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SUMMARY

Pan-NOTCH inhibitors are poorly tolerated in clin-
ical trials because NOTCH signals are crucial for
intestinal homeostasis. These inhibitors might also
promote cancer because NOTCH can act as a tumor
suppressor. We previously reported that the PIAS-
like coactivator ZMIZ1 is frequently co-expressed
with activated NOTCH1 in T cell acute lympho-
blastic leukemia (T-ALL). Here, we show that similar
to Notch1, Zmiz1 was important for T cell develop-
ment and controlled the expression of certain Notch
target genes, such as Myc. However, unlike Notch,
Zmiz1 had no major role in intestinal homeostasis
or myeloid suppression. Deletion of Zmiz1 impaired
the initiation and maintenance of Notch-induced
T-ALL. Zmiz1 directly interacted with Notch1 via
a tetratricopeptide repeat domain at a special
class of Notch-regulatory sites. In contrast to the
Notch cofactor Maml, which is nonselective,
Zmiz1 was selective. Thus, targeting the NOTCH1-
ZMIZ1 interaction might combat leukemic growth
while avoiding the intolerable toxicities of NOTCH
inhibitors.

INTRODUCTION

The NOTCH pathway was first widely implicated in the patho-

genesis of a human cancer with the identification of activating

NOTCH1 mutations in approximately 60% of cases of pediatric

T cell acute lymphoblastic leukemia/lymphoma (T-ALL) (Weng

et al., 2004). Since then, NOTCH has been implicated as an

oncogene in diverse cancers. These discoveries have raised

hopes for NOTCH-targeted drugs to be broadly effective as
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anti-cancer agents. This is particularly important for relapsed

T-ALL, which occurs in �25% of cases and carries a dismal

prognosis. Current treatments of T-ALL rely on cytotoxic drugs

that have detrimental side effects. However, effective treatment

of cancer with NOTCH inhibitors has been elusive. The most

widely studied pan-NOTCH inhibitors are gamma-secretase

inhibitors (GSIs), which block the cleavage of the NOTCH re-

ceptors (NOTCH1–4). NOTCH is initially activated by ligand (in

cancer and normal cells) or by a mutation in some cancers

such as T-ALL. Gamma-secretase then cleaves NOTCH, which

releases the intracellular domain of NOTCH (ICN). ICN translo-

cates to the nucleus where it directly binds MAML cofactors

and the DNA binding factor RBPJ to activate transcription of

NOTCH target genes. Hence, GSIs deprive both cancer and

normal cells of all ICN-driven signals. Clinical trials have shown

that GSIs must be used intermittently, such as weekly dosing,

because of intolerable adverse effects, particularly diarrhea

(Krop et al., 2012; Tolcher et al., 2012). Pan-Notch inhibition

with GSIs is toxic because Notch signaling is crucial for the ho-

meostasis of many tissues, such as the intestine (van Es et al.,

2005; VanDussen et al., 2012). Apart from toxicity, another

growing concern is that pan-NOTCH inhibitors could promote

cancer. NOTCH has been implicated as a tumor suppressor

in certain cancers, such as squamous cell and myeloid cancers

(Klinakis et al., 2011; Wang et al., 2011). Thus, there is a critical

need to identify the factors that preferentially amplify the

oncogenic functions of the NOTCH pathway as opposed to

its essential physiological functions. Targeting these factors

might combat cancer cell growth while avoiding intolerable

toxic effects.

Zmiz1 is a member of the protein inhibitor of activated STAT

(PIAS)-like family of coregulators. PIAS proteins do not bind

DNA directly, but they bind and regulate other DNA-binding

transcription factors (Shuai and Liu, 2005). Multiple murine

mutagenesis screens previously suggested that Zmiz1 is

a Notch1 collaborator in T-ALL (Dupuy et al., 2005; Uren

et al., 2008). The largest screen identified three genes as
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Figure 1. Deletion of Zmiz1 Inhibited T Cell

Development and Transiently Induced

Goblet Cell Hyperplasia

(A) qPCR showing Zmiz1 deletion efficiency in

BM (n = 5 mice), spleen (n = 5 mice), thymus

(n = 5 mice), and intestine (n = 3 mice) at

8 weeks after end and 10 days after start of

pIpC.

(B) Thymus cellularity of Mx1Cre (n = 5 mice),

Zmiz1f/f (n = 7 mice), and Zmiz1DMx1Cre (n = 13

mice) mice at 8 weeks after end of pIpC treat-

ment. One experiment was performed.

(C) LOG2 scale qPCR showing relative mean

transcripts of five Notch1 target genes and Zmiz1

relative to 18S expression in sorted DN3 cells from

paired control and Zmiz1DMx1Cre mice (n = 4 mice

except Notch3 and Zmiz1, n = 3 mice). Data are

mean ± SEM.

(D and E) Goblet cells were stained with periodic

acid-Schiff/Alcian Blue in ileum sections at 103

magnification (D) and quantified per area (E) from

Mx1Cre (n = 3 mice, 12 villi per mouse) and

Zmiz1DMx1Cre (n = 3 mice, 12 villi per mouse) mice

at 10 days after initiation or 8 weeks after end of

pIpC.

Two independent experiments were performed.

Unless otherwise noted, error bars are SD. *p <

0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. See

also Figures S1 and S2.
functional collaborators of Notch1: Lfng, Ikaros, and Zmiz1.

Lfng and Ikaros are well-established regulators of Notch1,

but little is known about Zmiz1 and the Notch pathway.

Zmiz1 was initially discovered as a coregulator of the

androgen receptor (Sharma et al., 2003). It is widely and vari-

ably expressed with low levels in thymus (Sharma et al., 2003),

but its expression is enriched in the earliest thymic precursors

(Rakowski et al., 2013). We previously found that ZMIZ1 is var-

iably expressed in human T-ALL and overexpressed in approx-

imately 30% of patient samples (based on protein expression)

(Rakowski et al., 2013). ZMIZ1 is co-expressed with activated

NOTCH1 across a broad range of T-ALL oncogenomic sub-

groups. ZMIZ1 inhibition slows human T-ALL cell proliferation

and/or sensitizes them to GSI (data not shown; Rakowski

et al., 2013).

