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Let ϕ be a Drinfeld A-module of arbitrary rank and arbitrary
characteristic over a finitely generated field K , and set GK =
Gal(K sep/K ). Let E = EndK (ϕ). We show that for almost all
primes p of A the image of the group ring A[GK ] in EndA(Tp(ϕ))

is the commutant of E . In the special case E = A it follows that
the representation of GK on the p-torsion points ϕ[p](K sep) of ϕ
is absolutely irreducible for almost all p.
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0. Introduction

Let Fq be a finite field with q elements and of characteristic p. Let F be a finitely generated field
of transcendence degree 1 over Fq . Let A be the ring of elements of F which are regular outside
a fixed place ∞ of F . Let K be another finitely generated field over Fq of arbitrary transcendence
degree. Denote by K sep the separable closure of K inside a fixed algebraic closure K̄ and by GK :=
Gal(K sep/K ) the absolute Galois group of K . Let

ϕ : A → K {τ }, a �→ ϕa
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be a Drinfeld A-module over K of rank r and arbitrary characteristic p0. (For the general theory of
Drinfeld modules see for example Drinfeld [2], Deligne and Husemöller [1], Hayes [5] or Goss [4,
Chapter 4].) For any ideal a �⊂ p0 of A, the a-torsion

ϕ[a] :=
⋂
a∈a

Ker(ϕa : Ga,K −→ Ga,K )

is a finite étale subgroup scheme of Ga,K . By Lang’s theorem, its geometric points

ϕ[a](K sep) = {
x ∈ K sep

∣∣ ∀a ∈ a: ϕa(x) = 0
}

form a free A/a-module of rank r. For any prime p �= p0 of A, the p-adic Tate module

Tp(ϕ) := lim←− ϕ
[
pn](

K sep)

of ϕ is a free Ap-module of rank r, where Ap denotes the completion of A at p. It carries a continuous
Galois representation

ρp : GK −→ AutAp

(
Tp(ϕ)

) ∼= GLr(Ap).

By construction, its reduction modulo p is the continuous Galois representation on the module of
p-torsion

ρ̄p : GK −→ Autκp

(
ϕ[p](K sep)) ∼= GLr(κp)

over the residue field κp := A/p. We call it the residual representation at p.
If K is of transcendence degree 1 and EndK (ϕ) = A, this representation is known to be irreducible

for almost all p (see Corollary 1.4). The aim of this paper is to strengthen and generalize this result.
Our first main result is the following

Theorem 0.1 (Absolute irreducibility of the residual representation). Let ϕ be a Drinfeld A-module of rank r
over a finitely generated field K . Assume that EndK (ϕ) = A. Then the residual representation

ρ̄p : GK −→ GLr(κp)

is absolutely irreducible for almost all primes p of A.

By contrast, for Drinfeld modules with EndK (ϕ) �= A, the residual representation at p is never
absolutely irreducible. Thus, in the general case, we describe the image of the group ring A[GK ]
under the Galois representation. For this, let Z be the center of E := EndK (ϕ). By the theory of
central simple algebras, there exist integers c, d, e such that rankA(Z) = c and rankZ (E) = e2 and
r = cde. If ϕ has generic characteristic, we have E = Z and e = 1.

For any p �= p0, let Bp be the image of the natural homomorphism

Ap[GK ] −→ EndAp

(
Tp(ϕ)

)
.

The natural homomorphism

Ep := E ⊗A Ap −→ EndAp

(
Tp(ϕ)

)

is injective (see [10, Proposition 4.1]) and by the Tate conjecture (Theorem 1.1) its image is the com-
mutant of Bp. Define Zp := Z ⊗A Ap.
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Theorem 0.2 (Image of the group ring). Let ϕ be a Drinfeld A-module of rank r over a finitely generated
field K . Then for almost all primes p of A the rings Ep and Bp are commutants of each other in EndAp

(Tp(ϕ)).
More precisely, for almost all p we have Ep

∼= Me(Zp) and Bp
∼= Md(Zp) and an isomorphism of Bp ⊗Zp

Ep-

modules Tp(ϕ) ∼= Z⊕d
p ⊗Zp

Z⊕e
p .

Remark. Theorems 0.1 and 0.2 have already been proven for the case where the Drinfeld module ϕ
is of special characteristic and K has transcendence degree 1. See [10, Theorems A and B].

The article has six parts. In Section 1 we list some known results on Drinfeld modules. Section 2
contains results on the action of inertia groups on torsion points of ϕ . In Section 3 we use abelian
class field theory to prove an interpolation result on characters of a certain algebraic group. The main
work is done in Section 4, where we prove Theorem 0.1 in the case that p0 = 0 and EndK̄ (ϕ) = A
and K has transcendence degree 1. In Section 5 we prove Theorem 0.2 in the case that p0 = 0 and
K has transcendence degree 1. The general case of both theorems is proved in Section 6. The above
notations and assumptions will remain in force throughout the article.

The material in this article was part of the doctoral thesis of the second author [11]. There it was
applied to prove the adelic openness for Drinfeld modules in generic characteristic. This application
will be the subject of our article [9].

1. Known results on Drinfeld modules

The first stated result was proved independently by Taguchi [15,16] and Tamagawa [18].

