View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Elsevier - Publisher Connector

Linear Algebra and its Applications 434 (2011) 542-558

Contents lists available at ScienceDirect

Linear Algebra and its Applications Appiications

journalhomepage: www.elsevier.com/locate/laa

Path of quasi-means as a geodesic

Jun Ichi Fujii

Department of Arts and Sciences (Information Science), Osaka Kyoiku University, Asahigaoka, Kashiwara, Osaka 582-8582, Japan

ARTICLE INFO ABSTRACT

Article history: As a generalization of the Hiai-Petz geometries, we discuss two
Received 26 May 2010 types of them where the geodesics are the quasi-arithmetic means
Accepted 7 September 2010 and the quasi-geometric means, respectively. Each derivative of
Available online 13 October 2010 such a geodesic might determine a new relative operator entropy.
Submitted by R.A. Brualdi Alsoin these cases, the Finsler metric can be induced by each unitar-

ily invariant norm. If the norm is strictly convex, then the geodesic
is the shortest. We also give examples of the shortest paths which

AMS classification:

15A48 are not the geodesics when the Finsler metrics are induced by the
15A60 Ky Fan k-norms.

47A64 © 2010 Elsevier Inc. All rights reserved.
53B40

Keywords:

Finsler geometry
Quasi-arithmetic mean
Quasi-geometric mean
Geodesic

Positive definite matrices
Operator mean

Unitarily invariant norm

1. Introduction

In [10,11], we introduced the Uhlmann transformation from operator means in the sense of Kubo
and Ando [20] onto the derivative solidarities: let A m;B be an interpolational path, that is, a path from
A = AmgB to B = AmqB of the Kubo-Ando operator means satisfying

Am@q_pp4rgB = (AmpB)m; (AmgyB)
forall p, q,r € [0, 1]. Then we showed in [11] that this path is differentiable for t and the limit
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AsmB
m t—0 t

t=0
is called the derivative solidarity for m. In particular, if m; is the path of geometric operator means

1/ 1 1\t 1
A#;B = A2 (A 2BA 2) Az,
then the derivative solidarity is the relative operator entropy [9,10]
S(AIB) = A? log <A*%BA*%> A2,
More generally, the derivative for a path m;; defined by
1 1 AN\
A#, B =A? (1 —t+t <A_5BA_7> ) A2

gives the Tsallis relative operator entropy in the sense of [26]

A#. B—A A#,B—A
i t

li =TL@AB) = ——,
r

t—0
see also[9,10,11]. This construction of the relative entropy is due to Uhlmann [24] and hence we call the
map m; — Sy, the Uhlmann transformation in [9]. These discussions are reduced to the representing
functions f;(x) = 1 m¢x and F(x) = 1s,x by virtue of the ‘transformer equality’ of the Kubo-Ando
mean; If X is invertible, then

X*(AmB)X = (X*AX)m(X*BX).

A remarkable property of the representing function F is that F is a strictly increasing smooth function
with F(1) = 0 and F’(1) = 1 which follow from f;(1) = 1 and fo(x) = 1. (Here the strict increasing-
ness means F'(x) > 0 for all x > 0, which is denoted by F/ > 0).

But it would be hard to find the interpolational paths in the Kubo-Ando means except m; ; in spite of
the importance of them. Recently Hiai and Petz [17] introduced two types of parametrized geometries
whose geodesics are

(1= A"+ BT and (A #,B%)a

forr € Rand o > 0. They are the interpolational paths but not the ones of the Kubo-Ando means.
Based on this, we extend the Hiai-Petz geometries and discuss the induced entropies as their
derivatives.

2. Path of quasi-arithmetic means

Throughout this section, a numerical mean is a binary operation m on positive numbers which
satisfies only the following conditions:

normalization : ama = q,

monotonicity : amb < a’mb’ whenevera < d' andb < b

Moreover we assume here that a m b is a smooth function for each term. But the homogeneity; tamth =
t(amb) for all t > 0, is not assumed here.

Let a m:b be a (smooth) path of numerical means from a = amgb to b = am;b. Though the homo-
geneity does not always hold, we still consider the path function f;(x) = 1 mx. A path is also called
interpolational if

amg—_rp+rgb = (amyb) my(amyb)

holds for all p, g, r € [0, 1]. In this case, we can define a s,,b = W — which is no longer positive

in general. First we confirm the properties of the derivative function Fm_(x) = 1sux (cf. [11]):
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Lemma 2.1. If am;b is a smooth interpolational path of numerical means, then the derivative function Fy,
satisfies F, (1) = 0 and

d(a mtb)
dt
for h = qwitht + h < 1. In particular,
Fan (fe (%)) = tF ().

In addition, if Fy, is a nonzero function, then F,, (1) = 1.