In this study, we investigated the significance and mecha-

nism of Zmiz1 in normal physiology and leukemia via mouse

models. Similar to Notch, Zmiz1 was important for T cell devel-

opment and leukemogenesis. However, unlike Notch, Zmiz1
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was not important for intestinal homeo-

stasis or myeloid suppression. Zmiz1

directly interacted with Notch1 through

an N-terminal tetratricopeptide repeat

domain at a special class of Notch bind-

ing sites and selectively coregulated

Notch1 transcriptional activity, particu-

larly through the Myc enhancer. We

here report that Zmiz1 is a direct Notch1

cofactor that heterogeneously regulates

Notch target genes, which might have
important implications for the precise control of Notch func-

tions for a variety of applications.

RESULTS

Zmiz1 Has Partially Overlapping Functions with Notch
during Thymopoiesis
We generated conditional Zmiz1 knockout (Zmiz1f/f) in which

LoxP sites flank exon 9 (see Supplemental Experimental Proce-

dures). We crossed floxed mice to Mx1Cre transgenic mice to

generateMx1CreZmiz1f/f mice. We injected polyinosinic-polycy-

tidylic acid (pIpC) to delete Zmiz1. At 8 weeks, deletion was

generally >95% complete in the bone marrow (BM), >90% com-

plete in the thymus, and �80% complete in the spleen (Fig-

ure 1A). Deletion in the intestine was�60% in the intestinal crypt

and �50% in full-thickness intestine.

We first examined the role of Zmiz1 in T cell development.

Notch1 signaling is required for early thymocyte precursor

(ETP) specification (Maillard et al., 2004; Radtke et al., 1999).
ovember 17, 2015 ª2015 Elsevier Inc. 871



Deletion of Zmiz1 reduced thymus cellularity by �4- to 5-fold

compared to control mice (Figure 1B), but had no significant ef-

fect on BM or splenic cellularity (data not shown). Similar to dele-

tion of Notch1, deletion of Zmiz1 resulted in reduced numbers of

all thymic T cell subsets (Figures S1A–S1I). Therewas no obvious

block at any specific stage of development (data not shown). We

saw no effects on peripheral T cells (Figures S1J and S1K). How-

ever, competitive transplant assays showed a 3- to 5-fold reduc-

tion in peripheral T cells generated by Zmiz1-deleted BM (Fig-

ures S2A–S2C and data not shown) and the defects were cell

autonomous (Figures S2F–S2L and data not shown). RT-PCR

of double-negative 3 (DN3) cells showed that deletion of Zmiz1

caused a significant �4-fold reduction in transcripts of Notch

target genes Myc and Hes1 (Figure 1C). Interestingly, the tran-

scripts of other Notch target genes (Dtx1, Il2ra, and Notch3)

were not significantly affected. These data suggest that Zmiz1

and Notch1 have converging roles in establishing ETP cells

and regulating a subset of Notch1 target genes.

Unlike Notch, Zmiz1 Is Dispensable for Myeloid
Suppression
Notch is important for suppressing myeloproliferation (Klinakis

et al., 2011). In contrast, we found that Zmiz1 was dispensable

for myeloid suppression (Figures S1L, S1M, S2D, S2E, and

S2Q–S2S). We did not observe myeloproliferation for >9 months

after pIpC injection (data not shown). Notch signaling is dispens-

able for steady-state adult hematopoietic stem cell homeostasis

(Maillard et al., 2008). Accordingly, hematopoietic stem/progen-

itor cell numbers were unaffected in Zmiz1-deficient mice (Fig-

ure S1N). Unlike Notch-deficient mice, which have no reported

defects in the NK lineage, we observed a �2-fold loss of NK

cell numbers (Figure S1O), modest cell-autonomous losses of

B cell subsets (Figures S2N–S2P and data not shown), and no

accumulation of thymic B cells (Figures S1Q, S1R, and S2M

and data not shown). In the Zmiz1DMx1Cre mice, we did not

observe effects on B cells (Figure S1S and data not shown),

CD11c+ cells (Figure S1T), erythroid cells (Figures S1U and

S1V and data not shown), or platelets (Figure S1W). These

data suggest that although Notch and Zmiz1 have similar func-

tions in T cells, they have diverging functions outside of the

T cell lineage.

Deletion of Zmiz1 Induced Transient Goblet Cell
Hyperplasia
In order to understand the role of Zmiz1 in intestinal homeosta-

sis, we looked at Zmiz1 expression in the intestine. We observed

similar, relatively low, levels of Zmiz1 transcripts in murine

thymus and intestinal crypt cells (data not shown). Notch and/

or gamma-secretase inhibition in the intestine promotes globlet

cell hyperplasia (van Es et al., 2005; VanDussen et al., 2012).

However, we observed only a modest increase (�24%) in goblet

cells 10 days after deletion of Zmiz1 (Figures 1D and 1E) and

these differences resolved by 8weeks. The recovery of the intes-

tine could not be explained by outgrowth of non-deleted cells

(Figure 1A). To confirm that the recovery of the intestine was

not due to the outgrowth of non-deleted cells, we generated

mice with an intestinal-specific deletion using the VilCreERT2

transgene. Zmiz1DVilCreERT2 mice also did not generate secretory

hyperplasia, suggesting that the initial increase seen in the
872 Immunity 43, 870–883, November 17, 2015 ª2015 Elsevier Inc.
Zmiz1DMx1Cre mice was a cell-non-autonomous effect (Figures

S2T–S2V). Zmiz1-deleted mice did not develop diarrhea or

weight loss after >2 months of observation (data not shown).

These data suggest a milder role for Zmiz1 than Notch in intesti-

nal homeostasis.

Zmiz1 Is Important for Notch-Induced T-ALL Initiation
and Maintenance
To determine the significance of Zmiz1 in T-ALL initiation and

maintenance, we used a well-established murine model of

Notch1-induced T-ALL (Aster et al., 2000). Activating mutations

in NOTCH1, such as L1601PDP, are a defining feature of human

T-ALL. We transduced Mx1CreZmiz1f/f BM stem cells with

L1601PDP and transplanted these cells into recipient mice. To

test the effect of Zmiz1 deletion on T-ALL initiation, we injected

recipient mice with pIpC at 1 week after transplant (Figure 2A).

As expected, control mice developed circulating preleukemic

CD4+CD8+ double-positive (DP) T cells. In contrast, deletion of

Zmiz1 caused a�7-fold reduction in DP T cell frequency (Figures

2B and 2C). DP T cells are preleukemic, low-proliferative, and

correlate with strength of Notch signaling (Chiang et al., 2008;

Li et al., 2008). L1601PDP induced T-ALL in 30% of control

mice but none of the Zmiz1-deleted mice (Figure 2D). When

T-ALL was induced with the stronger DEGFDLNRDP allele

(Chiang et al., 2006), deletion of Zmiz1 caused a significant 1.6-

fold reduction in DP T cell frequency at 4 weeks after transplant

(Figures 2E and 2F). The median survival was 55 days longer in

Zmiz1-deletedmice than in controls (Figure 2G). These data sug-

gest that Zmiz1 is important for initiation ofNotch-inducedT-ALL.

