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In wound healing and many pathologic conditions,
keratinocytes become activated: they turn into
migratory, hyperproliferative cells that produce and
secrete extracellular matrix components and signal-
ing polypeptides. At the same time, their cytoskele-
ton is also altered by the production of speci®c
keratin proteins. These changes are orchestrated by
growth factors, chemokines, and cytokines produced
by keratinocytes and other cutaneous cell types. The
responding intracellular signaling pathways activate
transcription factors that regulate expression of kera-
tin genes. Analysis of these processes led us to pro-
pose the existence of a keratinocyte activation cycle,
in which the cells ®rst become activated by the

release of IL-1. Subsequently, they maintain the
activated state by autocrine production of proin¯am-
matory and proliferative signals. Keratins K6 and
K16 are markers of the active state. Signals from the
lymphocytes, in the form of Interferon-g, induce the
expression of K17 and make keratinocytes contrac-
tile. This enables the keratinocytes to shrink the
provisional ®bronectin-rich basement membrane.
Signals from the ®broblasts, in the form of TGF-b,
induce the expression of K5 and K14, revert the
keratinocytes to the healthy basal phenotype, and
thus complete the activation cycle. J Invest Dermatol
116:633±640, 2001

E
pidermal keratinocytes have two alternative pathways
open to them: differentiation and activation. In healthy
epidermis, keratinocytes differentiate from the basal
layer through squamous, granular, and corni®ed layers.
This process has been described in several review

articles recently (Eckert et al, 1997; Fuchs et al, 1997; Mischke,
1998; Tomic-Canic et al, 1998). From the perspective of this paper,
we point out that the differentiation process can be affected by
vitamins, such as retinoic acid and vitamin D3, and that the
expressions of speci®c keratin genes have been often used as
markers for basal versus differentiating cells: K5 and K14 are
expressed in the basal layer, K1, K2, and K10 in the differentiating
cells (reviewed in Schweizer, 1993). In response to epidermal
injury, however, or in certain pathologic conditions such as
psoriasis, an alternative pathway is open to keratinocytes, that of
activation (reviewed in Barker et al, 1991; Nickoloff and Turka,
1993; Kupper and Groves, 1995; Tomic-Canic et al, 1998; Murphy
et al, 2000). The activation process can be affected by growth
factors and cytokines, such as interleukin-1 (IL-1), tumor necrosis
factor a (TNF-a), transforming growth factor a (TGF-a), TGF-b,
and interferon-g (IFN-g). The expression of speci®c keratin genes
has been used as a marker for activated cells; characteristically,

activated keratinocytes express K6, K16, and K17 keratin proteins,
distinct from the keratins of the healthy epidermis. Activated
keratinocytes are hyperproliferative, migratory, change their
cytoskeleton, augment the levels of cell surface receptors, and
produce components of the basement membrane. These responses
are essential for re-epithelialization of the injured area. Activated
keratinocytes also produce paracrine signals to alert ®broblasts,
endothelial cells, melanocytes, and lymphocytes, as well as
autocrine signals targeted at neighboring keratinocytes. These
responses are essential for orchestrating the actions of the
surrounding cell types in repair of the injured tissue. The affected
cell types, in turn, produce their own autocrine and paracrine
signals, which modify the actions of activated keratinocytes.
Eventually, having responded to the injury, keratinocytes receive
a ``de-activation'' signal and revert to the normal differentiation
pathway. The regulatory processes involved in keratinocyte
activation and de-activation, as well as the concomitant changes
in keratin gene expression, are coordinated by secreted growth
factors and cytokines, produced both by the keratinocytes and by
the surrounding cell types. These regulatory processes are the
subject of this review.

INITIATOR OF ACTIVATION: IL-1

In healthy epidermis, keratinocytes are not activated and they
slowly proliferate in the basal layer and differentiate in the
suprabasal layers. Being exposed to the surroundings, however,
they must be prepared to respond very quickly to injury from the
environment. Therefore, keratinocytes produce sentinel molecules
ready to signal promptly that an injury has occurred and the tissue
needs to become activated. Activated keratinocytes repair the tissue
and eventually become deactivated, reverting to normal differen-
tiation. This process, termed the keratinocyte activation cycle, is
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governed by extracellular signals, and is characterized by changes in
expression of keratin proteins.

