.

Proof. (a) According to lemma 5.10 there exists a strongly continuous one parameter group $(u_t)_{t \in \mathbb{R}}$ of unitary operators on H, $\phi_0 \in P(M)$, and $\psi_0 \in P(M')$ such that

$$\sigma_t^\phi(x) = u_t x u_t^*, \quad x \in M, \quad \sigma_t^\psi(y) = u_t^* y u_t, \quad y \in M'.$$

Put $v_t = (D\phi : D\phi_0)_t u_t (D\psi : D\psi_0)_t^*$, $t \in \mathbb{R}$. Since $(D\phi : D\phi_0)_t \in M$ and $(D\phi : D\phi_0)_t \in M'$ it follows that

$$v_t x v_t^* = (D\phi : D\phi_0)_t \sigma_t^\phi(x) (D\phi : D\phi_0)_t^* = \sigma_t^\phi(x), \quad x \in M,$$

and

$$v_t^* y v_t = (D\psi : D\psi_0)_t \sigma_t^\phi(y) (D\psi : D\psi_0)_t^* = \sigma_t^\phi(y), \quad y \in M'.$$

Using [3, lemma 1.2.2] we have:

$$v_{s+t} = (D\phi : D\phi_0)_{s+t} u_{s+t} (D\psi : D\psi_0)_{s+t}^*.$$

Hence $(v_t)_{t \in \mathbb{R}}$ satisfies the conditions.

(b) It is enough to prove $(1) \Rightarrow (2)$. Assume that there exists $\phi \in P(M)$, such that $\sigma_t^\phi(x) = u_t x u_t^*$, $x \in M$. By (a) we can for a given weight $\omega \in P(M')$ choose a strongly continuous one parameter group $(v_t)_{t \in \mathbb{R}}$ of unitary operators, such that

$$\sigma_t^\phi(x) = v_t x v_t^*, \quad x \in M, \quad \sigma_t^\omega(y) = v_t^* y v_t, \quad y \in M'.$$
It follows that $u_t^* v_t x v_t^* u_t = x$ for $x \in M$ which proves that $w_t = u_t^* v_t \in M'$. Moreover:

$$w_{s+t} = u_s^* u_t^* v_s v_t = (u_s^* v_s) v_s^* (u_t^* v_t) v_s = w_s \sigma_s^w(w_t).$$

Hence by [3, Theorem 1.2.41] there exists a n.f.s. weight ψ on M' such that $(D\psi : D\omega)_t = w_t$. Thus:

$$\sigma_t^\psi(y) = w_t \sigma_t^w(y) w_t^* = u_t^* y u_t, \quad y \in M'.$$

This completes the proof.

Proof of Theorem 5.9. Because of the symmetry it is enough to prove \Rightarrow. Let $T \in P(M, N)$ and choose $\phi \in P(N)$ and $\psi \in P(M')$. By lemma 5.11(a) there exists a strongly continuous one parameter group $(v_t)_{t \in \mathbb{R}}$ of unitary operators on H such that

$$\sigma_t^\phi(x) = v_t x v_t^*, \quad x \in M,$$

$$\sigma_t^\psi(y) = v_t^* y v_t, \quad y \in M'.$$

For $x \in N: \sigma_t^\phi(x) = \sigma_t^\psi(x) = v_t x v_t^*$. Hence by lemma 5.11 (b) there exists $\omega \in P(N')$ such that $\sigma_t^\omega(y) = v_t^* y v_t$ for any $y \in N'$. In particular

$$\sigma_t^\omega(y) = \sigma_t^\psi(y) \quad \text{for} \quad y \in M' \subseteq N'.$$

Hence by theorem 5.1 there exists $S \in P(N', M')$ such that $\omega = \phi \circ S$.

Remark. We will prove in §6 that $P(M, N)$ and $P(N', M')$ are antiisomorphic in a certain sense.

A combination of Theorem 2.7, corollary 2.10(3) and the above theorem gives:

Corollary 5.12. Let M and N be von Neumann algebras, $N \subseteq M$. Then $P(M, N)$ is not empty in the following cases:

1. M and N are semifinite.
2. N is a direct sum of type I factors.
3. M is a direct sum of type I factors.

It is well known that if M, N are von Neumann algebras, $N \subseteq M$, such that type $(N) > \text{type}(M)$, then there do not exist normal conditional expectations from M to N (cf. [11]). It follows from Theorem 5.9 that no such selection rule exists for operator valued weights. Note also that for any von Neumann algebra M on a Hilbert space H, there is a n.f.s. operator valued weight from $B(H)$ to M (Corollary 5.12(3)).
6. MODULAR AUTOMORPHISM GROUP ASSOCIATED WITH AN OPERATOR VALUED WEIGHT

We shall in this section generalize some of the results due to Combes and Delaroche in [2]. Let M, N be von Neumann algebras, $N \subseteq M$. As usual $N^c = M \cap N'$.