To determine the effect of Zmiz1 deletion on T-ALL mainte-

nance, we first transduced Mx1CreZmiz1f/f BM stem cells with

DEGFDLNRDP and transplanted these cells into recipient

mice. The white blood cell counts began to climb above

100K/ml at �5 weeks after injection, indicative of leukemia. We

injected pIpC to delete Zmiz1 after leukemia was established

and 2–3 weeks later observed a �2-fold reduction of peripheral

DP T cell frequency in deleted mice relative to control mice (Fig-

ures 2H and 2I). The frequency of splenic DP T cells and absolute

numbers of leukemic infiltration into BM, lymph nodes, spleen,

and thymus were also reduced in Zmiz1-deleted mice (compare

Figures S3A to S3B, data not shown). Deletion of Zmiz1

significantly prolonged survival and reduced the fraction of

mice succumbing to T-ALL (Figures 2J and S3C). Because

Zmiz1 appeared to be important for T-ALL leukemogenesis,

we suspected that the T-ALL cells that deleted Zmiz1 would pro-

liferate more slowly than cells that escaped Cre-mediated

recombination. To test this possibility, we transplanted primary

tumors into secondary recipients (Figures S3D and S3E). If dele-

tion of Zmiz1 impaired T-ALL expansion, then we would expect

that the secondary tumors would be dominated by cells that

escaped Zmiz1 deletion. Therefore, we compared the deletion

efficiency of tumors derived from primary and secondary trans-

planted mice. Whereas the frequency of deletion ranged from

18% to 26% in the primary tumors, the frequency of deletion in

the secondary tumors dropped to 0%–2% (Figure S3F). Thus,

Zmiz1-deleted leukemic cells appeared to have a proliferative

disadvantage compared to Zmiz1-wild-type leukemic cells.

These data suggest that Zmiz1 is important for maintenance of

Notch-induced T-ALL.
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Figure 2. Zmiz1 Is Important for Initiation and Maintenance of T Cell Leukemia

(A) Schematic of retrovirally induced BMT model of Notch-induced leukemia.

(B–G) Flow cytometry T cell plots of transduced blood cells at 4 weeks post-transplant (B and E), percent double-positive (DP, CD4+CD8+) transduced blood cells

at 4 weeks post-transplant (C and F), and fraction of mice with leukemia (D and G) transplanted with L1601PDP (B–D) or DEGFDLNRDP (E–G) expressing Zmiz1f/f

and Mx1CreZmiz1f/f progenitors (n = 10 mice per group for B–D; 5 mice per group for E–G). pIpC was injected 1 week after transplant to delete Zmiz1.

(legend continued on next page)

Immunity 43, 870–883, November 17, 2015 ª2015 Elsevier Inc. 873



The N-Terminal Domain Is Critical for Zmiz1 to Function
as a Notch Collaborator
To investigate potential toxicities of targeting Zmiz1, we deleted

Zmiz1 ubiquitously using Rosa26-CreERT2. Deletion did not

cause observable toxicity or weight changes (Figures S3G and

S3H). We next sought to understand the mechanistic basis for

the ‘‘Notch-like’’ phenotypes in Zmiz1-deficient mice with the

objective of identifying a strategy to target Zmiz1. Given that

Zmiz1 appeared to regulate Myc strongly in developing T cells,

we focused on the ability of Zmiz1 to enhance Notch-induced

Myc transcription (Rakowski et al., 2013). Because Zmiz1 cannot

directly bind DNA, we hypothesized that Zmiz1 binds a transcrip-

tion factor. To test this, we first identified the domain that Zmiz1

uses to induce Myc transcription. Using PHYRE and BLAST

to structurally predict the boundaries of Zmiz1 domains, we

createdmutants lacking individual domains of Zmiz1 (Figure 3A).

These mutants were transduced into 8946 cells to test their abil-

ity to driveMyc expression in collaboration with L1601PDP. 8946

is a murine T-ALL cell line that is dependent on a tet-regulated

human MYC transgene and expresses undetectable levels of

ICN1 and very low levels of Zmiz1 (data not shown). Upon addi-

tion of doxycycline, the MYC transgene is downregulated and

the cells die. However, if the cells are co-transduced with

L1601PDP and Zmiz1, murine Myc is expressed, and the cells

proliferate. Deletion of amino acids 1–250 (DN) or the transcrip-

tional activation domain (DTAD) abolished the ability of Zmiz1

to induce Myc transcripts and drive proliferation (Figures 3B–

3D). PHYRE predicted that amino acids 1–120 (N-terminal

domain [NTD]) would be structured and amino acids 121–250

(N2) would be disordered. Deletion of NTD (DNTD) but not N2

(DN2) abolished the ability of Zmiz1 to induce Myc transcription

or drive cell proliferation (Figures 3E–3G). The N and TAD do-

mains were sufficient to induce Myc transcription and drive cell

proliferation (Figures 3H–3J). Because Zmiz2 lacks a domain

homologous to the NTD, we predicted that Zmiz2 could not sub-

stitute for Zmiz1. Accordingly, high levels of Zmiz2 only weakly

induced Myc and failed to drive proliferation (Figures 3K–3N).

We next transfected U2OS cells with a Notch-dependent

reporter construct together with Zmiz1 expression constructs

and intracellular forms of Notch1. U2OS is an osteosarcoma

cell line with low levels of active Notch. Zmiz1, but not DNTD,

enhanced Notch-driven reporter activity (Figures 4A and 4B).

Further, ectopic expression of the combinedN and TADdomains

of Zmiz1 were sufficient to rescue the proliferation of human

T-ALL cells that were transduced with shZMIZ1 (Figure 4C).

These data suggest an NTD-dependentmechanism of Zmiz1 ac-

tion that is independent of MIZ domain functions.