The most common initiator of keratinocyte activation is IL-1.
Both the a and the b form of this cytokine are present unprocessed
in the cytoplasm of keratinocytes. They are unavailable for binding
to the cell surface receptors because they are sequestered in the
cytoplasm (Hauser et al, 1986; Kupper et al, 1986a; Mizutani et al,
1991a; Kupper and Groves, 1995). Cytoplasmic IL-1 stands sentry
in the epidermis, ready to respond to injury. Injured keratinocytes
process and release IL-1, allowing the surrounding cells to perceive
it (Kupper et al, 1986b; Murphy et al, 1989; Bochner et al, 1990;
Mizutani et al, 1991b; Chan et al, 1992; Wood et al, 1996; Yu et al,
1996; Lundqvist and Egelrud, 1997; Zepter et al, 1997; Corsini et al,
1998; Murphy et al, 2000). The released IL-1 serves as a paracrine
signal to dermal endothelial cells to become activated, express
selectins, and slow down the circulating lymphocytes (Cartwright et
al, 1995; Lee et al, 1997; Romero et al, 1997; Wyble et al, 1997).
IL-1 also serves as a chemoattractant for lymphocytes, causing them
to extravasate and migrate to the site of injury (Nourshargh et al,
1995; Santamaria Babi et al, 1995). Furthermore, IL-1 is an
activator of dermal ®broblasts, enhancing their migration, prolif-
eration, and production of dermal extracellular matrix components
(Mauviel et al, 1991; 1993; Godessart et al, 1994; Maas-Szabowski
and Fusenig, 1996). IL-1 is also an autocrine signal that activates
keratinocytes. IL-1 causes them to proliferate, become migratory,
and express an activation-speci®c set of genes (Kupper, 1990a;
Gyulai et al, 1994; Chen et al, 1995; Tomic-Canic et al, 1998).

Keratinocytes express IL-1 receptors, both the type I, functional,
and the type II, decoy, on their surface, as well as the IL-1 receptor
antagonist (Blanton et al, 1989; Stosic-Grujicic and Lukic, 1992;
Kutsch et al, 1993; Eller et al, 1995; Grewe et al, 1996; Debets et al,

1997; Rauschmayr et al, 1997). The epidermal responses to IL-1 are
exquisitely ®nely tuned: keratinocytes must be ready to respond
quickly to injury via IL-1 and at the same time must be able to
attenuate and shut off the IL-1 signals after the initial response.

Signal transduction in response to IL-1 starts at the cell surface
with the type I receptor. The intracellular domain of this receptor
associates with several proteins, e.g., TNFa receptor associated
factor (TRAF)-6, which recruit protein kinases such as IL-1
receptor associated factor (IRAK) and TRAF associated kinase
(TAK). Downstream from the kinases, the signal trifurcates and at
least three transcription factor systems are activated: the NFkB,
C/EBPb, and AP-1 (Fig 1A) (Cao et al, 1996; Muzio et al, 1997;
La and Greene, 1998; Baud et al, 1999; Lomaga et al, 1999;
Ninomiya-Tsuji et al, 1999; Ling and Goeddel, 2000). These
transcription factors then induce expression of the activation-
speci®c proteins.

Among genes induced by IL-1 are growth factors and cytokines
that transmit the signals of the speci®c type of injury to the
surrounding cells. These include granulocyte-macrophage colony
stimulating factor (GM-CSF), TNF-a, TGF-a, amphiregulin,
additional IL-1, etc. (Kupper et al, 1988; Larsen et al, 1989; Tosato
and Jones, 1990; Lyons et al, 1993; Lee et al, 1994; Chen et al, 1995;
Lontz et al, 1995; Bechtel et al, 1996; Chung et al, 1996; Fujisawa et
al, 1997a, b; Nylander-Lundqvist and Egelrud, 1997; Kozlowska et
al, 1998). Activated keratinocytes also produce cell surface markers,
such as intercellular adhesion molecule 1 (ICAM-1) and integrins as
well as ®bronectin, a component of the basement membrane that
promotes keratinocyte migration (Kubo et al, 1984; O'Keefe et al,
1987; Grif®ths et al, 1989; Lisby et al, 1989; Clark, 1990; Guo et al,
1991; Grinnell, 1992; Krutmann et al, 1992; Middleton and Norris,
1995).

