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Abstract

Under certain conditions on an integrable function P having a real-valued Fourier transform P̂ and
such that P(0)=0, we obtain an estimate which describes the oscillation of P̂ in [−C‖P ′‖∞/‖P ‖∞,

C‖P ′‖∞/‖P ‖∞], where C is an absolute constant, independent of P. Given � > 0 and an integrable function
� with a non-negative Fourier transform, this estimate allows us to construct a finite linear combination P�

of the translates �(· + k�), k ∈ Z, such that ‖P ′
�‖∞ > c‖P�‖∞/� with another absolute constant c > 0. In

particular, our construction proves the sharpness of an inequality of Mhaskar for Gaussian networks.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The original Markov inequality states that ‖P ′‖L∞(I ) �n2‖P ‖L∞(I ) for any algebraic polyno-
mial P of degree n. Here, I = [−1, 1]. This inequality becomes an equality if P is the Chebyshev
polynomial P(x) = cos nt where x = cos t . The reader may find the details of this on [7, p. 40].

Upper estimates of the derivative norm by that of the function itself are usually termed Markov–
Bernstein inequalities. There is an extensive literature on such inequalities, which play an impor-
tant role in inverse theorems, where smoothness of a function is deduced from rates of convergence
of polynomial approximations. For an excellent survey on Markov–Bernstein and related inequal-
ities, the reader may consult the book [1] of Borwein and Erdélyi.
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By imposing additional assumptions on the zeros of the polynomials, one can obtain estimates
which give lower bounds for the norm of a derivative in terms of the norm of the function. These
results are usually termed inverse Markov–Bernstein inequalities or Turán type inequalities. For
instance, Turán [10] proved that

‖P ′‖L∞(I ) �
√

n

6
‖P ‖L∞(I )

for any polynomial P of degree n, provided that all of its zeros lie in the interval I = [−1, 1]. We
also refer the reader to an important paper of Eröd [5].

There has been an upsurge of interest in such estimates, with a number of recent results dealing
with the topic [2,6,9,11]. For instance, in [11], Zhou showed that if 0 < r �q �∞ and 1�1/r −
1/q, then

‖P ′‖Lr(I ) �Cn�‖P ‖Lq(I)

for every polynomial P whose zeros lie in the interval I. Here, � = 1
2 − 1

2r
+ 1

2q
.

Our work is more closely related to results of Erdélyi and Nevai [4], who obtained

lim
n→∞

‖p′
n‖X

‖pn‖Y

= ∞

for sequences of polynomials pn whose zeros satisfy certain conditions.
Markov–Bernstein inequalities have also been obtained for other classes of functions such as

Gaussian networks. For instance, in [8], Mhaskar showed that for some constant c,‖g′‖p �cm‖g‖p

for any function g of the form

g(x) =
N∑

k=1

ak exp(−(x − xk)
2), x ∈ R,

where |xj − xk|�1/m for j 	= k, and log N = O(m2).
One of our goals in this note is to show that under certain conditions on an integrable function

P : R −→ R having a real-valued Fourier transform P̂ with P(0) = 0,

r �C
‖P ′‖∞
‖P ‖∞


⇒
∫ r

−r

(P̂ )± �
√

2�

4
‖P ‖∞. (1)

Here, x± = max{±x, 0} and we can take C = 83/�. This estimate not only tells us that P̂ will
have a zero in the interval [−r, r], but also provides an effective estimate on how it oscillates in
the interval.

For a fixed function �, let

En(�) :=
{

n∑
k=−n

bk�(x + �k) : bk ∈ R, k = −n, . . . ,−1, 0, 1, . . . , n

}
. (2)

The estimate in (1) allows us to construct P� ∈ En(�) for each � > 0 and for sufficiently large
positive integers n (depending on �) such that ‖P ′

�‖∞ > c‖P�‖∞/� with some absolute constant
c > 0. In particular, our construction proves the sharpness of the above-mentioned inequality of
Mhaskar [8] for Gaussian networks.
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2. Notations and preliminaries

For any integrable function f on the real line, we write for its Fourier transform

f̂ (�) = 1√
2�

∫
R

f (x)e−i�x dx.

Given a real number x, its positive and negative parts are x+ = max{x, 0} and x− = max{−x, 0},
respectively.

We will write h for the Fejér kernel, that is,

h(x) := 1√
2�

(
sin x/2

x/2

)2

.