The N-Terminal Domain of Zmiz1 Is a Tetratricopeptide
Repeat Domain that Directly Interacts with the RAM
Domain of Notch1
In order to understand the mechanism of NTD function, we

solved its three-dimensional structure (Figure 4D). Our structural

analyses identified the NTD as containing tandem tetratricopep-
(H–J) Flow cytometry T cell plots of transduced blood cells (H), percent double-po

(I), and survival (J) of mice transplanted with DEGFDLNRDP-expressing Zmiz1f/f

�5 weeks after transplant when WBC was detected above 100K/ml. One experim

Error bars are SD. **p < 0.01; ****p < 0.0001. See also Figure S3.
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tide repeats (TPR). TPR domains mediate protein-protein inter-

actions in hundreds of proteins (Zeytuni and Zarivach, 2012).

We will henceforth refer to the NTD as ‘‘TPR.’’ In order to identify

proteins interacting with TPR, we performed affinity purification

mass spectrometry (MS) of 8946 cells transduced with FLAG-

tagged TPR as the bait. Our screen identified 14 known tran-

scriptional regulators that were differentially immunoprecipitated

with the TPR bait compared to control vector (Figure 4E). The

top-ranked hit was Notch1, and the third and fifth ranked hits

were the other two components of the core Notch1 complex

(Maml1 and Rbpj, respectively). These data suggest that Zmiz1

interacts with the Notch1 complex through the TPR domain.

Our MS results were unexpected because previous experi-

ments did not identify an interaction between Notch1 and

Zmiz1 (Rakowski et al., 2013). However, co-immunoprecipitation

(co-IP) studies using optimized conditions revealed that FLAG-

Zmiz1 interacted with ICN1 and endogenous Rbpj in Notch-

transduced 8946 cells (Figures 5A and 5B). The FLAG-Zmiz1

construct was expressed at levels comparable to endogenous

ZMIZ1 in CEM/SS human T-ALL cells (Figure S4A). TPR was

both sufficient (Figure 5C) and necessary (Figure 5D) for the inter-

action. ZMIZ1 interacted with ICN1 and RBPJ in human T-ALL

cells (Figures 5E and 5F) and in reverse co-IPs (Figure 5G). We

were unable to validate interactions between TPR and other

possible partners in Figure 4E (data not shown). Our use of for-

ward and reverse co-IP detected interactions with endogenous

proteins in multiple cell lines and yielded consistent results,

supporting the notion that Notch1 interacts with Zmiz1.

We next tested whether Zmiz1 interacted directly with the

RAM-ANK domain of Notch1 (Figure 6A). GST pull-down assay

showed a direct interaction between RAM-ANK and TPR (Fig-

ure 6B). In order to confirm direct binding, we mixed 15N-labeled

untagged TPR with untagged RAM-ANK. We observed shifts for

number of peaks in the NMR spectrum of TPR, which indicated

direct binding (Figures 6C–6E). In particular, we observed a

strong broadening of the W38 peak of TPR (compare Figures

6F and 6G). RAM but not ANK retained binding to TPR (compare

Figures 6H and 6I). ANK forms a transcriptionally active complex

with Rbpj and Maml. If Zmiz1 interacted with RAM, but not ANK,

then Zmiz1 should not enhance ANK transcriptional activity.

Accordingly, Zmiz1 did not significantly enhance ANK-driven

transcription (Figure 6J). Finally, given potential toxicity of target-

ing all Zmiz1 functions, we tested the feasibility of targeting just

the TPR-Notch1 interaction. Accordingly, the TPR alone and a

TPR-DsRed fusion protein acted as dominant-negative inhibitors

in the Notch reporter assay (Figures 6K, 6L, and S4B). Further-

more, transduction of the TPR-DsRed inhibited T-ALL prolifera-

tion (Figure 6M). These data are indicative of direct binding be-

tween the RAM domain of Notch1 and the TPR domain of Zmiz1.

Zmiz1 Selectively Co-binds a Subset of Notch
Regulatory Sites
Our observation of a direct interaction between Zmiz1 and

Notch1 led us to consider the possibility that these proteins
sitive (DP, CD4+CD8+) transduced blood cells at 2–3 weeks after pIpC injection

(n = 10 mice) and Mx1CreZmiz1f/f (n = 7 mice) progenitors. pIpC was injected

ent was performed.
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Figure 3. The N-Terminal Domain of Zmiz1 Is Important for Driving Myc Transcription and Proliferation

(A) Domain structure of Zmiz1, Zmiz2, and deletion mutants.

(B–N) Immunoblot using the FLAG antibody showing that all tested proteins were expressed at levels equal to or greater than wild-type Zmiz1 (B, E, H, and K),

qPCR analysis for Myc transcripts relative to the empty vector (C, F, I, and L) and fold increase in cell number relative to the empty vector after 6 days of culture

(D, G, J, and N) of sorted 8946 cells that were transduced with the indicated Zmiz1 constructs and L1601PDP. At least two independent experiments were

performed. Error bars are SD. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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Figure 4. The N-Terminal Domain of Zmiz1

Is Important for Enhancing Notch Reporter

Activity and Contains Tetratricopeptide

Repeats that Mediate Protein-Protein Inter-

actions

(A and B) Luciferase activity in U2OS cells trans-

fected with 250 ng Notch-dependent (Rbpjx4)

luciferase reporter, 100 ng Zmiz1 or DNTD, RAM-

ANK (A) or 0.5 ng ICN1 (B). Data are relative to

control cells. At least two independent experi-

ments were performed.

(C) Fold growth of human T-ALL cells (CEM/SS)

co-transduced with shControl (�) or shZMIZ1_1

(+) and the ZMIZ1 mutants N-TAD or DPRO after

3 days of culture. Because shZMIZ1_1 recognizes

the PRO domain, it would not target N-TAD or

DPRO.

(D) Crystal structure of the NTD domain shows

tandem tetratricopeptide repeats (TPR) with

mapped interface involved in Notch1 binding.

(E) Mass spectrometry results showing all known

transcriptional regulators ranked by number of

unique peptides (at least 2) that were immuno-

precipitated by FLAG antibody in 8946 cells

transduced with the FLAG-TPR bait but not with

the empty vector control. One experiment was

performed.

Error bars are SD. ***p < 0.001; ****p < 0.0001.
interacted at the chromatin level. We were previously unable to

perform ChIP using the FLAG or Zmiz1 antibodies (Rakowski

et al., 2013). Therefore, we used an HA antibody to recognize

HA-tagged Zmiz1 (HA-Zmiz1). The HA-Zmiz1 construct was ex-

pressed at levels comparable to endogenous ZMIZ1 in Jurkat

T-ALL cells (Figure S4A). We performed ChIP-seq in 8946 cells

transduced with HA-Zmiz1 and Notch1. We identified 4,897

Zmiz1 (HA) peaks, 20,485 Rbpj peaks, and 383 ICN1 peaks

with FDR < 0.01 (Figure 7A; Figures S4C–S4E for distributions).