Figure 1. Signaling pathways in keratinocytes. (A) The IL-1 signal transduction pathways. The receptor interacts with TRAF6, which causes
activation of protein kinases TAK, IRAK, and MKK1. This results in activation of transcription factors, such as NFkB, C/EBPb, ATF2, and AP-1. (B)
The TNF-a signal transduction pathways. There are three principal signal transduction pathways: (1) the apoptosis pathway; (2) the ceramide pathway;
and (3) the TRAF2 pathway. The apoptosis pathway proceeds through a ``death domain'' containing proteins TRADD and FADD. In the ceramide
pathway, PC-PLC stand for phosphatidyl-choline-activated phospholipase-C, DAG for diacyl-glycerol, n-SMase and a-SMase for neutral and acidic
sphingomyelinase, and PLA2 for phospholipase-A2. TRAF2, via kinases NIK and IKKs, phosphorylates and causes subsequent degradation of IkB,
which allows NFkB to become activated and enter the nucleus. TRAF2 also activates the MKK1 and JNK pathways. The mechanisms activating C/
EBPb have not yet been elucidated. (C) The TGF-a signal transduction pathways. Growth factors, such as TGF-a, EGF, etc., bind to EGFR
activating the cytoplasmic tyrosine kinase. Activated kinase binds scaffolding proteins, such as SHC, Grb2, and SOS, bringing them in the close
proximity of Ras. They activate Ras, which activates Raf1, which activates MEKs, which activate ERKs. When activated, ERKs translocate to the
nucleus, where they phosphorylate and thus activate transcription factors, such as ATF2, SAP1, c-Jun, and Elk1. (D) The IFN-g signal transduction
pathway. Binding of the ligand to the receptor causes its association with the JAK/TYK kinases, which phosporylate STATs. STATs, when
phosphorylated, dimerize and translocate to the nucleus where they activate transcription.
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Among the genes induced by IL-1 are keratins K6 and K16.
Whereas the mechanism of induction of K16 is still under
investigation, many details of the induction of K6 are known.
Recently, we reported on the mechanism of induction of K6 by
IL-1 (Komine et al, 2001). Skin biopsies in organ culture treated
with IL-1 express K6 throughout the tissue. In cultures only
con¯uent keratinocytes respond to IL-1; subcon¯uent cultures do
not. Using DNA-mediated cell transfection, we identi®ed the IL-1
responsive DNA element in the K6 promoter, and determined that
it contains a complex of C/EBP binding sites. Thus, IL-1 initiates
keratinocyte activation not only by triggering additional signaling
events, but also by inducing directly the synthesis of K6 in
epidermal keratinocytes, and thus changing the composition of
their cytoskeleton.

MAINTENANCE OF ACTIVATION

Whereas IL-1 initiates the keratinocyte activation, other signals are
used to maintain keratinocyte activation. Such signals need not be
already present in healthy tissue and can have overlapping but
different mechanisms of action from IL-1. Because these signals are
not present in healthy tissue, keratinocytes do not need to elaborate
sophisticated hair-trigger mechanisms to respond to or protect
themselves from these signals. One such signal is TNF-a. Induced
by IL-1, TNF-a can maintain keratinocytes in an activated state
(Nickoloff and Turka, 1993).

TNF-a was discovered from two independent lines of research,
®rst as an inducer of necrosis in some tumor cells and second as a
cause of cachexia in septic animals. Subsequently, it was established
that TNF-a is one of the proin¯ammatory cytokines that induce
many in¯ammatory effects, such as fever and shock. In response to
infection or injury a wide variety of cells produce TNF-a,
primarily macrophages and monocytes but also epithelial cells
including keratinocytes (Kock et al, 1990; Nickoloff et al, 1991;
Kolde et al, 1992).

A low level of TNF-a is present in the upper layers of the
healthy epidermis, but IL-1 can induce its synthesis and release
from keratinocytes. The levels of TNF-a are greatly augmented
under a variety of conditions, such as allergic and irritant contact
dermatitis, infection, and ultraviolet irradiation (Barker et al, 1991).
In these pathologic conditions TNF-a activates immune responses
by inducing production of additional signaling molecules, cyto-
kines, growth factors, their receptors, and adhesion proteins (e.g.,
amphiregulin, TGF-a, IL-1a, IL-1 receptor antagonist, epidermal
growth factor receptor (EGFR), and ICAM-1 (Grif®ths et al, 1995,
and references therein).