Its Fourier transform is given by

ĥ(�) = max{1 − |�|, 0}.
For the rest of the paper we fix an auxiliary function H. We could use any even, 2�-periodic, and

twice continuously differentiable function H : R −→ R, not identically one, such that H(x) = 1
if |x|��/2. The special constants and values in the following choice are not relevant, only some
order is essential. Nevertheless, for definiteness and more explicit calculation, we take

H(x) =
{

1 if |x|��/2,

sin2 x if �/2 < |x|��.
(3)

Then H has the Fourier cosine series expansion

H(x) =
∞∑

k=0

ak cos kx,

where ak are the Fourier cosine coefficients of H. Although precise values are not needed here, a
calculation leads to a0 = 3/4, a1 = 4/(3�), a2 = −1/4 and

ak = −4 sin k�/2

�k(k2 − 4)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 k even

−4

�k(k2 − 4)
k ≡ 1 mod 4

4

�k(k2 − 4)
k ≡ 3 mod 4.

for k�3, k ∈ N. (4)

It is immediate that |ak|�k−2 for all k ∈ N; moreover, a direct calculation yields

∞∑
k=1

|ak| = 1 + 5

3�
= 1.530516... < 1.6 and

∞∑
k=1

a2
k = 9

8
. (5)

3. Oscillation of Fourier transforms

Lemma 1. Let P : R −→ R be bounded, differentiable, and integrable, and assume that P̂ is
real-valued. Suppose P(0) = 0, and let

r >
83‖P ′‖∞
�‖P ‖∞

. (6)
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Then

4√
2�

∫ r

−r

(P̂ )± �‖P ‖∞. (7)

Proof of Lemma 1. There is nothing to prove if ‖P ′‖∞ = ∞. Hence, we assume ‖P ′‖∞ < ∞.
Fix r satisfying (6) and define

f (x) = P � hr(x) = 1√
2�

∫
R

P(x − t)hr(t) dt,

where hr(t) = rh(rt). Since (2�)−1/2
∫

R hr = 1, for any real number x,

f (x) − P(x) = S(x) + L(x), (8)

where

S(x) = 1√
2�

∫
|t |<�

(P (x − t) − P(x))hr(t) dt,

L(x) = 1√
2�

∫
|t |��

(P (x − t) − P(x))hr(t) dt

and � > 0 is chosen such that 8�q = 1 with q = ‖P ′‖∞/‖P ‖∞. Combining the straightforward
estimates

|S(x)|��‖P ′‖∞ = ‖P ‖∞
8

and |L(x)|� 8‖P ‖∞
�r�

<
‖P ‖∞

8
,

with (8), we obtain for any real number x,

|f (x) − P(x)| < ‖P ‖∞/4. (9)

Since f and f̂ are both integrable, the inversion formula for the Fourier transform shows that

√
2�‖f ‖∞ �

∫
R

|f̂ | =
∫

R

(
f̂ + 2(f̂ )−

)
= √

2�f (0) + 2
∫

R
(f̂ )−.

Applying (9) with x = 0 and noting that P(0) = 0, we conclude that

‖f ‖∞ � 1

4
‖P ‖∞ + 2√

2�

∫
R
(f̂ )−.

Making use once more of (9) and the last inequality gives

‖P ‖∞ �‖f ‖∞ + 1

4
‖P ‖∞ � 1

2
‖P ‖∞ + 2√

2�

∫
R
(f̂ )−

and therefore

‖P ‖∞ � 4√
2�

∫
R
(f̂ )−.
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Finally, we observe that f̂ (�) = P̂ (�)ĥ(�/r), 0� ĥ�1 and ĥ = 0 outside [−1, 1]. These
imply that (f̂ )− = 0 outside [−r, r] and (f̂ )− �(P̂ )−. Therefore,

‖P ‖∞ � 4√
2�

∫ r

−r

(P̂ )−.

A similar argument leads to the same inequality for (P̂ )+. �

4. Construction of sums of translates with large oscillation

Theorem 1. Let � : R −→ R be an even, continuous, integrable function such that �(0) = 1.
In addition, suppose that its Fourier transform �̂ is non-negative, integrable and analytic on R.
Given � > 0, there exist a positive integer n and P ∈ En(�), with En(�) defined in (2), such that

‖P ′‖∞
‖P ‖∞

� C

�
.