A large majority (75%) of ICN1/Rbpj peaks overlapped with

Zmiz1 (HA) peaks (273 peaks). 27% of ICN1 peaks with overlap-

pingRbpj but not Zmiz1 (HA) peaksweredistributed topromoters

(Figure 7B, Table S1). In contrast, only 6% of ICN1 peaks with

overlapping Rbpj and Zmiz1 (HA) peaks were distributed to pro-

moters (Figure 7C, Table S2). Thus, similar to dynamic Notch1

sites and Ets1 sites (Wang et al., 2014), Notch1 sites that were

co-bound with Zmiz1 were less frequently found at promoters
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than all Notch1 sites. Consistent with the

notion that ICN1 binds Rbpj, the size of

ICN1 signals correlated with the size of

Rbpj signals (Figure S4F, R = 0.44). In

contrast, Zmiz1 appeared to interact

with ICN1 only at select sites at the chro-

matin. Accordingly, the size of Zmiz1

(HA) signals had moderate correlation

with the size of Rbpj signals (Figure S4G,

R = 0.31) and ICN1 signals (Figure S4H,

R = 0.37; Figure S4I). Similar to Rbpj and

ICN1 peaks, Zmiz1 (HA) peaks were

associated with activating H3K27ac,

H3K4me1, and H3K4me3 chromatin
marks and were devoid of repressive H3K27me3 marks (Figures

S4J–S4L). We identified co-occupancy of Zmiz1 (HA), ICN1, and

Rbpj peaks at enhancers in previously identified Notch binding

sites (Figures 7D and S5A). Zmiz1 bound the distal 30 Myc

enhancer, which was recently found to be crucial for T cell line-

age-specificMycexpression andmaintenanceofNotch-induced

T-ALL (Herranz et al., 2014; Yashiro-Ohtani et al., 2014). These

Zmiz1 binding sites were validated by conventional ChIP (Fig-

ure S5B). These data are consistent with selective binding of

Zmiz1 at a subset of ICN1- and Rbpj-regulated sites.

Our results seemed to contradict our previous data suggesting

thatMyc was an indirect target of Zmiz1 (Rakowski et al., 2013).

Previously, we showed that a chimeric protein (Zmiz1-ER) con-

sisting of Zmiz1 fused to the ligand-binding domain of the estro-

gen receptor (ER) is unable to driveMyc transcription in the pres-

ence of cycloheximide (CHX). We considered the possibility that

the ER domain was altering Zmiz1 function because we had
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B Figure 5. Zmiz1 interacts with Notch1

(A–D) Co-IP using the control IgG (A) or FLAG

(A-D) antibody in 8946 cells co-transduced with

L1601PDP and the empty vector control (B–D),

FLAG-Zmiz1 (A, B and D), FLAG-TPR (C), or FLAG-

DTPR (D) to identify co-bound ICN1, endogenous

Rbpj, and endogenous Ets1 (D) and the response

to GSI (A and B).

(E) Co-IP using the control IgG or FLAG antibody

in THP6 cells transduced with empty vector or

FLAG-ZMIZ1 to identify co-bound ICN1 and RBPJ

in response to GSI.

(F) Co-IP using the FLAG antibody in CEM/SS

cells transduced with FLAG-ZMIZ1 to identify co-

bound ICN1.

(G) Two independent co-IP experiments using

the FLAG antibody in CEM/SS cells trans-

duced with DEGFDLNR or DEGFDLNR-FLAGx2-

HAx2 (‘‘DEGFDLNR-FLAG’’) to identify co-bound

endogenous ZMIZ1. At least two independent

experiments were performed.
fused it directly to the C-terminal end of the TAD of Zmiz1. We

thus constructed a second chimeric protein called Zm(ER)iz1

in which the ER was placed in the middle of Zmiz1. Zm(ER)iz1

could driveMyc expression even in the presence of CHX (Figures

S5C and S5D). These data support our model that Zmiz1 binds

ICN1, which directly regulates Myc.

Zmiz1 and Notch1 Cooperatively Recruit Each Other to
Chromatin through the TPR Domain
Our observation of a direct interaction between ICN1 and Zmiz1

led us to consider the possibility that ICN1 and Zmiz1 coopera-

tively recruited each other to chromatin. Our model predicts that

GSI would interfere with Zmiz1 binding by depleting ICN1.

Accordingly, GSI significantly reduced Zmiz1 binding at Notch-

dependent sites but not at negative control sites (Figure S5E).

To further show cooperative binding on chromatin, we generated
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four 8946 cell lines in which L1601P or

Zmiz1 were expressed alone or in combi-

nation. We then performed RNA-seq

and ChIP at the Notch-dependent Myc

enhancer (Figure S6A). Because L1601P

generates low levels of ICN1, we relied

on the more sensitive Rbpj antibody to

detect the Notch1 complex. The addition

of L1601P increased Zmiz1 (HA) binding

to theMycenhancer (FigureS6B,compare

2nd and 4th columns), but not to a control

site (Figure S6C). Conversely, the addition

of Zmiz1 increased Rbpj binding to the

Myc enhancer (Figure S6D, compare 3rd

and 4th columns), but not to a control site

(Figure S6E). Further, addition of Zmiz1

slightly increased the activating H3K27ac

mark (Figure S6F, compare 3rd and 4th col-

umns) at the Myc enhancer, but not at a

control site (Figure S6G). Our model pre-

dicts that deletion of the TPR domain
(DTPR) would impair recruitment of Zmiz1 or Rbpj. Accordingly,

L1601P had no effect on the binding of the DTPR mutant

(Figure S6H, compare 3rd and 6th columns). Further, DTPR had

no effect on Rbpj binding (Figure S6I, compare 4th and 6th col-

umns), on the activating H3K27ac mark (Figure S6J, compare

4th and 6th columns), or on the repressive H3K27me3 mark (Fig-

ure S6K, compare 4th and 6th columns). In contrast, wild-type

Zmiz1 reduced the repressive H3K27me3 mark (Figure S6K,

compare 4th and 5th columns). Our data suggest that Zmiz1 and

Notch1 cooperatively recruit each other to chromatin through

direct interaction via the TPR resulting in a slight increase in acti-

vating histone marks and decrease of repressive histone marks.