Proposition 6.1. (cf. [2, lemma 3.1 and proposition 4.1]). (1) Let $T \in P(M, N)$. For any $\phi \in P(N)$: $\sigma_i^{\phi^*T}(N^c) = N^c$, and the restriction of $\sigma_i^{\phi^*T}$ to N^c is independent of the choice of ϕ.

(2) Let $T_1, T_2 \in P(M, N)$. For any $\phi \in P(N)$: $(D\phi \circ T_1 : D\phi \circ T_2)_t \in N^c$ and $(D\phi \circ T_2 : D\phi \circ T_1)_t$ is independent of the choice of ϕ.

Proof. (1) Since $\sigma_i^{\phi^*T}(x) = \sigma_i^\phi(x)$, $x \in N$ we have $\sigma_i^{\phi^*T}(N) = N$. Hence $\sigma_i^{\phi^*T}(N^c) = N^c$. Let $\phi, \psi \in P(N)$, then $(D\phi \circ T : D\phi \circ T)_t = (D\phi : D\phi)_t \in N$. Hence for $x \in N^c$:

$$\sigma_i^{\phi^*T}(x) = (D\phi \circ T : D\phi \circ T)\sigma_i^{\phi^*T}(x)(D\phi \circ T : D\phi \circ T)_t^* = \sigma_i^{\phi^*T}(x)$$

because $\sigma_i^{\phi^*T}(x) \in N^c$.

(2) Let $T_1, T_2 \in P(M)$, and let F_2 be the algebra of 2×2-matrices with natural basis $(e_{ij})_{i,j=1,2}$.

Put

$$T \left(\sum x_{ij} \otimes e_{ij} \right) = (T_1(x_{11}) + T_2(x_{22})) \otimes 1, \quad \sum x_{ij} \otimes e_{ij} \in (M \otimes F_2)_+.$$

Then it is easy to check that T is a n.f.s. operator valued weight from $M \otimes F_2$ to $N \otimes 1$. Let $\phi \in P(N)$ and let ϕ' be the corresponding weight on $N \otimes 1$, i.e. $\phi'(x \otimes 1) = \phi(x)$, $x \in N_+$. Then

$$\phi' : T \left(\sum x_{ij} \otimes e_{ij} \right) = \phi \circ T_1(x_{11}) + \phi \circ T_2(x_{22}).$$

Hence by [3, lemma 1.2.2] we have

$$(D\phi \circ T_2 : D\phi \circ T_1)_t \otimes e_{21} = \sigma_i^{\phi^*T}(1 \otimes e_{21}).$$

Since the relative commutant of $N \otimes 1$ in $M \otimes F_2$ is $N^c \otimes F_2$ we get $\sigma_i^{\phi^*T}(N^c \otimes F_2) = N^c \otimes F_2$. Therefore $(D\phi \circ T_2 : D\phi \circ T_1)_t \in N^c$. Let now ϕ, $\psi \in P(N)$.

Then

$$(D\phi \circ T_2 : D\phi \circ T_1)_t = (D\phi \circ T_2 : D\phi \circ T_1)(D\phi \circ T_2 : D\phi \circ T_1),(D\phi \circ T_2 : D\phi \circ T_1)_t = (D\phi : D\phi)_t(D\phi \circ T_2 : D\phi \circ T_1)(D\phi \circ T_2 : D\phi \circ T_1)_t = (D\phi \circ T_2 : D\phi \circ T_1)_t,$$

because $(D\phi \circ T_2 : D\phi \circ T_1) \in N^c$. This completes the proof.
DEFINITION 6.2. (1) For \(T \in P(M, N) \) we let \(\sigma^T_t \) denote the restriction of \(\sigma^\phi_{t \circ T} \), \(\phi \in P(N) \), to \(N^e \).

(2) For \(T_1, T_2 \in P(M, N) \) we put \((D_{T_2} : DT_{1})_t = (D_\phi \circ T_2 : D_\phi \circ T_1)_t \), \(\phi \in P(N) \).

By proposition 6.1 these definitions are independent of the choice of \(\phi \).

The following proposition is a trivial consequence of [3, §1].

PROPOSITION 6.3. For \(T_1, T_2, T_3 \in P(M, N) \):

1. \(\sigma^{T_3}_t(x) = (D_{T_2} : DT_{1})_t \sigma^{T_1}_t(x)(D_{T_2} : DT_{1})^*_t \),
2. \((D_{T_2} : DT_{1})_{s+t} = (D_{T_2} : DT_{1})_s \sigma^{T_1}_t(D_{T_2} : DT_{1})_t \),
3. \((D_{T_3} : DT_{1})_t = (D_{T_3} : DT_{2})(D_{T_2} : DT_{1})_t \),
4. \((D_{T_1} : DT_{2})_t = (D_{T_2} : DT_{1})^*_t \).