Theorem 1.1 (Tate conjecture for Drinfeld modules). Let ϕ1 and ϕ2 be two Drinfeld A-modules over K of the
same characteristic. Then for all primes p of A different from the characteristic of K , the natural map

HomK (ϕ1,ϕ2) ⊗A Ap −→ HomAp[GK ]
(
Tp(ϕ1), Tp(ϕ2)

)

is an isomorphism.

The next result was proved by the first author [6, Proposition 2.6].

Theorem 1.2. Assume that p0 = 0 and that EndK̄ (ϕ) = A. Then for all p the image of ρp is Zariski dense in
GLr,Fp

.

In the same article, an even stronger result was proved, the openness of the image of Galois.
Analogous results in the case p0 �= 0 can be found in [7] and [8]. Theorems 0.1 and 0.2 in the case
p0 �= 0 and K of transcendence degree 1 were proved in [10].

The following result [10, Proposition 2.3] is essentially a translation of the isogeny conjecture for
Drinfeld modules proved by Taguchi in [14,17].

Proposition 1.3. Assume that K is of transcendence degree 1. Then for almost all primes p of A and all natural
numbers n > 0, every G K -invariant A/pn-submodule of ϕ[pn](K sep) has the form α(ϕ[pn](K sep)) for some
α ∈ EndK (ϕ).

In particular, for n = 1, we obtain the following

Corollary 1.4. Assume that K is of transcendence degree 1 and that EndK (ϕ) = A. Then the representation ρ̄p

is irreducible for almost all primes p of A.
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2. Action of inertia groups on torsion points

Throughout this section we assume that p0 = 0 and that K is a finite extension of F . We begin by
recalling the following fundamental fact (see Goss [4, Theorem 4.12.12(2)]).

Theorem 2.1. Let Q be a place of K where ϕ has good reduction. Then for every prime p not lying below Q,

the representation ρp is unramified at Q, and the characteristic polynomial of ρp(FrobQ) has coefficients in A
and is independent of p.

The next result is proved in [10, Proposition 2.7] in the case p0 �= 0, but the proof works in general
and is omitted here.

Proposition 2.2. After replacing K by a suitable finite extension, for all primes p of A and all places Q of K
not lying above p, the restriction of ρp to the inertia group at Q is unipotent.

We now study the action of the inertia group at a place P of K on ϕ[p] if p lies below P. For this,
fix a place P of K , a place P̄ of K̄ , and denote by vP the associated normalized valuation on the
completion KP and also its extension to K̄P̄. Denote the respective residue fields by kP and kP̄. The

field kP̄ is an algebraic closure of kP. Let K nr
P

⊂ K t
P

⊂ K sep
P

be the maximal subfields of K̄P̄ which are

unramified, respectively tamely ramified, respectively separable over KP. Then IP := Gal(K sep
P

/K nr
P

) is

the inertia group at P, and its quotient ItP := Gal(K t
P

/K nr
P

) is the tame inertia group at P.

Fundamental characters. Let π ∈ KP be a uniformizer at P. Let λ be a finite extension of kP inside
kP̄ of cardinality |λ|, and let πλ be any nonzero solution in K t

P
of the equation X |λ| − π X = 0. The

fundamental character associated to λ is the homomorphism

ζλ : IP −→ λ∗, σ �→ σ(πλ)/πλ mod π.

Proposition 2.3. The character ζλ factors through ItP and is independent of the choices of π and πλ .

Proof. For any other uniformizer π ′ and any nonzero solution π ′
λ of the equation X |λ| −π ′ X = 0, the

elements πλ and π ′
λ have the same valuation and therefore differ by a unit u ∈ K t

P
. The value ζλ(σ )

then changes by σ(u)/u, which is congruent to 1 modulo P because σ acts trivially on the residue
field. Therefore ζλ is independent of the choices of π and πλ. Moreover, it factors through the tame
inertia group ItP because πλ ∈ K t

P
. �

Note that for all τ ∈ Gal(K sep
P

/KP) we have

τ
(
ζλ(σ )

) = τ
(
σ(πλ)/πλ

) = τστ−1(τ (πλ)
)
/τ (πλ) = ζλ

(
τστ−1). (2.4)

Also, the fundamental characters form a projective system with respect to the norm maps, i.e., for any
finite extension λ′ of λ inside kP̄ we have the equality

ζλ = Nλ′/λ ◦ζλ′ , (2.5)

where Nλ′/λ : λ′ → λ is the Norm map. Furthermore, in the case λ = kP the fundamental character
ζkP

extends with the same formula to a homomorphism Gal(K sep
P

/KP) → k∗
P

. Since the target is an

abelian group, it follows that ζkP
factors through a homomorphism Gal(K ab

P
/K nr

P
) → k∗

P
. Its composite

with the inverse of the local norm residue symbol O∗
P

∼→ Gal(K ab
P

/K nr
P

) is equal to

O∗
P −→ k∗

P, u �→ u−1 mod P. (2.6)
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Action on torsion points. Recall that K is a finite extension of F . Let p be the place of F below P,

let κp be its residue field, and let qp be the cardinality of κp . For any power m of p denote by km be
the subfield of kP̄ with m elements.