‘‘Zmiz1-Independent’’ Notch1/Rbpj Sites
Due to the high stringency of the MACS2 algorithm, the per-

centage of ICN1/Rbpj sites that overlap with Zmiz1 sites was
ovember 17, 2015 ª2015 Elsevier Inc. 877
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Figure 6. The TPR Domain of Zmiz1 Binds

Directly to the RAM Domain of ICN1

(A) Schematic of Notch1 showing that the unique

peptides identified by the MS screen were clus-

tered around RAM-ANK.

(B) GST pull-down assay stained with Coomassie

blue using 30 mg GST or GST-RAM-ANK as bait for

120 mg TPR at indicated molar ratios. Red arrow-

head identifies TPR pulled down by GST-RAM-

ANK but not GST.

(C and D) 1H-15N HSQC spectrum for 50 mM 15N

TPR (blue) and 50 mM (C) or 100 mM (D) unlabeled

RAM-ANK (red).

(E) Fragment of 1H-15N HSQC spectra for 50 mM
15N TPR (blue) and with 50 mM RAM-ANK (red) or

100 mM RAM-ANK (green) showing chemical shift

perturbations and peak broadening (arrows).

(F–I) Small segments of 1H-15N HSQC spectra for
15N TPR (F) and 15N TPRmixed with RAM-ANK (G),

ANK (H), or RAM (I). Direct binding causes loss of

the W38 peak but not the W99 peak because W38

is very close to the binding interface.

(J) Reporter activity in U2OS cells transiently

transfected with a Notch-dependent (Rbpjx4)

luciferase reporter (250 ng), Zmiz1 or DTPR

(100 ng), and ANK (100 ng).

(K and L) Luciferase reporter activity in U2OS cells

transiently transfected with a Notch-dependent

(Rbpjx4) reporter (250 ng), Zmiz1 (100 ng), RAM-

ANK (6 ng), TPR (K, 100 ng), and TPR-DsRed

fusion protein (L, 100 ng) to test TPR as a domi-

nant-negative Zmiz1 inhibitor.

(M) 8946 cells transduced with L1601PDP, Zmiz1,

and TPR-DsRed were measured for fraction of

percent DsRed+ cells on day 0 in doxycycline for

9 days. At least two independent experiments

were performed.

Error bars are SD. *p < 0.05; ****p < 0.0001.
probably higher than 75%. However, we identified ICN1/Rbpj

sites where ChIP could not detect Zmiz1 (HA) binding (examples

in Figure S6L, compare 2nd and 3rd columns). Here the addition

of Notch1 but not Zmiz1 significantly increased binding of

ICN1 or Rbpj (Figures S6M and S6N).

Zmiz1 Selectively Regulates a Subset of Notch1 Target
Genes, Particularly Myc, in Murine and Human T-ALL
Our ChIP-seq data led us to hypothesize that Zmiz1 regulates

only a subset of Notch1 target genes. To investigate this, we

performed RNA-seq on the 8946 cells transduced with

L1601P and/or Zmiz1 (Figure S6A). We first identified all target

genes that were regulated by Notch1 (Figure 7E). We next deter-

mined the fold change for each gene upon further addition of

Zmiz1. The Notch1-induced target gene that was most strongly

upregulated by the further addition of Zmiz1 was clearly Myc
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(purple circle, Figure 7E). About 43% of

Notch1-induced target genes were co-

regulated by Zmiz1 (Figure S7A, Table

S3). We observed a small, significant in-

duction of endogenous Zmiz1 (�17%)

by Notch1 (data not shown). These data

show that Zmiz1 selectively regulates a
subset of Notch1 target genes with strong amplification of the

Myc oncogene.

We next considered the possibility that this same selectivity

occurs in human T-ALL. In human CEM-type T-ALL cells, �7%

of NOTCH target genes were also ZMIZ1 target genes (Fig-

ure S7B, Table S4). We identified ZMIZ1-regulated genes in pro-

liferation-type pathways using MSigDB gene lists (Figure S7C).

Among the NOTCH-dependent ZMIZ1-regulated genes were

MYC, IL7R, and HES1 (Figures S7C, green highlights, and

S7D).MYC, IL7R, andHES1 are important direct NOTCH1 target

genes in T-ALL. The combination of GSI and shZMIZ1 downre-

gulated MYC transcripts more effectively than GSI or shZMIZ1

individually (Figure S7E and S7F; ANOVA analysis in Figure S7G).

The effectiveness of the combination was also seen onMYCpro-

tein (Figure S7H, compare 2nd lane to 4th and 6th lanes). These

data suggest that ZMIZ1 selectively coregulates MYC in human
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(A) Intersection averages of Zmiz1, ICN1, and Rbpj sites identified by ChIP-seq in 8946 cells transduced with HA-Zmiz1 and activated Notch1.

(B and C) Intersection analysis showing ICN1 peaks co-bound with Rbpj and without Zmiz1 (B) or with Zmiz1 (C).

(D) ICN1, Zmiz1 (HA), and Rbpj aligned normalized read counts and associated histone marks in the Myc 30 enhancer, Dtx1 intron 2, and Notch3 intron 1.

(E) RNA-seq dot plot of 2,382 Notch target genes (see Figure S6A). The genes in each quadrant with the largest fold change upon further addition of Zmiz1 are

indicated.

(legend continued on next page)
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T-ALL cells similar to murine T-ALL. The importance of ZMIZ1 in

non-NOTCH pathways was suggested by the more profound ef-

fect of Zmiz1 deletion on survival than on frequencies of Notch-

induced DP T cells (compare Figure 2G to Figure 2F). To further

evaluate this, we silenced the top four genes induced by ZMIZ1

but not NOTCH in Figure S7C (gray highlights). Knockdown sup-

pressed proliferation (Figures S7I–S7L). These data suggest that

NOTCH-independent ZMIZ1-regulated genes have functional

significance.