The signaling cascades mediating cellular responses to TNF-a
have been partly elucidated (Rothe et al, 1994; 1995; Liu et al,
1996; Shu et al, 1996; Malinin et al, 1997; Natoli et al, 1997;
Regnier et al, 1997; Song et al, 1997). The effects of TNF-a partly
overlap those of IL-1, but the TNF-a-dependent signal transduc-
tion appears to be much more complicated than the IL-1-triggered
one (although it is possible that at the moment we see too many
trees, which perhaps obscures the forest). A current version of the
cascade is shown in Fig 1(B). There are two TNF-a receptors, but
keratinocytes express mainly the 55 kDa receptor, type 1 (Trefzer
et al, 1991; Kristensen et al, 1993; Kondo and Sauder, 1997). Three
major intracellular effects are caused by TNF-a. The ®rst is the
induction of apoptosis, which proceeds through activation of
caspases. The second involves production of ceramides, which in
turn act as second messengers activating arachidonic acid synthesis
and regulating downstream effects. Ceramides activate protein
kinases that feed into the mitogen activated protein kinase (MAPK)
cascade system. The third and most direct TNF-a signaling
pathway involves proteins TNFa receptor associated death domain
(TRADD) and TRAF2, which, through NFkB inducing kinase
(NIK) and other kinases, activate transcription factors NFkB and
C/EBPb. The same pathway activates members of the AP-1
transcription factor family. There is signi®cant crosstalk between
the TNF-a signaling and the MAPK cascade pathways.

The NFkB family includes the proteins p65, p50, and c/rel,
which both homodimerize and heterodimerize among themselves
(Miyamoto and Verma, 1995). These proteins are stored latent in
the cytoplasm, bound to the inhibitory protein IkB. TNF-a causes
activation of IKKs, kinases that phosphorylate IkB and induce its
degradation. The degradation of IkB results in activation and
nuclear translocation of the NFkB protein (Beg et al, 1993; Shu et
al, 1996; Regnier et al, 1997; Zandi et al, 1998). Knockout of IKK-
a has a severe epidermal phenotype causing incomplete epidermal
differentiation (Hu et al, 1999; Takeda et al, 1999). On the other
hand, a knockout of IKK-b is defective in signaling from TNF-a to
NFkB (Li et al, 1999a; 1999b). NFkB proteins can interact with C/
EBPb, AP-1, and other transcription factors to regulate gene
expression (Matsusaka et al, 1993; Stein et al, 1993). In
keratinocytes, in vitro overexpression of NFkB inhibits prolifer-
ation. In epidermis in vivo NFkB is present in all layers, but is
nuclear only in the suprabasal ones; this suggests a role for NFkB in
epidermal differentiation (Seitz et al, 1998). On the other hand,
constitutive activation of NFkB in IkB-knockout mice results in
normal epidermal development and differentiation, but a wide-
spread and lethal dermatitis in the ®rst few days of life (Klement et
al, 1996).

TNF-a and other extracellular stimuli activate transcription
factor C/EBPb (also known as NF-IL6 or LAP; Nakajima et al,
1993; Trautwein et al, 1993; Akira et al, 1997). The mechanisms
that activate C/EBPb have not been fully characterized. C/EBPb
interacts with many other transcription factors, such as the RB
protein, the glucocorticoid receptor, Myc, NFkB, and AP-1
(Brasier et al, 1990; Matsusaka et al, 1993; Nishio et al, 1993; Stein
and Baldwin, 1993; Klampfer et al, 1994; Chen et al, 1996; Mink et
al, 1996). In epidermis the C/EBP proteins are differentially
expressed during differentiation (Maytin and Habener, 1998; Oh
and Smart, 1998). Whereas knockout mice lacking C/EBPb have
no cutaneous phenotype (Tanaka et al, 1995), overexpression of C/
EBPb in keratinocytes causes growth arrest and induction of early
differentiation markers (Zhu et al, 1999).