Assume that ϕ has good reduction at P. This means that ϕ is isomorphic to a Drinfeld module
having coefficients in O KP

whose reduction is a Drinfeld module of rank r over kP . We replace ϕ by
this Drinfeld module. Then ϕ[p] extends to a finite flat group scheme over the discrete valuation ring
O KP

, and its connected-étale decomposition gives an exact sequence of finite flat group schemes

0 −→ ϕ[p]0 −→ ϕ[p] −→ ϕ[p]et −→ 0.

Let hP denote the height of the Drinfeld module ϕ modulo P. Then ϕ[p]0(K sep) is a κp vector
space of dimension hP and cardinality n := qp

hP .
The following result is an analogue of Proposition 9 in Serre’s paper [13]. The analogue of Corol-

lary 2.8 for τ -sheaves has been proven by Gardeyn in [3].

Proposition 2.7. Assume that the extension KP/Fp is unramified and that ϕ has good reduction at P. Then
the following properties hold.

(i) The inertia group IP acts trivially on ϕ[p]et(K sep).

(ii) The κp vector space structure of ϕ[p]0(K sep) extends uniquely to a one-dimensional kn vector space struc-
ture such that the action of IP on ϕ[p]0(K sep) is given by the fundamental character ζkn .

(iii) The action of the wild inertia group at P on ϕ[p]0(K sep) is trivial.

Proof. Assertion (i) follows immediately from the definition of an étale group scheme. Assertion (iii)
follows from (ii) by Proposition 2.3. To prove (ii), define

α := 1/(n − 1),

Uα := {
x ∈ K sep

P

∣∣ vP(x) � α
}
,

U ′
α := {

x ∈ K sep
P

∣∣ vP(x) > α
}
, and

Vα := Uα/U ′
α.

Let πn be a nonzero solution of the equation Xn −π X = 0. The set Vα is a one-dimensional kP̄ vector
space generated by the residue class of πn . By construction, IP acts on Vα through the fundamental
character ζkn .

We claim that for every nonzero element s ∈ ϕ[p]0(K sep) we have vP(s) = α. This can be shown
by considering an appropriate Newton polygon. Let a ∈ A be a function with a zero of order one at p.
Then (a) = pa for an ideal a of A which is prime to p. This implies that

ϕ[a] = ϕ[p] ⊕ ϕ[a],

where ϕ[a] is étale, and therefore

ϕ[a]0 = ϕ[p]0

as group schemes over Spec O KP
. Write

ϕa =
∑

ϕa,iτ
i .
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Then

vP(ϕa,0) = vP

(
ι(a)

) = 1,

because ordp(a) = 1 and P|p is unramified. Moreover, since ϕ has good reduction at P, there exists
a unique integer i0 > 0 such that

vP(ϕa,i) � 1 for 0 < i < i0,

vP(ϕa,i0) = 0, and

vP(ϕa,i) � 0 for i > i0.

Thus

qi0 = ∣∣ϕ[a]◦∣∣ = ∣∣ϕ[p]◦∣∣ = n,

and so the points (1,1) and (n,0) are vertices of the Newton polygon of the polynomial

ϕa(x) =
∑

ϕa,i x
qi

.

Since every nonzero element s ∈ ϕ[p]0(K sep) has valuation > 0, this valuation must therefore be equal
to α, proving the claim.

The claim is equivalent to ϕ[p]◦(K sep) ⊂ Uα and ϕ[p]◦(K sep) ∩ U ′
α = 0. Thus the inclusion induces

an injective homomorphism

ϕ[p]0(K sep)
↪→ Vα.

By construction, this homomorphism is IP-equivariant; let W be its image. The fact that IP acts
on Vα through the fundamental character ζkn implies that W is invariant under multiplication by k∗

n .
Since, moreover, |W | = |kn|, it follows that W is a kn vector subspace of dimension 1. Via the in-
clusion, we obtain a unique one-dimensional kn vector space structure on ϕ[p]0(K sep) such that the
action of IP on it is multiplication by ζkn .

It remains to show that this vector space structure is an extension of the previously given κp

vector space structure on ϕ[p]0(K sep). For this, consider any element b̄ ∈ κp, and let b be an element
of A whose residue class in κp is equal to b̄. Then the action of b̄ on any element s ∈ ϕ[p]0(K sep) is
given by

s �→ ϕb(s).

On the other hand, the inclusion κp ↪→ kP is given by b̄ �→ ι(b) mod P. Thus, by the construction of
the kn vector space structure on ϕ[p]0(K sep), we must prove that

vP

(
ϕb(s) − ι(b)s

)
> α.

Write

ϕb =
∑

ϕb,iτ
i,

and note that ϕb,0 = ι(b) and vP(ϕb,i) � 0 for all i. Since vP(s) � α, it follows that

ϕb(s) − ι(b)s =
∑

ϕb,i s
qi

has valuation � qα > α, as desired. �
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Corollary 2.8. Assume that the extension KP/Fp is unramified and that ϕ has good reduction at P. Then the
action of IP on ϕ[p]0(K sep) ⊗κp

kP̄ is diagonalizable and given by the hP distinct characters σ̄ ◦ ζkn where
σ̄ runs through HomkP

(kn,kP̄).