Zmiz1 Binds a Special Class of Notch-Regulatory Sites
To understand the selectivity of Zmiz1, we considered the pos-

sibility that Zmiz1 might regulate genes based on the number

or strength of binding sites. However, we found only modestly

higher peak numbers and sizes of Zmiz1 but not ICN1/Rbpj in

genes positively regulated by Zmiz1 (data not shown). We next

considered the possibility that there was a Notch1-independent

transcription factor that recruited Zmiz1 to chromatin and there-

fore performed de novomotif analysis (Figure 7F). At type A sites,

ICN1 and Rbpj were bound, but Zmiz1 was not bound. At type B

sites, ICN1, Rbpj, and Zmiz1 were bound. At type C sites, Zmiz1

was bound, but Rbpj and ICN1 were not bound. Rbpj was the

most highly and significantly enriched motif at type A and type

B sites, but not type C sites. Basic helix-loop-helix (bHLH), Tcf,

Runx, and Ets motifs were the next most highly and significantly

enriched motifs at type B sites and the most highly and signifi-

cantly enriched motifs at type C sites (p < 13 10�13). These mo-

tifs were not enriched at type A sites. These data suggest that

Zmiz1 homes to sites where bHLH, Tcf, Runx, and Ets factors

bind even when ICN1 is absent and avoids sites where these fac-

tors do not bind even when ICN1 is present. Accordingly, ETS1

co-bound NOTCH-regulatory sites in the 30 MYC enhancer and

other loci (Figure 7G). Furthermore, Zmiz1 bound Ets1 through

a TPR-independent mechanism (Figure 5D). The strength of

ICN1/Rbpj binding was not a major factor in determining binding

of Zmiz1 (Figure 7H). These data suggest that the selectivity of

Zmiz1 for certain Notch1 target genes but not others might be

controlled in part by its preference for a special class of Notch

regulatory sites.

DISCUSSION

The challenge facing the development of NOTCH-directed ther-

apeutics is to selectively target the functions of NOTCH in cancer

and preserve the functions of NOTCH in normal tissue homeo-

stasis and tumor suppression. A theoretical strategy is to selec-

tively target the gene regulatory functions of the core NOTCH

complex. On one hand, some direct NOTCH cofactors, such

as MAML, might be non-selective. Inhibiting these nonselective

cofactors would homogeneously inhibit NOTCH functions and

would be predicted to cause the same intolerable toxicities as

GSI. On the other hand, there might exist a pool of context-
(F) Homer motif analysis showing the top five most significantly enriched transcr

associatedwith Zmiz1 (HA) binding sites (type A); lying ± 250 bp of Zmiz1 (HA) bind

Zmiz1 (HA) binding sites not associated with ICN1/Rbpj binding sites (type C). P

(G) ICN1, ETS1, and RBPJ aligned normalized read counts from GEO: GSE5180

(H) RPMs are shown for ICN1 peakswith overlapping Rbpj, and Zmiz1 (HA) peaks (

One experiment was performed. Abbreviation is as follows: DCE, downstream c
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dependent direct NOTCH cofactors that heterogeneously regu-

late ICN. If so, it might be possible to precisely control NOTCH

signaling with acceptable toxicities by targeting specific pro-

tein-protein interactions. The challenge is that the direct tran-

scriptional regulators of the core NOTCH complex are poorly

understood. ICN1 recruits the histone acetyltransferases Pcaf,

Gcn5, and p300/CBP (Kurooka and Honjo, 2000; Oswald et al.,

2001). Maml1 recruits p300/CBP (Fryer et al., 2002). MS analysis

revealed several proteins that associated with the NOTCH

core complex (Yatim et al., 2012). However, it is unclear whether

these regulators are recruited directly or are selective for certain

NOTCH target genes.

We found that Zmiz1, through a previously unappreciated TPR

domain, directly engaged ICN1 to selectively regulate Notch1

target genes. By ‘‘selective,’’ we mean that Zmiz1 regulated

�43% of Notch1 target genes and co-bound �75% of Notch1/

Rbpj binding sites. This selectivity was at least in part due to

the preference of Zmiz1 for a special class of Notch binding

site. However, as is the case for other transcription factors like

NOTCH1 (Wang et al., 2014), ChIP-seq revealed that Zmiz1

binding sites greatly outnumber regulated genes. Thus, there

are other determinants for the selectivity other than Zmiz1 bind-

ing. Zmiz1 target genes included Notch target genes important

for T cell development and leukemia such as Myc and Hes1.

Selective loss of Notch target genes might explain why Zmiz1-

deficient mice displayed the loss of ETP cells, but not the expan-

sion of thymic B cells or the selective loss of marginal zone B

cells that is seen in Notch-deficient mice. Accordingly, Hes1-

deficient mice do not accumulate thymic B cells or show

selective loss of marginal zone B cells (Wendorff et al., 2010).

However, additional experiments are needed to test this more

thoroughly. Additional in vivo studies are also needed to compre-

hensively identify and functionally validate the critical target

genes of Zmiz1 during the biologically distinct processes of

ETP specification, leukemia initiation, and leukemia mainte-

nance using comparative gene expression profiling of Notch-

deficient and Zmiz1-deficient cells followed by in vitro and in vivo

functional validation. We expect many challenges in these en-

deavors because the Notch target genes important for these

processes are still debated and incompletely understood

despite several years having passed since the first reports

of T cell defects in Notch1-deficient mice (Radtke et al., 1999)

and T-ALL in Notch1-activated mice (Pear et al., 1996).

The selectivity of Zmiz1 for certain Notch1 target genes might

be clinically relevant when considering potential toxicities of

Zmiz1-directed therapy. For example, in contrast to mouse

models of pan-Notch deficiency, our Zmiz1-deficient mice did

not develop sustained or severe gut toxicity, myeloproliferative

disease, or weight loss. Although this was reassuring, our mice

displayed defects not found in Notch-deficient mice. Thus, we

are mindful of the potential importance of Notch-independent

functions of Zmiz1. In this regard, we identified an interaction
iption factor motifs in rank order lying ± 250 bp of ICN1/Rbpj binding sites not

ing sites associatedwith ICN1/Rbpj binding sites (type B); and lying ± 250 bp of

ercent of sites with the indicated motif is shown in parentheses.

0 (Wang et al., 2014).

C) andwith overlapping Rbpj, but not Zmiz1 (HA) peaks (B). #p = 3.7173 10�16.

ore element. Error bars are SD. See also Figures S4–S7.



of Zmiz1 with Ets1. Ets1-deficient mice have defects in T cell, B

cell, and NK cell development (Barton et al., 1998; Bories et al.,

1995; Muthusamy et al., 1995), so it is possible that combined

partial alterations in Notch and Ets1 functions might be contrib-

uting to the defects in Zmiz1-deficient mice. Testing this possi-

bility will be challenging, but could be done by mapping the crit-

ical amino acids at the interface with each binding partner by a

combination of mutagenesis and biophysical methods such as

X-ray crystallography and NMR. These data would enable us

to rationally design well-controlled small molecule, mutagenesis,

and dominant-negative strategies to selectively disrupt one

interaction while preserving the other and then observing effects

on lymphopoiesis, leukemia initiation, leukemia maintenance,

and target gene expression. To reduce toxicity, it might be

important to specifically target the Notch-dependent functions

of Zmiz1. Because the TPR is dispensable for the Zmiz1-Ets1

interaction and because we have not validated TPR interactions

with other potential partners in Figure 4E, we predict that target-

ing the TPR-Notch1 interaction might preserve Zmiz1 interac-

tions with other binding partners. This would probably be less

toxic than inhibiting all Zmiz1 functions. Accordingly, we showed

that the TPR domain acted as a dominant-negative and sup-

pressed T-ALL cell growth.