Here, we could take C = �2/210.

Proof. For each positive integer n and for each real number x, we define

Pn(x) = 2An�(x) +
n∑

k=1

ak(�(x + �k) + �(x − �k)) (10)

and also

P∞(x) := lim
n→∞ Pn(x) = 2A∞�(x) +

∞∑
k=1

ak(�(x + �k) + �(x − �k)), (11)

where the coefficients ak are the Fourier cosine coefficients of H in (4), and

An := An(�) := −
n∑

k=1

ak�(�k), A∞ := A∞(�) := −
∞∑

k=1

ak�(�k). (12)

We start with showing that P∞ is not identically zero. �

Lemma 2. Under the assumptions of Theorem 1, we have ‖P∞‖∞ > 0.

Proof of Lemma 2. For each � ∈ R and n ∈ N we define

Tn(�) :=
n∑

k=1

ak(cos(k��) − �(�k)) (13)

and also

T∞(�) := lim
n→∞ Tn(�) =

∞∑
k=1

ak(cos(k��) − �(�k)). (14)

Thus, P̂∞(�) = �̂(�)2T∞(�) = 2�̂(�)(H(��) − F(�)), where
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F(�) :=
∞∑

k=0

ak�(�k) = a0 − A∞(�) (15)

is a uniformly convergent sum of bounded functions of �. By the Fourier inversion formula, P∞ ≡
0 if and only if P̂∞ ≡ 0. Thus, it suffices to show that for any given � > 0, �̂(�)(H(��)−F(�))

does not vanish identically.
Note that for any � > 0, H(��) 	= 1 for � ∈ I = ( �

2� , 3�
2� ) + (2�/�)Z while H(��) = 1 for

� ∈ J = [− �
2� , �

2� ] + (2�/�)Z. Therefore, if F(�) = 1, then F(�) 	= H(��) for � ∈ I, while
if F(�) 	= 1, then F(�) 	= H(��) for � ∈ J . In any case, H(��) − F(�) 	= 0 for � in a union
of non-empty open intervals. If P̂∞ ≡ 0, then �̂ would have to be zero on these intervals, which
is impossible since �̂ is assumed to be analytic on R. This completes the proof of Lemma 2. �

To finish the proof of the theorem it suffices to show the next assertion.

Lemma 3. If a positive integer n is chosen such that 20
∑

k>n |ak| < ‖P∞‖∞, then

‖P ′
n‖∞

‖Pn‖∞
� �2

210�
.

Proof of Lemma 3. Recall P̂n(�) = 2�̂(�)Tn(�) with Tn in (13). We also define �n(�) =
Tn(�) − H(��) + F(�) for � ∈ R, with F(�) in (15).

Meanwhile, in view of the assumptions that �̂�0 and �̂ ∈ L1, the inversion formula for the
Fourier transform shows that ‖�‖∞ = �(0) = 1. With this in mind, we obtain for every positive
integer n

‖�n‖∞ �2
∑
k>n

|ak| and ‖P∞ − Pn‖∞ �4
∑
k>n

|ak|. (16)

Suppose 0 < r ��/(2�). Then H(��) = 1 for |�|�r . Therefore, if F(�)�1, then∫ r

−r

(P̂n)+ = 2
∫ r

−r

�̂(1 − F(�) + �n)+ �4
√

2�
∑
k>n

|ak|.

Here, we have again made use of the conditions �̂�0 and �(0) = 1. Similarly, if F(�) < 1, we
also obtain∫ r

−r

(P̂n)− �4
√

2�
∑
k>n

|ak|.

Thus, we have shown that if 0 < r ��/(2�), then for each positive integer n,

min

(∫ r

−r

(P̂n)−,

∫ r

−r

(P̂n)+
)

�4
√

2�
∑
k>n

|ak|. (17)
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On the other hand, Lemma 1 together with the second inequality in (16) asserts that if r >

(83/�)‖P ′
n‖∞/‖Pn‖∞, then

4√
2�

min

(∫ r

−r

(P̂n)−,

∫ r

−r

(P̂n)+
)

�‖Pn‖∞ �‖P∞‖∞ − 4
∑
k>n

|ak|. (18)

Combining (17) and (18) we conclude that if (83/�)‖P ′
n‖∞/‖Pn‖∞ < �/(2�), then ‖P∞‖∞ −

4
∑

k>n |ak|�16
∑

k>n |ak| and therefore‖P∞‖∞ �20
∑

k>n |ak|. This proves the lemma which
gives the conclusion of the theorem. �

5. Application to Gaussian networks

Our goal in this section is to prove sharpness of an inequality of Mhaskar (mentioned in the
introduction of this paper) for Gaussian networks. We shall apply Theorem 1 (in particular, Lemma
1 in the proof) with �(x) = exp(−x2). In this section En(�) is defined according to (2) with our
above given Gaussian �.