3. An interpolation result from class field theory

In this section, we assume that K is a finite extension of F . We introduce algebraic groups T and S
in the same way as Serre did in [12, Chapter II] and [13, §3]. Then we relate algebraic characters of S
with compatible systems of abelian p-adic Galois representations. Although Serre’s construction ap-
plies to characters with arbitrary conductor, we restrict ourselves to characters with trivial conductor
because that suffices for our purposes.

Let AK denote the ring of adeles of K and A∗
K the group of ideles of K . For any place P of K let

OP be the discrete valuation ring of KP . Define

U :=
∏
P�∞

O∗
P ×

∏
∞′|∞

K ∗
∞′ ⊂ A∗

K ,

and

C := A∗
K /K ∗U .

Then C is a finite abelian group and sits in the exact sequence

1 −→ K ∗/
(

K ∗ ∩ U
) −→ A∗

K /U −→ C −→ 1.

The Serre groups TTT and SSS. Consider the Weil restriction H := ResK
F (Gm,K ) of the multiplicative group

over K to F . By definition, its points over any F -algebra B are given by

H(B) := (B ⊗F K )∗.

Let K ∗ ∩ U be the Zariski closure of K ∗ ∩ U inside H and consider the quotient

T := H/K ∗ ∩ U .

Let S be the push-out of T and A∗
K /U over K ∗/(K ∗ ∩ U ). This is an algebraic group with the universal

property that, for any algebraic group H ′ over F together with homomorphisms T → H ′ and A∗
K /U →

H ′(F ) such that the following diagram

K ∗/(K ∗ ∩ U ) A∗
K /U

T(F ) H ′(F )

commutes, there exists a unique homomorphism S → H ′ through which both T → H ′ and A∗
K /U →

H ′(F ) factor. A more explicit construction of the algebraic group S can be done as in Serre [12,
Chapter II]. The definitions of T and S give us a commutative diagram
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1 K ∗/(K ∗ ∩ U ) A∗
K /U

γ ′

C

id

1

1 T(F ) S(F ) C 1

with exact rows. By composition of γ ′ with A∗
K → A∗

K /U we get a homomorphism γ : A∗
K → S(F ).

Homomorphism at a prime p. Let p be any prime of A, and fix a place p̄ of F̄ above p. Define

Up :=
∏

Q�{p, ∞}
O∗

Q ×
∏

∞′|∞
K ∗

∞′ ⊂ A∗
K ,

Kp :=
∏
P|p

KP,

and

Op :=
∏
P|p

OP.

The composite of γ with the inclusion S(F ) ↪→ S(Fp) is a continuous, even locally constant, homo-
morphism

γp : A∗
K −→ S(Fp).

On the other hand, combining the projection from A∗
K to its direct factor

K ∗
p = (Fp ⊗F K )∗ = H(Fp)

with the algebraic homomorphism H � T ↪→ S yields a continuous homomorphism

δp : A∗
K −→ K ∗

p = H(Fp) −→ S(Fp).

The commutativity of the above diagram implies γp|K ∗ = δp|K ∗ . Thus the homomorphism

γpδ−1
p : A∗

K −→ S(Fp)

is trivial on K ∗. Since both γp and δp are trivial on Up, the continuous homomorphism γpδ−1
p is triv-

ial on the closure K ∗Up of K ∗Up in A∗
K and therefore factors through a continuous homomorphism

εp : A∗
K /K ∗Up −→ S(Fp).

Characters of TTT and SSS. Define Σ := HomF (K , F̄ ). Every σ ∈ Σ extends to an F̄ -algebra homomor-
phism F̄ ⊗F K → F̄ and thus gives rise to a character [σ ] : H F̄ → Gm, F̄ of H . These [σ ] form a Z-basis

of the character group X(H). Since T = H/K ∗ ∩ U , its character group is given by

X(T) =
{ ∏

[σ ]nσ

∣∣∣ ∏
σ(x)nσ = 1 for all x ∈ K ∗ ∩ U

}
.

σ∈Σ σ
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The character groups of C , T, and S lie in an exact sequence

1 −→ X(C) −→ X(S) −→ X(T) −→ 1

where X(C) is the finite group Hom(C, F̄ ∗). Thus any character μ of T can be extended to a character
θ of S in precisely |C | ways.

Compatible system associated to a character. Let θ be a character of S. It induces a continuous ho-
momorphism S(Fp) → F̄ ∗̄

p
, whose composite with εp is a continuous homomorphism

θp : A∗
K /K ∗Up −→ F̄ ∗̄

p
.

Since A∗
K /K ∗Up is compact, the image of θp is contained in the multiplicative group of the valuation

ring of F̄ p̄ . Therefore we can reduce it modulo p̄ and obtain a continuous homomorphism

θ̄p : A∗
K /K ∗Up −→ κ ∗̄

p
.

Let K ab,p be the maximal abelian extension of K which splits completely at all places above ∞
and is unramified at all places not lying above p. Then the Artin reciprocity map of global class field
theory induces a surjective homomorphism

GK � Gal
(

K ab,p/K
) ∼= A∗

K /K ∗Up,

whose composite with θp is a continuous homomorphism GK → F̄ ∗̄
p

. As p varies, these homomor-
phisms form a system of strictly compatible p-adic representations in the sense of Serre [12, Chap-
ter II], i.e., the image of FrobQ lies in F̄ ∗ and is independent of p for all Q not lying above p.