COROLLARY 6.4. If \(M \) and \(N \) are semifinite von Neumann algebras, \(N \subseteq M \), then \(\sigma^T_t \) is inner for any \(T \in P(M, N) \).

Proof. Let \(\tau_1 \) and \(\tau_2 \) be n.f.s. traces on \(M \) and \(N \) respectively. By Theorem 2.7, there exists \(S \in P(M, N) \) such that \(\tau_2 = \tau_1 \circ S \). Hence for any \(x \in N^e : \)

\[\sigma^\tau_{1,s}(x) = \sigma^\tau_{1,s}(x) = x. \]

Let \(T \in P(M, N) \) and put \(u_T = (DT : DS)_t \). Then by proposition 6.3(2):

\[u_{t+s} = u_s \sigma^\tau_s(u_t) = u_s \cdot u_t . \]

Hence \(t \to u_t \) is a strongly continuous one parameter group and by proposition 6.3(1):

\[\sigma^T_t(x) = u_t \sigma^\tau_s(x) u_t^* = u_t u_t^* , \quad x \in N^e . \]

THEOREM 6.5. Assume that \(P(M, N) \neq \emptyset \) and let \(T_0 \) be a fixed element in \(P(M, N) \). The map \(T \to (DT : DT_0) \) is a bijection of \(P(M, N) \) onto the set of \(\sigma^\tau_\phi \)-cocycles in \(N^e \). (i.e. the set of strongly continuous functions \(t \to u_t \) of \(\mathbb{R} \) into the unitary group in \(N^e \), that satisfy \(u_{s+t} = u_s \sigma^\phi_s(u_t) \)).

Proof. By proposition 6.3(2) it follows that \((DT : DT_0) \) is a \(\sigma^\tau_\phi \)-cocycle for any \(T \in P(M, N) \). Assume that \(T_1, T_2 \in P(M, N) \), and that \((DT_1 : DT_0)_t = (DT_2 : DT_0)_t \). Let \(\phi \in P(N) \), then \((D_\phi \circ T_1 : D_\phi \circ T_0)_t = (D_\phi \circ T_2 : D_\phi \circ T_0)_t \). Hence \(\phi \circ T_1 = \phi \circ T_2 \). By lemma 4.8 this implies that \(T_1 = T_2 \). This proves the injectivity of the map \(T \to (DT : DT_0) \). Let \((u_t)_{t \in \mathbb{R}} \) be a \(\sigma^\tau_\phi \)-cocycle in \(N^e \), and choose \(\phi \in P(N) \). We have \(u_{s+t} = u_s \sigma^\phi_s(t_o(u_t)). \) By [3, Theorem 1.2.4] there exists \(\omega \in P(M) \) such that \((D_\omega : D_\phi \circ T_0)_t = u_t \).
For $x \in N$:

$$\sigma^\omega_t(x) = u_t \sigma^\phi_t(x) u_t^* = u_t \sigma^\phi_t(x) u_t^* = \sigma^\phi_t(x)$$

because $u_t \in N^\circ$. Hence by Theorem 5.1 there exists $T \in P(M, N)$ such that $\phi \circ T = \omega$. Moreover

$$(DT : DT_0)_t = (D\phi \circ T : D\phi \circ T_0)_t = (D\omega : D\phi \circ T_0)_t = u_t.$$

This proves the surjectivity.

Let M, N be von Neumann algebras, and let T be a normal operator valued weight from M to N. The restriction $T' = T | N^\circ$ of T to N° maps N_+° into $Z(N)_+$ because for any $x \in N_+$ and any unitary $u \in Z(N)$ we have

$$u^* T(x) u = T(u^* x u) = T(x).$$

Hence T' is a normal operator valued weight from N° to $Z(N)$. Unfortunately semifiniteness of T does not in general imply semifiniteness of T'.

Theorem 6.6. (cf. [2, Theorem 5.3]). Let M, N be von Neumann algebras $N \subseteq M$.

1. The following four conditions are equivalent:
 i. There exists $T \in P(M, N)$, such that $T | N^\circ$ is semifinite.
 ii. $P(M, N) \neq \varnothing$, and for any $T \in P(M, N)$ the restriction $T | N^\circ$ is semifinite.
 iii. There is a faithful family of normal bounded operator valued weights from M to N.
 iv. There is a faithful family of normal conditional expectations from M to N.