Using cultured keratinocytes and a novel ex vivo system, we
showed that TNF-a induces the expression of K6 at the level of
transcription (Komine et al, 2000). Using cotransfection, speci®c
inhibitors, and antisense oligonucleotides, we have identi®ed
NFkB and C/EBPb as the transcription factors that convey the
TNF-a signal. Both are necessary for the induction and they
apparently act as a complex, although only C/EBPb binds the K6
promoter DNA. The site in the K6 gene promoter that responds to
TNF-a is separate from the site responsive to TGF-a. These results
show that the in¯ammatory (TNF-a) and the proliferative (TGF-
a) signals in epidermis regulate the expression of K6 separately and
independently. Thus the cytoskeletal responses, such as K6
synthesis, can be precisely tuned in epidermal cells by separate
proin¯ammatory and proliferative signals to ®t the nature of the
injuries that caused them.

Whereas IL-1 and TNF-a are proin¯ammatory signals with
overlapping intracellular molecular pathways, under certain condi-
tions keratinocytes need additional and different stimuli, which
direct them to proliferate. In epidermis, several members of the
EGF family can be produced, including TGF-a, amphiregulin,
HB-EGF, and heregulin, ligands of the EGFR. These convey
proliferative signals to keratinocytes.

Arguably the most extensively studied cellular receptor signaling
pathways are those proceeding through EGFR (Ullrich and
Schlessinger, 1990). In adult epidermis, EGFR is primarily
expressed in the basal layer and, to a lesser degree, the ®rst
suprabasal layers (Nanney et al, 1990). Binding of the appropriate
ligands to the EGFR can activate keratinocytes (Coffey et al, 1987).
The signals activate nuclear proteins that regulate both gene
expression and cell division. Among the regulated genes are those
encoding additional regulators, leading to major morphologic
changes, developmental changes, and differentiation. In response to
the activation of the EGFR, keratinocytes proliferate, degrade
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components of the extracellular matrix, and become migratory
(Nickoloff et al, 1990).

A ``simpli®ed'' scheme of the cascade is shown in Fig 1(C). The
binding of a ligand to EGFR causes the receptor to dimerize, with
concomitant activation of its intracellular protein tyrosine kinase. A
substrate for this kinase is the receptor itself ± the two monomers
phosphorylate each other. The phosphotyrosines serve as docking
sites for SH2 domain containing proteins (such as Grb2 or SHC)
that interact with proteins capable of activating Ras. Several growth
factor receptors, via different adaptor molecules, activate Ras,
which makes Ras a fulcrum for signal transduction pathways
(Fig 1C). Activated Ras, in turn, activates a cascade of three
protein kinases, Raf1, MAPK/ERK kinase (MEK), and extra-
cellularly regulated kinase (ERK). The last one, ERK, translocates
to the nucleus where it phosphorylates and thus activates
transcription factors such as Elk1 and SAP1 (reviewed in Ullrich
and Schlessinger, 1990; Hill and Treisman, 1995).

Successive activation of a cascade of three protein kinases, ®rst
characterized in the EGF/TGF-a signaling pathway, is a recurrent
motif in signal transduction. Stress, exempli®ed by osmotic shock
and ultraviolet irradiation, or proin¯ammatory cytokines including
TNF-a and IL-1, can activate parallel cascades (see above), thus
activating partially overlapping sets of transcription factors (DeÂrijard
et al, 1994; Galcheva-Gargova et al, 1994; Gupta et al, 1995; 1996;
Rosette and Karin, 1995). All these cascades are present and
functional in keratinocytes (M.B. unpublished).