Our findings suggest that the view of the lone ICN1 complex

sitting on chromatin and driving gene expression robustly

through a repetitive inflexible mechanism at every target gene

might be outdated. This view is based on experiments using

very strong but artificial alleles (e.g., NICD1 or ICN1). However,

we previously found that the mutated NOTCH1 alleles in human

samples vary in signal strength in several assays, but in general

are much weaker than ICN1 (Chiang et al., 2008). We propose a

model, based on experiments using the weaker NOTCH1 alleles

commonly found in leukemia, that the core NOTCH complex

is intrinsically weak. It specifies gene expression but relies on

direct contact with transcriptional cofactors to amplify its func-

tions. Thismodel is consistent with recent ChIP-seq experiments

showing that certain transcription factors (e.g., RUNX1, ETS1,

GABPA, and Ikaros) converge on a subset of NOTCH-regulated

enhancers (Geimer Le Lay et al., 2014; Wang et al., 2011, 2014).

Although none of these factors are known to bind NOTCH

directly, these data raise the possibility that direct NOTCH1 co-

factors could similarly converge on ICN1. In T cells, we propose

that NOTCH1 relies on ZMIZ1 to selectively amplify an important

oncogenic subset of NOTCH1 signals (e.g.,MYC) by direct regu-

lation and possibly recruitment to an even larger transcriptional

complex. This might offer the opportunity to combat T-ALL

growth with NOTCH-directed therapy with acceptable adverse

effects. We here report the discovery of a direct and selective

cofactor of NOTCH1, which has promising translational potential

because precise control of NOTCH signals might treat condi-

tions of T cell deficiency, immune dysregulation, and cancer.

EXPERIMENTAL PROCEDURES

Mice

4- to 8-week-old C57BL/6 (CD45.2+) mice and C57BL/6.Ly5.2 (B6-SJL,

CD45.1+)micewereobtained fromTaconic andNCI/CharlesRiver, respectively.

Experiments were performed according to NIH guidelines with approved proto-

cols from the IACUC at the University of Michigan (Permit # PRO00005826).

Zmiz1f/f mice were generated from ES cells obtained from EUCOMM
I

(HEPD0641-2-B09). These ES cells are on the C57BL/6 Taconic background

and contain an Exon 9 of Zmiz1 that is flanked by two LoxP sites.

Cell Lines

Jurkat were provided by Jon Aster. CEM/SS were provided by Katherine

Collins. 8946 and CUTTL1 were provided by Warren Pear and Adolfo

Ferrando. LOUCY.2, a subclone of LOUCY, was provided by Uptal Dave.

P12.2, a subclone of P12, and other T-ALL cell lines were provided by Andrew

Weng. U2OS cells were provided by Chris Canman.

Antibodies

Antibodies used were as follows: ICN1 (Cell Signaling Technology, 2421), Rbpj

(5313, Cell Signaling Technology), FLAG (F1804, Sigma), HA (3725, Cell

Signaling Technology), b-actin (A5316, Sigma), MYC (D84C2; Cell Signaling

Technology), and ZMIZ1 (AP6236a, Abgent). Antibodies for ChIP-seq

are as follows: H3K4me3 (Millipore, 07-473), H3K4me1 (Abcam, ab8895),

H3K27me3 (Millipore #07-449), H3K27ac (Abcam, ab4729), HA (Abcam,

ab9110, 2.5 mg), mouse IgG isotype control (Cell Signaling Technology,

5315s), rabbit IgG isotype control (Cell Signaling Technology, 2729), Rbpj

(Cell Signaling Technology, 5313), and ICN1 (Cell Signaling Technology,

4147s).

Protein Identification by LC-Tandem Mass Spectrometry

8946 cells were transduced with either the NGFR vector alone or FLAG-TPR.

Proteins were separated by SDS-PAGE and digested with trypsin. Resulting

peptides were resolved and directly introduced in to an ion-trap mass spec-

trometer (LTQ XL, ThermoFisher).

Crystallization and Structure Determination

Crystals of SeMet-substituted ZMIZ1 TPR were grown by using the sitting-

drop vapor diffusion method at 4�C. Diffraction data were collected on a

SeMet substituted crystal at the Advanced Photon Source at LS-CAT beam

line 21-ID-D. The final structure was refined to 1.7Å resolution and crystallo-

graphic Rwork and Rfree were 15.84% and 20.44%, respectively.

NMR
15N-labeled TPR was expressed and purified by size exclusion chromatog-

raphy. Samples for NMR studies contained 50 mM 15N TPR in 50 mM Tris

(pH 7.5) and 50 mM NaCl buffer. All NMR spectra were measured with Bruker

600 MHz spectrometer at 25�C.

ChIP-Seq and RNA-Seq

The ChIP DNA was prepared from 8946 cells transduced with activated

Notch1 and Zmiz1. Histone mark samples were prepared by formaldehyde

crosslinking. Other samples were prepared with DSG with formaldehyde

crosslinking. The sequencing library was prepared with the Illumina Hi-Seq li-

brary preparation kit. For RNA-seq, 8946 cells were transduced in triplicate

with (1) MigR1 and NGFR empty vectors, (2) MigR1-L1601P and NGFR empty

vector, (3) MigR1 and Zmiz1-NGFR, or (4) MigR1-L1601P and Zmiz1-NGFR.

RNA samples with RINs of 8 or greater were prepped with the Illumina TruSeq

mRNA Sample Prep v2 kit (Catalog #s RS-122-2001, RS-122-2002) (Illumina).

Final libraries were sequenced on a 50 cycle single end on a HiSeq 2000 (Illu-

mina) in High Output mode using version 3 reagents according to manufac-

turer’s protocols. The reads were mapped to mm10 assembly using Bowtie

(version 0.12.7) to generate uniquely mapped alignments.

ACCESSION NUMBERS

The sequencing data were deposited in the Gene Expression Omnibus with

accession number GEO: GSE66147. The coordinates for the TPR domain

were deposited in PDB under the code PDB: 5AIZ.
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