2. If one of the above conditions is satisfied, the map $T \mapsto T' = T | N^\circ$ is a bijection of $P(M, N)$ onto $P(N^\circ, Z(N))$ that satisfies

$$\sigma^{T'} = \sigma^T, \quad T \in P(M, N).$$

$$(DT'_2 : DT'_1) = (DT'_2 : DT'_1), \quad T_1, T_2 \in P(M, N).$$

Lemma 6.7. Let M and P be von Neumann algebras, $P \subseteq M$, and let ϕ be a n.f.s. weight on M with the properties

(a) $\sigma^\phi_t(P) = P$, $t \in \mathbb{R}$,
(b) $\phi' = \phi | P$ is semifinite.
Then

(1) \(\sigma^\phi_i(x) = \sigma_i^\phi(x) \forall x \in P. \)

(2) If \(\psi \in P(M) \) and \((D\psi : D\phi) \in P \) for any \(t \in \mathbb{R} \), then \(\psi' = \psi | P \) is semifinite and \((D\psi' : D\phi')_t = (D\psi : D\phi)_t \).

Proof. (cf. [2, lemma 1.6]).

Lemma 6.8. Let \(M \) and \(N \) be von Neumann algebras, \(N \subseteq M \). Let \(T \in P(M,N) \), and let \((e_i)_{i \in I} \) be a partition of 1 into orthogonal projections in \(Z(N) \), and let \(T_i \) and \(T'_i \) denote the restrictions of \(T \) to \(e_i Me_i \) and \(e_i N e_i \) respectively. Put \(T' = T | N \).

(a) \(T' \) is semifinite iff \(T'_i \) is semifinite for any \(i \in I \).

If these conditions are satisfied, then

(b) \(\sigma^T = \sigma^T \) iff \(\sigma^T_i = \sigma^T_i \) for any \(i \in I \).

Proof. (a) Trivial.

(b) Clearly, \(T_i \in P(e_i Me_i, e_i N) \). Moreover the relative commutant of \(e_i Me_i \) in \(e_i N \) is \(e_i N e_i \). For each \(i \in I \) we let \(\phi_i \) and \(\psi_i \) be n.f.s. weights on \(e_i N \) and \(e_i Z(N) \) respectively. Define n.f.s. weights \(\phi, \psi \) on \(N \) and \(Z(N) \) by

\[
\phi(x) = \sum_{i \in I} \phi_i(e_i x e_i), \quad x \in N^+, \\
\psi(y) = \sum_{i \in I} \psi_i(e_i y), \quad y \in Z(N)^+.
\]

Then

\[
\phi \circ T(x) = \sum_{i \in I} \phi_i \circ T_i(e_i x e_i), \quad x \in M^+, \\
\psi \circ T'(y) = \sum_{i \in I} \psi_i \circ T'_i(e_i y), \quad y \in N_+. \]

Since the weights \(\phi_i \circ T_i \) have orthogonal supports in \(M \), it follows that

\[
\sigma^\phi_i T_i(z) = \sigma_i^\phi T_i(z), \quad z \in e_i Me_i.
\]

Similarly

\[
\sigma^\psi_i T'_i(z) = \sigma_i^\psi T'_i(z), \quad z \in e_i N e_i^c.
\]

Hence for \(x \in N e_i^c \), we get by the assumption \(\sigma^T_i = \sigma^T_i \) for any \(i \in I \), that

\[
\sigma_i^T(x) = \sigma^\phi_i T_i(x) = \sum_{i \in I} \sigma_i^\psi T'_i(e_i x) = \sum_{i \in I} \sigma_i^\psi T'_i(e_i x) = \sigma_i^T(x).
\]

It is easy to prove the converse implication.
Lemma 6.9. Let M_0, N_0 be von Neumann algebras, $N_0 \subseteq M_0$, and let F be a type I factor. Put $M = M_0 \otimes F$ and $N = N_0 \otimes F$, and let $T \in P(M, N)$.

(a) There is a unique $T_0 \in P(M_0, N_0)$, such that

$$T(x \otimes 1) = T_0(x) \otimes 1, \quad x \in (M_0)_+.$$

(b) For any $\phi \in P(N_0)$:

$$(\phi \otimes \text{tr}) \circ T = (\phi \circ T_0) \otimes \text{tr}$$

where tr is the trace on F.