Interpolation of characters. We now reverse the above process. Let S be an infinite set of primes
of A. For any p ∈ S, fix a place p̄ of F̄ above p and consider a continuous homomorphism

η̄p : A∗
K /K ∗Up −→ κ ∗̄

p
.

Every σ ∈ Σ determines a place σ−1(p̄) of K above p and an embedding Kσ−1(p̄) ↪→ F̄ p̄ . Let

σp : K ∗
p =

∏
P|p

K ∗
P −→ F̄ ∗̄

p

be the homomorphism which is the above embedding on Kσ−1(p̄) and identically 1 on all other fac-
tors.

Proposition 3.1. In the above situation, assume that there exist integers n(σ ,p) whose absolute values are
bounded, such that for all p ∈ S and all x ∈ O∗

p we have

η̄p(x) =
( ∏

σ∈Σ

σp

(
x−1)n(σ ,p)

mod p̄

)
.

Then there exist a character θ ∈ X(S) and an infinite subset S ′ of S such that for all p ∈ S ′ we have

θ̄p = η̄p.
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Proof. Since the numbers n(σ ,p) are bounded and Σ is finite, there exists an infinite subset S ′′ of S
such that for all p ∈ S ′′ the value n(σ ,p) is independent of p. Denote this value by nσ . Consider the
character α := ∏

σ∈Σ [σ ]nσ ∈ X(H). Then for any x ∈ K ∗ ∩ U , we have ηp̄(x) = 1 and

∏
σ

σp

(
x−1)n(σ ,p) =

∏
σ

σ
(
x−1)n(σ ,p) = α

(
x−1).

Thus α(x−1) ≡ 1 mod p̄ for all p ∈ S ′′ . Since S ′′ is infinite, we find that α(x) = 1, and hence α ∈ X(T).

Extend α to a character θ ′ ∈ X(S). Then for any p ∈ S ′′ , the character

βp := η̄pθ̄ ′−1
p : A∗

K /K ∗Up −→ κ ∗̄
p

factors through C . Therefore it takes values in the group of mth roots of unity μm(κp̄) for m :=
|C |. Since the reduction map μm( F̄ ) −→ μm(κp̄) is an isomorphism, we can lift βp uniquely to a
homomorphism into μm( F̄ ), and thus to an element of X(C). This is a finite group; hence there exist
β ∈ X(C) and an infinite subset S ′ of S ′′ such that for all p ∈ S ′ we have βp = β. Define θ as the
product of θ ′ with the image of β in X(S). Then for all p ∈ S ′ we have θ̄p = η̄p , as desired �
4. Absolute irreducibility of the residual representation

Throughout this section, we assume that K is a finite extension of F , so that p0 = 0. We also
assume that EndK̄ (ϕ) = A (in order to apply Theorem 1.2). We prove the following special case of
Theorem 0.1.

Theorem 4.1. In the above situation, the residual representation

ρ̄p : GK −→ GLr(κp)

is absolutely irreducible for almost all primes p of A.

By Corollary 1.4 we know that ρ̄p is irreducible for almost all primes p of A. By Schur’s lemma,
for these primes the ring Endκp

(ρ̄p) is a finite-dimensional division algebra over κp. As κp is finite,
this division algebra is commutative and hence a finite field extension of κp . Call it λp , and set sp :=
[λp/κp] and tp = dimλp

(ρ̄p). Then r = sptp , and, in a suitable basis, the representation ρ̄p amounts
to a homomorphism

ρ̄p : GK −→ GLtp (λp) ⊂ GLr(κp).

Its composite with the determinant map detλp
: GLt(λp) → λ∗

p is a character

detλp
◦ρ̄p : GK −→ λ∗

p.

For any prime p ∈ S we fix a place p̄ of F̄ above p. The residue field κp̄ at p̄ is an algebraic closure
of κp . We choose an embedding βp : λp ↪→ κp̄ , obtaining a character

χ̄p := βp ◦ detλp
◦ρ̄p : GK −→ κ ∗̄

p
.

To prove Theorem 4.1 we must show that sp = 1 for almost all p. If not, since sp is one of finitely
many divisors of r, some value of sp > 1 must occur infinitely often. To give an indirect proof, we
make the following assumption and derive a contradiction.
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Assumption 4.2. There exist integers s > 1 and t with st = r and an infinite set S of primes of A, such
that for all p ∈ S the residual representation ρ̄p factors through GLt(λp) where λp is a field extension
of κp of degree s.

Reduction steps. We can replace S by any infinite subset, without changing the assumptions. Thus
after removing finitely many primes, we may assume that for all p ∈ S

(a) ϕ has good reduction at all places of K lying above p,
(b) p is unramified in K , and
(c) the residue field κp has at least 3 elements.

It is also enough to prove Theorem 4.1 for any open subgroup of GK . This allows us to replace K by
any finite extension. Thus by Proposition 2.2, we may assume that the restriction of ρ̄p to the inertia
group at any place not lying above p is unipotent. Then

(d) for all p ∈ S and all places Q of K not lying above p we have χ̄p|IQ = 1.