Perhaps the best-characterized TGF-a-responsive transcription
factors are those belonging to the AP-1 family. AP-1 is a nuclear
transcription complex composed of dimers encoded by the fos and
jun families of proto-oncogenes (Hill and Treisman, 1995; Karin,
1996). Whereas Fos proteins only heterodimerize with members of
the Jun family, Jun proteins can dimerize with both Fos and other
Jun proteins. In the epidermis, AP-1 regulates cell growth,
differentiation, and transformation (Bernerd et al, 1993; Saez et al,
1995; Rutberg et al, 1996). The expression of individual AP-1
proteins in epidermal layers, however, is a controversial issue that
awaits resolution. Certain authors ®nd c-Fos in lower layers of the
epidermis (Fisher et al, 1991; Basset-Seguin et al, 1994; Lu et al,
1994) whereas others do not ®nd any c-Fos (Rutberg et al, 1996),
which agrees with the lack of an epidermal phenotype in c-fos
knockout mice (Saez et al, 1995). The differing results could be
explained by different epitopes of the antibodies used and
functional redundancy of Fos family members. Be that as it may,
it is clear that the AP-1 proteins in keratinocytes can regulate the
expression of differentiation markers (Presland et al, 1992; Lu et al,
1994; Lohman et al, 1997) and may convey the calcium- and
protein kinase C (PKC) dependent signals (Welter et al, 1995;
Rutberg et al, 1996). Functional AP-1 sites have been found in
many keratin genes, including the ®rst intron of human and murine
K18 and the K8 gene (Pankov et al, 1994; Umezawa et al, 1997).
We have found that the EGFR ligands strongly and speci®cally
induce the expression of K6 and K16 and that AP-1 sites are present
and functional in several epidermal keratin genes (Jiang et al, 1993;
Ma et al, 1997)

THE ACTIVATED PHENOTYPE

Once activated, keratinocytes synthesize additional signaling
growth factors and cytokines including TGF-a, IL-3, IL-6, IL-8,
G-CSF, GM-CSF, and M-CSF (Coffey et al, 1987; Kupper, 1990b;
Nickoloff et al, 1990). The effects of these signaling molecules
produced by keratinocytes are chemotactic for white blood cells
and paracrine for lymphocytes, ®broblasts, and endothelial cells.
Interestingly, these signaling molecules are also autocrine for
keratinocytes themselves. They lead to secondary effects of
keratinocyte activation. Several extracellular markers are speci®cally
expressed by the activated keratinocytes. These include cell surface
proteins, integrins, components of the extracellular matrix, as well
as receptors for both the autocrine factors and factors produced by
the in®ltrating immune cells (Alitalo et al, 1982; O'Keefe et al,

1987; Marinkovich et al, 1992; Burgeson, 1993). In a feedback
loop, the increase in the expression of cell surface receptors may
augment the initial activation signal. The various signaling
molecules may be synergistic or antagonistic with each other.
This allows the activated phenotype to be speci®cally modi®ed,
which can lead to different activated phenotypes. Put simply,
keratinocytes activated during wound healing, in psoriasis, or other
pathologic conditions can have different variants of the activated
keratinocyte phenotype.

THE CONTRACTILE KERATINOCYTE: IFN-g
In the late stages of wound healing, the contraction of the newly
formed extracellular matrix produced by the ®broblasts is an
important process. This contraction is effected by ®broblasts;
however, keratinocytes have their own task, to contract the newly
deposited, ®bronectin-rich basement membrane. The signal that
compels keratinocytes to become competent to contract is,
apparently, IFN-g.

The most extensively studied signaling molecules of the immune
system are the interferons IFN-a, IFN-b, and IFN-g, a subset of
cytokines originally described as factors that protect cells from viral
infections (reviewed in Schindler and Darnell, 1995). IFN-a and
IFN-b share a cell surface receptor, whereas IFN-g binds to a
different receptor and has distinct effects. Certain diseases, such as
psoriasis, are associated with high levels of IFN-g in epidermis
(Nickoloff et al, 1990). Although the role of interferons in pathologic
processes has not been clearly de®ned, they have been used in
therapeutic trials for several dermatologic diseases (Eron et al, 1987).