(c) Put $N_0^c = N_0' \cap M_0$. Then $N_0^c = N_0^c \otimes 1$ and

$$\sigma^T_\epsilon(x \otimes 1) = \sigma^T_{\epsilon \phi}(x) \otimes 1, \quad x \in N_0^c.$$

(d) Put $T' = T | \ N^c$ and $T_0' = T_0 | N_0^c$, then $T'(x \otimes 1) = T'_0(x) \otimes 1$ for any $x \in (N_0^c)_+$. In particular

$$T' \text{ semifinite} \iff T'_0 \text{ semifinite}.$$

(e) If the conditions in (d) are satisfied, then

$$\sigma^\epsilon_{T'}(y \otimes 1) = \sigma^\epsilon_{T_0'}(y) \otimes 1, \quad y \in N_0^c.$$

Proof. (a) For any unitary $u \in F$ we have $1 \otimes u \in N$. Hence for $x \in M_0^+$

$$(1 \otimes u)T(x \otimes 1)(1 \otimes u^*) = T((1 \otimes u)(x \otimes 1)(1 \otimes u^*)) = T(x \otimes 1).$$

Hence $T(x \otimes 1)$ is affiliated with $N \cap (M_0 \otimes 1) = N_0 \otimes 1$. Thus there exists $T_0x \in (N_0)_+^\wedge$, such that

$$T(x \otimes 1) = T_0x \otimes 1.$$

It is easy to check that the map $x \rightarrow T_0x$ is a normal, faithful operator valued weight from M_0 to N_0. The semifiniteness of T_0 will follow, when (b) is proved.

(b) Let $\phi \in P(N_0)$ and let tr be the trace on F. For $x \in F$ we have $1 \otimes x \in N$. Hence by Theorem 4.7

$$\sigma^\epsilon_{T_0} \otimes \lambda(1 \otimes x) = \sigma^\epsilon_{T_0} \otimes \lambda(1 \otimes x) = 1 \otimes x.$$

This shows that $1 \otimes F$ is contained in the centralizer of $(\phi \otimes \text{tr}) \circ T$. Hence by [5, Chap. I, lemma 1.7] there exists $\psi \in P(M_0)$ such that

$$(\phi \otimes \text{tr}) \circ T = \psi \otimes \text{tr}. $$
Let $x \in (M_0)_{+}$ and let e be a minimal projection in F. Since $1 \otimes e \in N$ we have

$$T(x \otimes e) = T((1 \otimes e)(x \otimes 1)(1 \otimes e))$$

$$= (1 \otimes e) T(x \otimes 1)(1 \otimes e)$$

$$= (1 \otimes e)(T_0 x \otimes 1)(1 \otimes e).$$

Let y_n be an increasing sequence in N_0^+, such that

$$T_0 x = \sup_{n \in N} y_n \text{ (cf. corollary 1.6)}.$$

Then

$$T(x \otimes e) = \sup_{n \in N} (1 \otimes e)(y_n \otimes 1)(1 \otimes e) = \sup_{n \in N} (y_n \otimes e).$$

Hence

$$\psi(x) = (\psi \otimes \text{tr})(x \otimes e) = (\phi \otimes \text{tr}) \circ T(x \otimes e)$$

$$= \sup_{n \in N} (\phi \otimes \text{tr})(y_n \otimes e)$$

$$= \sup_{n \in N} \phi(y_n) = \phi(T_0 x),$$

where ϕ is extended to $(N_0^+)_+$ in the usual way. Thus $\psi = \phi \circ T_0$, and therefore $(\phi \otimes \text{tr}) \circ T = (\phi \circ T_0) \otimes \text{tr}$. It follows now from lemma 2.6 that T_0 is semifinite.

(c) Clearly $N_0^c = N^c \otimes 1$. For $x \in N_0^c$:

$$\sigma_i^T(x \otimes 1) = \sigma_i^{(\phi \otimes \text{tr}) \circ T}(x \otimes 1) = \sigma_i^{(\phi \circ T_0) \otimes \text{tr}}(x \otimes 1)$$

$$= \sigma_i^{\phi \circ T_0}(x) \otimes 1 = \sigma_i^{T_0}(x) \otimes 1.$$

(d) Trivial.

(e) Since the map $x \mapsto x \otimes 1$ is an isomorphism of N_0^c onto N^c we get by (d) that $\sigma_i^T(y \otimes 1) = \sigma_i^{T_0}(y) \otimes 1$, $y \in N_0^c$.

Proof of Theorem 6.6. Part 1. (iv) \Rightarrow (i) follows from the proof of proposition 2.9.

(i) \Rightarrow (ii). Let $T \in P(M, N)$ be chosen such that $T' = T \mid N^c$ is semifinite, and let $S \in P(M, N)$ be arbitrary. We shall prove that $S \mid N^c$ is semifinite. Since N can be decomposed in the form $N = \sum_{i \in I} N_0 \otimes F_i$ where N_ℓ are σ-finite and F_i are type I factors (cf. [6, Chap. III, §2 prop. 5]) it follows from lemma 6.8(a) that it is enough to treat the case $N = N_0 \otimes F$ where N_0 is σ-finite, and F is a type I factor. Let $M = M_0 \otimes F$ be the corresponding factorization of M.