Next, recall that at any place ∞′ of K above ∞, the Drinfeld module is uniformized by a lattice on
which the decomposition group D∞′ acts through a finite quotient. Thus, after replacing K by a finite
extension, we may assume that

(e) for all p ∈ S and all places ∞′ of K lying above ∞ we have χ̄p|D∞′ = 1.

Ramification behavior of χ̄p. Now we describe the ramification behavior of χ̄p at places above p.
Recall that Σ = HomF (K , F̄ ). Then for any place P of K above p, the set ΣP := {σ ∈ Σ | P = σ−1(p̄)}
is nonempty. Any element σ ∈ ΣP induces an embedding kP ↪→ κp̄ . As in Section 2, we write qp =
|κp| and let ζkqs

p
: IP → k∗

qs
p

denote the fundamental character associated to kqs
p

, the subfield of kP̄

with qs
p elements.

Lemma 4.3. For any place P of K above p ∈ S, the following properties hold.

(i) We have s | [kP/κp], and so any σ ∈ ΣP induces an embedding σ̄ : kqs
p

↪→ κp̄ .
(ii) There exists an element σ ∈ ΣP such that

χ̄p|IP = σ̄ ◦ ζkqs
p
.

Proof. By (a) above, the Drinfeld module ϕ has good reduction at P, say of height hP . We thus have
an exact sequence of κp vector spaces

0 −→ ϕ[p]0(K sep) −→ ϕ[p](K sep) −→ ϕ[p]et(K sep) −→ 0,

where ϕ[p]0(K sep) has dimension hP . By Proposition 2.7, the group IP acts trivially on ϕ[p]et(K sep)

and, in view of (b) and (c) above, it has no coinvariants on ϕ[p]0(K sep). Thus the group of IP-
coinvariants of ϕ[p](K sep) is ϕ[p]et(K sep). Since the representation factors through GLt(λp), it follows
that the exact sequence is a sequence of λp vector spaces. In particular, the degree s = [λp/κp] must
divide hP .

Moreover, the determinant over λp of the representation ρ̄p|IP is equal to the determinant of the

subrepresentation on ϕ[p]0(K sep). Abbreviate n := q
hP

p . Then by Proposition 2.7(ii) the κp vector space
structure of ϕ[p]0(K sep) extends to a one-dimensional kn vector space structure such that IP acts
through the fundamental character ζkn : IP → k∗

n . The action of λp amounts to an embedding λp ↪→ kn

and thus to an identification λp
∼= kqs over κp . Via this identification, the determinant over λp of
p
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an element x ∈ k∗
n is the norm Nkn/λp

(x) ∈ λ∗
p . Thus from (2.5) it follows that detλp

◦ρ̄p|IP is the
fundamental character ζkqs

p

: IP → λ∗
p .

In particular ζkqs
p

extends to an abelian character of GK . Since it is also surjective, Eq. (2.4) implies

that Gal(K sep
P

/KP) acts trivially on λ∗
p . Therefore λp is contained in the residue field kP , and so s

divides [kP/κp], proving (i).
Finally, the given embedding βp : λp ↪→ κp̄ extends to some embedding kP ↪→ κp̄ over κp . Any

such embedding is induced by some element σ ∈ ΣP , which then satisfies (ii), as desired. �
Translation via class field theory. We use the same notations as in Section 3. Since the character χ̄p

is abelian and unramified at all places not lying above p and trivial at all places above ∞ by (d)
and (e), it factors through Gal(K ab,p/K ). Therefore its composite with the Artin reciprocity map

A∗
K /K ∗Up −→ Gal

(
K ab,p/K

)

is a character

ψ̄p : A∗
K /K ∗Up −→ κ ∗̄

p
.

Lemma 4.4. For any p ∈ S there exist n(σ ,p) ∈ {0,1} such that for all u ∈ O∗
p we have

ψ̄p(u) =
( ∏

σ∈Σ

σp

(
u−1)n(σ ,p)

mod p̄

)
.

Proof. Fix a prime p ∈ S and consider any place P of K above p. Then for any σ ∈ ΣP as in
Lemma 4.3(ii), using (2.5) we find that

χ̄p|IP = σ̄ ◦ ζkqs
p

= σ̄ ◦ NkP/kqs
p

◦ζkP
.

Since the norm is the product of all Galois conjugates, and P is unramified over p, the latter is equal
to

∏
σ ′∈Σ ′

P

σ̄ ′ ◦ ζkP

where Σ ′
P

:= {σ ′ ∈ ΣP: σ ′|kqs
p

= σ |kqs
p
}. Using (2.6) this is equivalent to

ψ̄p(u) ≡
∏

σ ′∈Σ ′
P

σ ′(u−1) mod p̄

for all u ∈ O∗
P

. Set n(σ ′,p) := 1 whenever σ ′ ∈ Σ ′
P

for some P above p, and := 0 otherwise. Then
for all u = (uP) ∈ O∗

p = ∏
P|p O∗

P
, we have

ψ̄p(u) ≡
∏
P|p

∏
σ ′∈Σ ′

P

σ ′(u−1
P

)
mod p̄

=
∏
σ∈Σ

σp

(
u−1)n(σ ,p)