Activation of IFN receptors initiates a cascade of protein
phosphorylation events. The cascade branches into a delta of
transcription activating pathways that induce multiple genes
(Schindler and Darnell, 1995). The receptors interact with Janus
activated kinases (JAK) kinases, which phosphorylate tyrosines both
on the receptors and on the signal transducing activator of
transcription (STAT) family of transcription factors (Fig 1D).
First discovered as mediators of interferon signaling, STATs are
unusual because they can convey the signal directly from the plasma
membrane into the nucleus without second messengers or
cytoplasmic kinase cascade intermediates (Levy and Darnell,
1990). Each STAT contains a tyrosine phosphorylation site and
an SH2 domain that can bind to phosphotyrosine. STATs are
cytoplasmic in their ground state, but upon activation of appro-
priate receptors they become phosphorylated and, through their
SH2 domains, dimerize and translocate into the nucleus. In the
nucleus STATs bind to speci®c DNA recognition elements and
activate transcription of nearby genes. To date six STAT proteins
have been characterized; they are activated by a variety of
extracellular stimuli. The regulatory speci®city of the cytokine
signals at the cell surface is mirrored in the nucleus by the activity of
speci®c members of the STAT family: IFN-g leads to activation of
STAT-1, IFN-a of STAT-2 and STAT-3, IL-6 and OsM of
STAT-3, IL-12 of STAT-3 and STAT-4, IL-3, IL-5, and GM-
CSF of STAT-5, and IL-4 of STAT-6 (Schindler and Darnell,
1995).

We found that IFN-g strongly and speci®cally induced the
promoter of the K17 gene. No other keratin gene construct was
induced (Jiang et al, 1994). Within the promoter of the K17 gene,
we have identi®ed and characterized a site that confers the
responsiveness to IFN-g, and that binds the transcription factor
STAT-1. We could induce in vivo expression of K17 experimen-
tally by causing a delayed-type hypersensitivity in¯ammatory
reaction characterized by substantial in®ltration of lymphocytes
that produce IFN-g (Kaplan et al, 1986). In affected epidermis, we
found transcription factor STAT-1 in the nuclei of keratinocytes.
In contrast, STAT-1 is cytoplasmic in unaffected and healthy skin.

Psoriasis is a Th-1-dependent process that is associated with
production of IFN-g. We hypothesized that the induction of K17 is
speci®c for Th-1 in¯ammatory reactions and does not occur in Th-
2 type ones. Therefore, we analyzed lesional samples of psoriasis
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and compared them with those of atopic dermatitis, a Th-2-
associated process. The above hypothesis has been supported by our
evidence that K17 is induced in the ®rst, but not in the second,
disorder (Komine et al, 1996). Our data further indicated that Th-1
and Th-2 lymphocytes, through the cytokines they produce,
differently regulate not only each other, but also keratin gene
expression in epidermis, their target tissue (Komine et al, 1996).
These results characterize, at the molecular level, a signaling
pathway produced by the in®ltration of lymphocytes in skin and
resulting in the speci®c alteration of gene expression in
keratinocytes. They de®ne at the molecular level how IFN-g
regulates expression of the K17 gene and provide a means for
analysis of the molecular interactions between the immune system
and the epidermis, interactions that are important in pathologic skin
processes (Komine et al, 1996).

K17 is exceptional because it is not found in healthy interfollicular
epidermis, but it is expressed in certain pathologic states, including
psoriasis, allergic reactions, and cutaneous T cell lymphoma, as well
as in benign tumors of the mammary gland, basal cell epitheliomas,
squamous cell lung carcinomas, and some other benign and
malignant neoplasms (Moll et al, 1984; Guelstein et al, 1988; de
Jong et al, 1991; Wetzels et al, 1991; Blumenberg, 1994; Jiang et al,
1994). Indeed, expression of K17 has been used to evaluate the
course of treatment of psoriatic patients (de Jong et al, 1991).

K17 is expressed in various healthy epithelia (Troyanovsky et al,
1992), including myoepithelial cells, basal layers of transitional and
pseudostrati®ed epithelia of the respiratory and urinary tracts, and
early developmental stages of strati®ed epithelia. Common char-
acteristics of these cells are contractility and/or frequent changes in
shape (Troyanovsky et al, 1992). The function of K17 in epidermis
therefore may be to promote or allow keratinocyte contractility.

BACK TO BASICS: TGF-b
Once the injury that causes keratinocyte activation has been healed
and the tissue repaired, keratinocytes must revert to their regular
function, differentiation into stratum corneum. To revert to the
basal cell phenotype, keratinocytes need a signal that the injury is
over. This signal comes from the dermal ®broblasts in the form of
TGF-b.