We have $N_0 \subseteq M_0$. Thus by lemma 6.9 (a) and (d) it is sufficient to treat the case where N is σ-finite. Let ω be a normal faithful functional on N, and
let \(\omega' \) be the restriction of \(\omega \) to \(Z(N) \). Note that the restriction of \(\omega \circ T \) to \(N^c_+ \) is \(\omega' \circ T' \), which is semifinite. Moreover \(\sigma_{\omega T}(N^c_t) = N^c \) for any \(t \in \mathbb{R} \), and \((D\omega \circ S : D\omega \circ T)_t = (DS : DT)_t \in N^c \) for any \(t \in \mathbb{R} \). Hence by lemma 6.7 (b) it follows that the restriction of \(\omega \circ S \) to \(N^c \) is semifinite, or equivalently \(\omega' \circ S' \) is semifinite. Therefore \(S' \) is semifinite by lemma 2.6.

(ii) \(\Rightarrow \) (iii). Let \(R \in P(M, N) \). Since \(T \mid N^c \) is semifinite there exists a net \((a_i)_{i \in I}\) of operators in \(n_T \cap N^c \) that converges \(\sigma \)-strongly to 1. Put

\[
T_i(x) = T(a_i^* x a_i), \quad x \in M_+, \quad i \in I.
\]

Clearly \((T_i)_{i \in I} \) is a faithful family of bounded operator valued weights from \(M \) to \(N \).

(iii) \(\Rightarrow \) (iv). Let \(x_0 \in M_+ \setminus \{0\} \). We shall show that there exists a normal conditional expectation \(\epsilon \) from \(M \) to \(N \), such that \(\epsilon(x_0) \neq 0 \). By the assumptions there exists a bounded, normal operator valued weight \(S_0 \) from \(M \) to \(N \), such that \(S_0 x_0 \neq 0 \). We can assume that \(S_0(1) \leq 1 \). Choose a maximal family \((S_i)_{i \in I} \), containing \(S_0 \), of non zero operator valued weights from \(M \) to \(N \), such that \(S_i(1) \leq 1 \) for any \(i \in I \), and \(S_i \) have pairwise orthogonal supports. Since \(1 \in N^c \) we have \(S_i(1) \in Z(N) \) for any \(i \in I \). Assume that \(\Sigma_{i \in I} [S_i(1)] < 1 \) and put \(q = 1 - \Sigma_{i \in I} [S_i(1)] \in Z(N). \) (\([\cdot] = \) support projection). Then by the assumptions there exists a bounded, normal operator valued weight \(T \) from \(M \) to \(N \), such that \(T(q) \neq 0 \). We can assume that \(T(1) \leq 1 \). Put \(R(x) = T(q x) \), \(x \in M_+ \). Then \(R \) is a non zero normal operator valued weight from \(M \) to \(N \), such that \(R(1) = q \). This contradicts the maximality of \((S_i)_{i \in I} \). Hence \(\Sigma_{i \in I} [S_i(1)] = 1 \). Put \(h = \Sigma_{i \in I} S_i(1) \in Z(N). \) Then \(h \leq 1 \) and \(h \) is injective. Let \(h^{-1} = \int \lambda d\epsilon_h \) be the spectral resolution of \(h^{-1} \). Put \(k_n = \int_1^n \lambda d\epsilon_h + \int_n^\infty n d\epsilon_h \). Then \((k_n)_{n \in \mathbb{N}} \) is an increasing sequence and \(1 \leq k_n \leq n \) for any \(n \in \mathbb{N} \). Put

\[
\epsilon_+(x) = \sup_{n \in \mathbb{N}} \left(k_n \sum_{i \in I} S_i(x) \right), \quad x \in M_+.
\]

It is easy to check that \(\epsilon_+ \) is a normal operator valued weight from \(M \) to \(N \), and that \(\epsilon(1) = 1 \). Hence \(\epsilon_+ \) is the positive part of a conditional expectation \(\epsilon \). Moreover \(\epsilon(x_0) \geq \Sigma_{i \in I} S_i(x_0) \geq S_0 x_0 \). Hence \(\epsilon(x_0) \neq 0 \). This proves (iv).

Part 2. It follows from condition (ii) that the restriction map \(T \rightarrow T' = T \mid N^c \) maps \(P(M, N) \) into \(P(N^c, Z(N)) \). We shall prove that \(\sigma^{T'} = \sigma^T \). Since \(N \) can be decomposed in the form \(N = \sum_{i \in I} N_i \otimes F_i \), where \(N_i \) are \(\sigma \)-finite, and \(F_i \) are type I factors, it follows from lemma 6.8 (b) and lemma 6.9 (c) and (e) that it is enough to treat the case where \(N \) is \(\sigma \)-finite. Let \(\omega \) be a normal faithful functional on \(N \), and let \(\omega' \) be its restriction to \(Z(N) \). The restriction of \(\omega \circ T \) to \(N^c \) is \(\omega' \circ T' \). Hence by Lemma 6.7 (a) we have

\[
\sigma_{\omega T}(x) = \sigma_{\omega' T'}(x) \quad \forall x \in N^c
\]
or equivalently
\[\sigma^T_t(x) = \sigma^T_t(x) \quad \forall x \in N^c. \]