,

as desired. �
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Interpolation of characters. By Lemma 4.4 the characters ψ̄p satisfy the assumptions of Proposi-
tion 3.1. Thus after replacing S by an infinite subset, there exists θ ∈ X(S) such that for all p ∈ S we
have θ̄p = ψ̄p. By abuse of notation, we denote the composite homomorphism

GK � Gal
(

K ab,p/K
) ∼= A∗

K /K ∗Up
θp−→ F̄ ∗̄

p

again by θp . Then for all p ∈ S we have

(θp mod p̄) = χ̄p. (4.5)

Construction of an algebraic relation. Let n be an integer, and let f (T ) := ∏n
i=1(T − αi) = ∑n

i=0 βi T i

be any monic polynomial of degree n. For any integer m � n define

f (m)(T ) :=
∏

I

(
T −

∏
i∈I

αi

)
,

where the outer product ranges over all subsets I of {1, . . . ,n} of cardinality m. The coefficients
of f (m)(T ) are symmetric polynomials in the αi and are therefore polynomials in β1, . . . , βn with
coefficients in Z. The construction can thus be applied to any monic polynomial with coefficients
in any commutative ring. If f is the characteristic polynomial of an endomorphism M of a finite-
dimensional vector space, then f (m) is the characteristic polynomial of

∧m M. We have f (m)(α) = 0
if and only if f has m zeros with product α.

Consider any place Q of K where ϕ has good reduction. Denote by fQ the characteristic polyno-
mial of ρp(FrobQ) for any prime p of A not lying below Q. By Theorem 2.1 it has coefficients in A
and is independent of p. On the other hand, recall that the θp form a system of strictly compatible
p-adic representations, which means that θp(FrobQ) lies in F̄ ∗ and is independent of p. It is integral
outside ∞.

Lemma 4.6. For all places Q of K where ϕ has good reduction we have

f (t)
Q

(
θp(FrobQ)

) = 0.

Proof. For any prime p ∈ S not lying below Q, let f̄Q,p ∈ κp[T ] denote the characteristic polynomial
of ρ̄p(FrobQ) ∈ GLr(κp). Let ḡQ,p ∈ λp[T ] denote the characteristic polynomial of the same element
ρ̄p(FrobQ) ∈ GLt(λp) over λp . Then we have

f̄Q,p = ( fQ mod p) and f̄Q,p = Nλp/κp
ḡQ,p.

By construction the product of the t zeros of ḡQ,p is equal to χ̄p(FrobQ). Therefore we find that

f̄ (t)
Q,p

(χ̄p(FrobQ)) = 0. Since f̄ (t)
Q,p

= ( f (t)
Q

mod p) and χ̄p(FrobQ) = (θp(FrobQ)mod p̄) by (4.5), it fol-

lows that f (t)
Q

(θp(FrobQ)) ≡ 0 mod p̄. As this happens for the infinitely many p ∈ S , the lemma
follows. �
Proof of Theorem 4.1. Now we fix an arbitrary prime p of A. Let Γp denote the image of the repre-
sentation

ρp × θp : GK −→ GLr(Fp) × GL1( F̄ p̄).
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Consider the algebraic morphism

ν : GLr ×GL1 −→ A1, (g,h) �−→ det
(
Λt g − h1(r

t)

)
.

Lemma 4.6 implies ν(ρp(FrobQ), θp(FrobQ)) = 0 for all places Q of K with Q � p and Q � ∞ and
where ϕ has good reduction. Since these FrobQ form a dense set of conjugacy classes of GK and the
morphism ν is conjugation-invariant, we obtain

ν|Γp
= 0.

Next the commutator morphism of GLr ×GL1 factors through the commutator morphism

GLr ×GLr −→ SLr,

which by [10, Lemma 3.7] is dominant. Moreover Theorem 1.2 asserts that the projection of Γp to the
first factor is Zariski dense in GLr,Fp

. Therefore the commutator subgroup Γ der
p of Γp is Zariski dense

in SLr,Fp
×1. Since ν is an algebraic morphism, it follows that ν vanishes on SLr,Fp

×1.

But for any matrix of the form

g :=

⎛
⎜⎜⎝

α
. . .

α
α1−r

⎞
⎟⎟⎠

the endomorphism Λt g has the eigenvalue αt with multiplicity
(r−1

t

)
and the eigenvalue αt−r with

multiplicity
(r−1

t−1

)
. Therefore

ν(g,1) = (
αt − 1

)(r−1
t ) · (αt−r − 1

)(r−1
t−1).

Since s > 1 and thus t < r, we find that ν is not identically zero on matrices of the above form. In
particular ν does not vanish on SLr,Fp

×1. This is a contradiction, and so Assumption 4.2 is false, as
desired. �
5. The case of a finite extension of F

In this section, we assume that K is a finite extension of F , so that p0 = 0. Then E = EndK (ϕ) is
commutative, but we impose no further condition on it. Recall that r = dc, where c is the rank of E
as an A-module. Recall also that

Ep = E ⊗A Ap ⊂ EndAp

(
Tp(ϕ)

)
,

and that Bp denotes the image of the natural homomorphism

Ap[GK ] −→ EndAp

(
Tp(ϕ)

)
.