The following theorem is the main result of this section.

Theorem 2. Let n ∈ N and � ∈ (0, 1) satisfy

n > N0 := C0� exp

(
�2

2�2

) (
C0 := 1280

3�

)
. (19)

Then there exists P ∈ En(�), such that

‖P ′‖∞
‖P ‖∞

� �2

210�
.

Remark. Note log N0 = O(1/�2), in complete agreement with the above mentioned result of
Mhaskar. Thus, the result proves sharpness of the result in [8] for an arithmetic progression of
shifts xk := �k with separation 1/m = �.

We retain the function H from (3) and its Fourier coefficients ak in (4) also in this section. With
these Fourier coefficients ak and for each � > 0 and x ∈ R, P∞(�, x) will again be as in (11)
with A∞(�) defined in (12). However, in contrast to the proof of Theorem 1, � is no longer fixed.

As we are dealing with the Gaussian function �(x) := exp(−x2), a number of properties are
immediate.

First of all, the fact that � is even and decreasing on [0, ∞) implies that for each � > 0 and for
any real number x,

∑
k∈Z

�(k� − x)�1 + 1

�

∫
R

� = 1 +
√

�

�
. (20)

Indeed, all values of �(k�− x) can be replaced by the
∫

over the interval of length � from k�− x

towards 0, except perhaps the function value at the (single, if x 	= ±�/2) point which is closest
to 0 (and thus is estimated by 1).
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Also, the Fourier transform of � is given by �̂(�) = (1/
√

2) exp(−�2/4). Keeping only the
term with maximal absolute value, we easily obtain

∞∑
l=−∞

∣∣∣∣�̂ (
� + 2�l

�

)∣∣∣∣2

��̂
2 (�

�

)
(∀� ∈ R) . (21)

Lemma 4. For the function (11) we have

|P∞(�, x)|� 24

1 + x2 (x ∈ R) , (22)

uniformly for all � ∈ (0, 1).

Proof of Lemma 4. Using �(�k)�1 and (5) we obtain

|A∞(�)|�
∞∑

k=1

|ak|�1.6.

As maxR(1 + x2)�(x) = max[0,∞) (1 + t)e−t = 1, we get

|2A∞(�)�(x)|� 3.2

1 + x2
. (23)

It follows that we indeed have

|P∞(�, x)|� 3.2

1 + x2
+

∑
k∈Z\0

|ak|�(x − �k), (24)

where ak = a−k if k < 0. As ‖�‖∞ = �(0) = 1, in case |x|�2 this immediately leads to
|P∞(�, x)|�3.2/(1 + x2) + 3.2 < 20/(1 + x2), hence (22).

Because the right-hand side of (24) is even, it remains to take x > 2.
Now let A be the set of all non-zero integers k such that |x−�k| < x/2. Observe that for k ∈ A,

�|k|�x/2 and thus |k|�x/(2�), which gives by |ak|�1/k2, also |ak|�4�2/x2 �5�2/(1 + x2)

for x > 2. Therefore, taking into account also (20) and x > 2, we are led to∑
k∈A

|ak|�(x − �k)� 5�2

1 + x2

(
1 +

√
�

�

)
= 5�2 + 5

√
��

1 + x2
. (25)

On the other hand, in view of (5) and

max
[2,∞)

(1 + x2)�(x/2) = max
[4,∞)

(1 + t)e−t/4 = 5/e,

we have∑
k /∈A

|ak|�(x − �k)��
(x

2

)
2

∞∑
k=1

|ak|� 10

e(1 + x2)

∞∑
k=1

|ak| <
6

1 + x2
. (26)

Recalling 0 < � < 1 a combination of (24), (25) and (26) gives the result of the lemma. �

We shall also make use of an explicit lower bound for the L2-norm of P∞(�, ·) in terms of the
l2-norm of its coefficients. Actually, a more general phenomenon can be observed here.
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Lemma 5. Let� > 0 be fixed and ck ∈ C (k ∈ Z)be arbitrary coefficients satisfying
∑

k∈Z |ck|2 <

∞, i.e., (ck) ∈ �2(Z). Consider the function f (�, x) := ∑∞
k=−∞ ck�(x − �k). We then have

‖f (�, ·)‖2
2 ��(�)

∞∑
k=−∞

|ck|2, (27)

where

�(�) := 2�

�
inf
�∈R

∑
l∈Z

∣∣∣∣�̂ (
� + 2�l

�

)∣∣∣∣2

. (28)

Proof of Lemma 5. First of all, for a fixed � > 0, the series defining f := f (�, ·) converges in
L2(R). To see this, we consider its sequence fn(�, x) = ∑

|k|�n ck�(x − �k) of partial sums.

The Fourier transform of fn := fn(�, ·) is given by f̂n(�, t) = �̂(t)
∑

|k|�n cke−ik�t . Applying

Plancherel’s theorem to ‖fn(�, ·) − fm(�, ·)‖2
2 and writing the resulting integral as a sum of

integrals over the intervals [2��−1l, 2��−1(l + 1)], l ∈ Z, we obtain

‖fn(�, ·) − fm(�, ·)‖2
2 = 1

�

∞∑
l=−∞

∫ 2�

0

∣∣∣∣∣∣�̂
(

� + 2�l

�

) ∑
m<|k|�n

ckeik�

∣∣∣∣∣∣
2

d�

for m < n. The rapid decay of �̂ assures the finiteness of

M(�) := 2�

�
sup
�∈R

∞∑
l=−∞

∣∣∣∣�̂ (
� + 2�l

�

)∣∣∣∣2

and therefore by Parseval’s theorem,

‖fn(�, ·) − fm(�, ·)‖2
2 �M(�)

∑
m<|k|�n

|ck|2 −→ 0

as n > m −→ ∞. This proves convergence in L2 of the series defining f (�, ·).
A similar argument furnishes the conclusion of the lemma except that we take the infimum

�(�) (as defined in (28)), instead of the supremum M(�) above. �

Proof of Theorem 2. First of all, we estimate ‖P∞(�, ·)‖∞ from below by ‖P∞(�, ·)‖2. In view
of Lemma 4 we have

|P∞(�, x)|� C

|x| (with C = 12) (29)

for all real numbers x 	= 0 and for each � > 0.
Now let the parameter 	 be chosen so that

	 := C

‖P∞(�, ·)‖∞
.
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Note that P∞ does not vanish identically, hence 	 > 0. We write ‖P∞(�, ·)‖2
2 as a sum of integrals

over [−	, 	] and over R \ [−	, 	]. Estimating trivially in [−	, 	] and applying (29) to the second
integral yields

‖P∞(�, ·)‖2
2 �2	‖P∞(�, ·)‖2∞ + 2C2	−1.

Thus, a short calculation with the chosen value of 	 gives, for each � > 0,

‖P∞(�, ·)‖2
2 �4C‖P∞(�, ·)‖∞. (30)

To evaluate ‖P∞(�, ·)‖2, we note P∞(�, x) = ∑
k∈Z �k�(x − k�), where �k = a|k| if

k 	= 0, and �0 = 2A∞(�), with A∞(�) defined in (12). For this function we clearly have∑
k∈Z |�k|2 �2

∑∞
k=1 |ak|2 = 9/4 in view of (5).

Meanwhile, we consider the function �(�) defined in (28). Recalling (21) and the explicit form
of �̂ provides for each � > 0 the estimate

�(�)� �

�
exp

(
− �2

2�2

)
.

Combining this with Lemma 5 and (30) we obtain

‖P∞(�, ·)‖∞ � �

4C�
exp

(
− �2

2�2

) ∞∑
k=−∞

|�k|2 = 9�

16C�
exp

(
− �2

2�2

)
. (31)

Now recalling |ak|�1/k2 we obtain
∑

k>n |ak| < 1/n for each positive integer n. Recalling
also C = 12, this and (31) yields that whenever (19) holds, then

20
∑
k>n

|ak| < 20/n < 20/N0 = 3�

64�
exp

(
− �2

2�2

)
< ‖P∞(�, ·)‖∞.

Therefore, an application of Lemma 3 concludes the proof of Theorem 2. �
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