Let now \(T_1, T_2 \in P(M, N) \) and define \(T \in P(M \otimes F_2, N \otimes 1) \) by
\[
T \left(\sum x_{ij} \otimes e_{ij} \right) = (T_1(x_{11}) + T_2(x_{22})) \otimes 1, \quad \sum x_{ij} \otimes e_{ij} \in (M \otimes F_2)_+. \]
as in the proof of proposition 6.1. Clearly the relative commutant of \(N \otimes 1 \) in \(M \otimes F_2 \) is \(N^c \otimes F_2 \), and the restriction \(T' = T \mid N^c \otimes F_2 \) is given by
\[
T' \left(\sum y_{ij} \otimes e_{ij} \right) = (T'_1(y_{11}) + T'_2(y_{22})) \otimes 1, \quad \sum y_{ij} \otimes e_{ij} \in (N^c \otimes F_2)_+. \]
In particular \(T' \) is semifinite. Then using \(\sigma^{T'} = \sigma^T \) on \(N^c \otimes F_2 \) we get
\[
(DT_2 : DT_1)_1 \otimes e_{21} = \sigma^{T'}_t(1 \otimes e_{21}) = \sigma^T_t(1 \otimes e_{21}) = (DT_2 : DT_1)_1 \otimes e_{21}. \]
That the map \(T \rightarrow T \mid N^c \) is a bijection of \(P(M, N) \) onto \(P(N^c, Z(N)) \) can now be proved as in the proof of [2, Theorem 5.3].

Corollary 6.10. Let \(M \) and \(N \) be von Neumann algebras, \(N \subseteq M \), such that there is a faithful family of conditional expectations from \(M \) to \(N \), then for any \(T \in P(M, N) \) there exists \(\phi \in P(N^c) \) such that \(\sigma^T = \sigma^\phi \).

Proof. Let \(\psi \) be a n.f.s. weight on \(Z(N) \) and put \(\phi = \psi \circ T' \) where \(T' = T \mid N^c \). Then for any \(x \in N^c \):
\[
\sigma^T_t(x) = \sigma^{T'}_t(x) = \sigma^\phi_t(x) = \sigma^T_t(x). \]

Remark. Let \(R \) be the hyperfinite type II\(_\infty\) factor. By [8, lemma 2] there exists an abelian subalgebra \(A \) of \(R \) such that the relative commutant \(A^c = A' \cap R \) is of type III. Since \(R \) and \(A \) are semifinite, \(P(R, A) \) is not empty, and for any \(T \in P(R, A) \) we have \(\sigma^T \) inner (corollary 6.4). Hence in this case \(\sigma^T \) cannot be equal to the modular automorphism group of some n.f.s. weight on \(A^c \).

Corollary 6.11. Let \(M = R(N, \theta) \) be the continuous decomposition of a properly infinite von Neumann algebra, as a crossed product of a semifinite subalgebra \(N \), and a one parameter group of automorphisms \((\theta_s)_{s \in \mathbb{R}} \) on \(N \) (cf. [15]). Then \(P(M, N) \neq \emptyset \), but there is no normal conditional expectation from \(M \) to \(N \).

Proof. By [5, Chap. II] there exists an integrable weight \(\phi \in P(M) \), such that the centralizer \(M_\phi \) is equal to \(N \). Thus by the remark following Theorem 5.7
\[
T_\phi x = \int_{-\infty}^\infty \sigma_t^\phi x \, dt, \quad x \in M_+, \]
defines a n.f.s. operator valued weight from M to N. Hence $P(M, N) \neq \emptyset$. (See also [10]). Assume that there exists a normal conditional expectation from M to N. By Connes’ and Takesaki’s relative commutant theorem [5, Chap. II, Theorem 5.1] we have

$$N^c = M_\phi \cap M \subseteq M_\phi = N.$$

Hence the support $[\epsilon]$ of ϵ belongs to N, and thus $1 - [\epsilon] = \epsilon(1 - [\epsilon]) = 0$, which proves that ϵ is faithful. Hence using theorem 6.6 (a) any $T \in P(M, N)$ has a semifinite restriction to N^c. However, for any $x \in N_+ \subseteq N_+$ we get

$$T_\phi x = \int_{-\infty}^{\infty} \sigma_t^\phi(x) \, dt = \left(\int_{-\infty}^{\infty} dt \right) x = \infty \cdot x$$

which contradicts that $T_\phi \mid N^c$ is semifinite.