TGF-b is an important regulator of epidermal keratinocyte
function because it suppresses cell proliferation, whereas it induces

synthesis of extracellular matrix proteins and their cell surface
receptors. Mice with a knocked-out TGF-b gene develop
normally, because of the maternally supplied TGF-b, only to
succumb to exuberant multifocal in¯ammation due to unrestrained
activation of the immune system (Shull et al, 1992; Geiser et al,
1993). Skin-targeted overexpression of TGF-b causes hypoplasia,
whereas loss of TGF-b expression or resistance to TGF-b cause
increased susceptibility to malignant conversion (Jhappan et al,
1993; Glick et al, 1993; Pierce et al, 1993; Reiss et al, 1993;
Sellheyer et al, 1993).

In skin, TGF-b induces expression of extracellular matrix and
basement membrane components, such as ®bronectin, laminin, and
collagen IV and VII (Wikner et al, 1988; RyynaÈnen et al, 1991;
Vollberg et al, 1991; KoÈnig and Bruckner-Tuderman, 1992),
extracellular proteases and their inhibitors (Edwards et al, 1987;
Laiho et al, 1987; Salo et al, 1991; Keski-Oja and Koli, 1992), as
well as cell surface proteins including integrins a5, av, b1, b4, and
b5, and bullous pemphigoid antigens BPAG1 and BPAG2
(Vollberg et al, 1991; Gailit et al, 1994). We have shown that
TGF-b speci®cally induces synthesis of basal-cell-speci®c K5 and
K14 (Jiang et al, 1995).

Overall, it appears that TGF-b promotes the synthesis of basal-
cell-speci®c proteins and therefore promotes the basal phenotype.
This happens at the expense both of the activated, hyperprolifera-
tive phenotype and of the differentiating phenotype. Our conclu-
sion is strengthened by studies showing that the keratinocyte
growth arrest by TGF-b is reversible, does not result in terminal
differentiation, and can be modulated by regulators of keratinocyte
differentiation, such as retinoic acid or calcium (Choi and Fuchs,
1990; Matsumoto et al, 1990; Wang et al, 1992). Furthermore, van
Ruissen et al (1994) have shown, by using careful cytometric
measurements, that in vitro TGF-b reduces the fast growth rate of
keratinocytes to the slow level of cell division observed in the
normal, nonhyperproliferative basal layer of skin in vivo. From these
data we suggest that the effects of TGF-b on keratinocytes are not
antiproliferative, but antihyperproliferative.

OVERVIEW

When we put all these data together, we arrive at a consistent
framework for the action of growth factors and cytokines in
epidermal injury (Fig 2). The ®rst signal from the injury is the
release of IL-1. This release activates endothelial cells and ®broblasts
and invites lymphocytes to the wound site. At the same time, IL-1
activates keratinocytes, making them hyperproliferative and migra-
tory, causing them to deposit a provisional ®bronectin-rich
basement membrane, express K6 and K16, and produce additional
growth factors and cytokines, including TNF-a and members of
the EGF family. These growth factors and cytokines maintain the
keratinocytes in the activated state. Meanwhile, lymphocytes
extravasate and migrate to the wound site to ®ght any infection
and produce IFN-g. IFN-g is an autocrine signal activating the
lymphocytes, but it is also a paracrine signal to keratinocytes,
communicating the following message: ``the infection is being dealt
with; if the re-epithelialization is complete, it is time to express
K17, to contract and reorganize the provisional basement mem-
brane''. Meanwhile, ®broblasts migrate to the wound site, produ-
cing extracellular matrix, expressing TGF-b. TGF-b is an autocrine
signal activating the ®broblasts, but it is also a paracrine signal to
keratinocytes, communicating the following message: ``the dermis
is being repaired; it is now time to start producing K5 and K14, to
return to being a basal cell and the process of normal differenti-
ation''.

This work has been supported by grants AR30682, AR41850, AR45974, and

AR40522, from the National Institutes of Health.

Figure 2. The keratinocyte activation cycle. Basal keratinocytes,
producing K5 and K14, can either differentiate and produce K1 and K10,
or become activated, producing K6 and K16. IL-1 is the primary signal
initiating keratinocyte activation and expression of K6 and K16. TNF-a
and TGF-a keep keratinocytes activated until another signal, such as
IFN-g, is received. IFN-g induces K17 and promotes contractility in
keratinocytes. TGF-b is a de-activating signal that promotes reversal to
the basal phenotype and induces expression of K5 and K14.
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