Theorem 5.1. In the above situation, for almost all primes p of A we have Bp
∼= Md(Ep), and Theorem 0.2

holds in this case.
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Proof. Since E is commutative, we have e = 1 and Ep = Zp for all p. All other arguments from the
proof of [10, Theorem B] also work in generic characteristic with the center Z of E replaced by E .
The only missing part is the absolute irreducibility of the residual representation in the case that
EndK̄ (ϕ) = A and that K is a finite extension of F , which is Theorem 4.1. �

Note that this implies Theorem 0.1 when K is a finite extension of F .

6. The general case

We reduce the general case to the case of transcendence degree 1 in the same way as in [6].
We choose an integral scheme X of finite type over Fp with function field K such that ϕ defines

a family of Drinfeld A-modules of rank r over X and such that EndK (ϕ) acts on the whole family of
Drinfeld A-modules over X . For any point x ∈ X, we then get a Drinfeld A-module ϕx of rank r over
the residue field kx at x. Its characteristic is the image λx of x under the morphism X → Spec(A).

Let kx̄ be a separable closure of kx and x̄ := Spec(kx̄) the associated geometric point of X over x.
The morphisms Spec(K ) ↪→ X ←↩ x induce homomorphisms of the étale fundamental groups

GK � π et
1 (X, x̄) ←− π et

1 (x, x̄) = Gkx . (6.1)

For any prime p �= λx of A, the specialization map induces an isomorphism

Tp(ϕ)
∼−→ Tp(ϕx). (6.2)

The action of GK on Tp(ϕ) factors through π et
1 (X, x̄), and the isomorphism is equivariant under the

above étale fundamental groups. Moreover, since EndK (ϕ) acts faithfully on Tp(ϕx), we obtain a nat-
ural embedding EndK (ϕ) ↪→ Endkx (ϕx). Recall that p0 denotes the characteristic of ϕ over K .

Proposition 6.3. Assume that K/Fp has transcendence degree at least 1. Then there exists a point x ∈ X such
that the following properties hold.

(i) kx has transcendence degree 1 over Fp .
(ii) x lies over p0 .
(iii) EndK (ϕ) has finite index in Endkx (ϕx).

Proof. Fix any prime p different from p0, and let Γp be the image of GK under the representation
ρp : GK → GLr(Ap). By [6, Lemma 1.5], there exists an open normal subgroup Γ1 ⊂ Γp such that for
any subgroup Δ ⊂ Γp with ΔΓ1 = Γp we have FpΔ = FpΓp as subalgebras of the matrix ring Mr(Fp).
Let K ′ be the associated finite Galois extension of K , and let X ′ be the normalization of X in K ′ .
Denote the morphism X ′ → X by π .

By [6, Lemma 1.6], there exists a point x ∈ X satisfying (i) and (ii) and such that π−1(x) ⊂ X ′
is irreducible. Denote by Δp the image of Gkx in the representation on Tp(ϕx). Since p �= λx , the
specialization isomorphism (6.2) turns Δp into a subgroup of Γp . The irreducibility of π−1(x) means
that Gal(kπ−1(x)/kx) ∼= Gal(K ′/K ), and hence ΔpΓ1 = Γp . The choice of Γ1 thus implies FpΔp = FpΓp .
Therefore their commutants in Mr(Fp) coincide, and by Theorem 1.1 we deduce that EndK (ϕ)⊗A Fp =
Endkx (ϕx) ⊗A Fp . The structure theorem for finitely generated modules over Dedekind rings implies
that EndK (ϕ) has finite index in Endkx (ϕx). �
Proof of Theorem 0.2. Choose a point x be as in Proposition 6.3. Set E = EndK (ϕ) and E ′ := Endkx (ϕx),
and let Z and Z ′ be their centers. By the property 6.3(iii) they possess the same invariants c, d, e,
and for almost all p we have natural isomorphisms

Ep = E ⊗A Ap
∼−→ E ′

p := E ′ ⊗A Ap,

Zp = Z ⊗A Ap
∼−→ Z ′

p := Z ′ ⊗A Ap.
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Define Bp and B ′
p as the images of the natural homomorphisms

Ap[GK ] � Bp ⊂ EndAp

(
Tp(ϕ)

)
,

Ap[Gkx ] � B ′
p ⊂ EndAp

(
Tp(ϕx)

)
.

The equivariance of the specialization isomorphism (6.2) under the homomorphisms (6.1) implies
that B ′

p ⊂ Bp . By Theorem 5.1 in generic characteristic and [10, Theorem B] in special characteristic,
Theorem 0.2 holds for ϕx . Thus B ′

p is the commutant of E ′
p for almost all p. Since Bp contains B ′

p

and is contained in the commutant of Ep = E ′
p , it follows that Bp is the commutant of Ep and equal

to B ′
p for almost all p. Thus Theorem 0.2 follows for ϕ . �

Proof of Theorem 0.1. In this case, we have EndK (ϕ) = E = Z = A and d = r. Thus Theorem 0.2 asserts
that the natural homomorphism

Ap[GK ] −→ EndAp

(
Tp(ϕ)

)

is surjective for almost all p. By reduction modulo p the same follows for the natural homomorphism

κp[GK ] −→ Endκp

(
ϕ[p](K sep))

.

For these p the representation ρ̄p is absolutely irreducible, as desired. �
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