In [2] it is proved that two normal, faithful conditional expectations ϵ_1 and ϵ_2 have the same modular automorphism group, if and only if there exists a positive selfadjoint operator h affiliated with $Z(N^c)$ such that $\epsilon_2 = \epsilon_1(h^\ast)$. (cf. [2, proposition 4.11 and remark 4.12]). It is easy to see that this result can be generalized to operator valued weights, if the solution of the following problem is affirmative.

Problem 6.12. Let M, N be von Neumann algebras, $N \subseteq M$, and let $T \in P(M, N)$. Does σ^T leave the center of N^c pointwise fixed? Clearly the answer is affirmative if $Z(N^c) = Z(N)$ in particular if $N^c \subseteq N$ or if $N^{cc} = N$. Moreover it follows from corollary 6.4 and corollary 6.10 that the solution is affirmative if M and N are both semifinite, or if there is a faithful family of normal, conditional expectations from M to N.

Theorem 6.13. Let M, N be von Neumann algebras on a Hilbert space H. There exists a bijection α of $P(M, N)$ onto $P(N', M')$ such that

1. $\sigma_t^{\alpha(T)} = \sigma_{-t}^T$, $T \in P(M, N), \ t \in \mathbb{R},$
2. $(D_\lambda(T_2) : D_\lambda(T_1))_t = (DT_2 : DT_1)_t$, $T_1, T_2 \in P(M, N), \ t \in \mathbb{R}.$

Proof. We have already proved in Section 5 that $P(N', M') \not\cong \emptyset$ if $P(M, N) \not\cong \emptyset$. Assume that $P(M, N) \not\cong \emptyset$.

Let $T_0 \in P(M, N)$ and let $\phi \in P(N)$ and $\psi \in P(M')$. By the proof of Theorem 5.9 there exists a strongly continuous one parameter group of unitaries on H, and an operator valued weight $S_0 \in P(N', M')$, such that

$$\sigma_t^{\psi \circ \phi(T)}(x) = u_t x u_t^*, \quad x \in M,$$
$$\sigma_t^{\phi \circ \psi}(y) = u_t^* y u_t, \quad y \in N'.$$
Hence for $x \in N_c = N' \cap M = (M')' \cap N'$ we have

$$\sigma_t^f(x) = \sigma_t^o(x) = v_t^* x v_t = \sigma_t^{o_s o}(x) = \sigma_t^{o}(x).$$

Let now $T \in P(M, N)$ be arbitrary, and put

$$u_t = (DT : DT_0)_t.$$

Since u_t is a σ_t^{o}-cocycle, it follows that u_{-t} is a σ_t^{o}-cocycle in N_c. Hence by Theorem 6.5 there exists a unique operator valued weight $\alpha(T) \in P(N', M')$ such that

$$(D\alpha(T) : DS_0)_t = u_{-t}. $$

Using Theorem 6.5 we get that the map α is a bijection of $P(M, N)$ onto $P(N', M')$. Moreover for $x \in N_c$:

$$\sigma_t^{o(T)}(x) = (D\alpha(T) : DS_0)_t \sigma_t^o(x)(D\alpha(T) : DS_0)_t^* = (DT : DT_0)_t^\tau(x).$$

Hence (1). Clearly $\alpha(T_0) = S_0$. Thus for any $T \in P(M, N)$

$$(D\alpha(T) : D\alpha(T_0))_t = (DT : DT_0)_t^\tau.$$

Hence using the chainrule we get (2).

Remark. Let ϕ and ψ be n.f.s. weights on a von Neumann algebra. By [4] we have $\phi \leq \psi$ iff the map $t \mapsto (D\phi : D\phi)_t$ has a (unique) bounded σ-weakly continuous extension to the strip $-\frac{1}{2} \leq \text{Im} z \leq 0$, analytic in the interior of the strip, such that $\| (D\phi : D\phi)_{-1/2} \| \leq 1$. By the same method as in the proof of lemma 4.8, one can prove that for $T_1, T_2 \in P(M, N)$:

$$T_1 \leq T_2 \iff \phi \circ T_1 \leq \phi \circ T_2 \quad \forall \phi \in P(N).$$

Hence $T_1 \leq T_2$ iff the map $t \mapsto (DT_2 : DT_1)_t$ has a bounded, σ-weakly continuous extension to the strip $-\frac{1}{2} \leq \text{Im} z \leq 0$, analytic in the interior, such that $\| (DT_2 : DT_1)_{-1/2} \| \leq 1$. Let α be as in Theorem 6.12. Then using

$$(D\alpha(T_1) : D\alpha(T_2))_t = (DT_1 : DT_2)_t = (DT_2 : DT_1)_t, \quad t \in \mathbb{R},$$

it follows that α reverses the order:

$$T_1 \leq T_2 \iff \alpha(T_1) \geq \alpha(T_2).$$
REFERENCES