(ameb)sm(amespb) = h

Proof. It follows from 1 m;1 = 1 that F;,(1) = 0. The monotonicity shows that F;, is increasing. From
the interpolational property,

(ameb) mp(ameynb) — (ameb)

(am¢b) sy (amypb) = lim
r—0

-
— lim © m1—pr)etre+h)b — (@meb)
r—0 r
. aweymb — (ameb) d(amb)
=limh =h .
r—0 rh dt

Putting t = 0 and then using t instead of h, we have
asm(ameb) = t(asmb)
and hence Fy,, (f; (X)) = tFu (%) for fi(x) = 1 mex. It follows that
Fa(fe()) = Fu() _ Fa(ft(®)) — Fn(D) fe () — 1
t fix) —1 t

ast — 0. Therefore we have F, (1) = 1 when Fy,(x) # 0 for some x by the additional assumption. [J

Fm(x) = - Fr/n(‘l)Fm(X)

We also call a map f; — Fy, the Uhlmann transformation here. If F, is strictly increasing, then the
‘reproducing equality’ holds (see also the formula (0") in the below):

) = F N (tFa () = F ' (1 = OFn(1) + tFin (%)
In this paper, only for a strictly increasing smooth function F on (0, c0) with F > 0, we use the term
‘quasi-arithmetic mean’

am¢b = F~1((1 — t)F(a) + tF(b)). (0)

Note that the assumption F’ > 0 assures the continuous differentiability of the mean, see [15]. Here we
call a strictly increasing smooth function F a fundamental function if F(1) = 0,F' > 0and F/(1) = 1.
In fact, each quasi-arithmetic mean has the standard form (0) for a fundamental function F since the
invariant property

ameb = F~' (1 = OF(a) + tF(b)) = Fy (1 — )Fa (@) + tFa, (b))

holds for an affine transform Fy g (x) = (F(x) — a)/B of Ffora € Rand 8 > 0.
Then we have the inverse of the Uhlmann transformation in these means: each quasi-arithmetic
mean has the standard form

ameb = F, ' (1 — O)Fn(a) + tFn(b)). 0"
Theorem 2.2. A path of quasi-arithmetic means defined by (0) is interpolational and the Uhlmann trans-

formation f; — Fy, is a bijection from path functions of quasi-arithmetic means onto the fundamental
functions, precisely F, = F.
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Proof. This path is interpolational since

(ampb) my(amgb) =F~'((1 — p)F(a) + pF(b)) m:F ' ((1 — q)F(a) + qF (b))
=F (1 = (1 = p)F(a) + pF(b)) + r((1 — q)F(a) + qF(b)))
=F '([1 = (1 = rp—r]F(a + [ — r)p + rq]F (b))
=am(1,r)p+rqb.
By F(1) = 0and F/(1) = 1, we have

lmx—1  FU(tFkx) —1
— = lim —————
t t—0 t
_OFTN(tF(x)) _ F F
- at T F(FF1(0)  F(1)

Fu(x)=1suxx = lim
t—0

= F(x).
=0

Thus we have that the Uhlmann transformation is bijective. [

For a fundamental function F, we also define a path of quasi-arithmetic operator means for positive
invertible operators A and B on a Hilbert space:

AmB = AmgB = F1((1 — t)F(A) + tF(B)). (1)

Immediately we have Am;A = A, but this mean is not a Kubo-Ando operator mean. Moreover it is not
always chaotic operator mean in [12].
Here, for a monotone increasing function G, we define a G-order A < Bby G(A) < G(B) for all positive
G

operators A and B in the usual order of operators. We also call H is G-monotone if the composition G o H
is operator monotone. Thus a chaotic operator mean (e.g. the case F(x) = x" forr € [—1, 1])isachaotic
(i.e., log-monotone) operator mean. Then we obtain properties of the path of quasi-arithmetic means
like numerical case:

Theorem 2.3. A path A m:B of quasi-arithmetic means defined by (1) is interpolational and the derivative
AsyB has the representing function F itself. In addition, if F is operator monotone and F~' is G-monotone,
then w¢ has a monotone property: IfA < A’ and B < B/, then Am(B <A’ mB'.

G

In the next section, we give the derivative W

a geometry.

, which is a kind of entropy, in the discussion of

3. QAM geometry

Now we observe a geometry of the n x n positive definite matrices M™ with a geodesic of a path of
quasi-arithmetic means A mB, which is called the QAM geometry here. From now on, forA € M™* anda
smooth path y (t) on M ™, U (resp. U;) is assumed to be any unitary such that U*AU (resp. Uy (H)Up)is
adiagonal matrix D (resp. D;) with entries d; (resp. d;(t)). Let F be a strictly increasing smooth function

on (0, 00) and FI! the divided difference:

MO0, (x#y)

Flley) = xy
F'(x), (x=y).
As in [18,14], we observe the following differential formula:
dF(y (1)) .
— = = U((FM(di(0), di(0))) o UF y () U (2)

dt
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Immediately we have the inverse formula:

Co 1 LAF(y (D)) N ,
v ="U ((F[l](di(t), dj(t))> o U dt Ut) Ut )

For each A € M™, define the linear transform on Mh by
®A(X) = U((F)(d;, d})) o U*XU)U*.

Here we introduce a geometry of fiber bundles to obtain the geodesic as an auto-parallel curve. For
this, we should define a ‘parallelism’ between tangent vectors at distinct points in M ™. Each fiber of a
principal fiber bundle is considered as the transformation group of each tangent space. A ‘connection’
determines a relation between transformations in different tangent spaces and defines a parallelism,
that is, an affine connection (or a covariant derivative) on tangent vector bundles as an associated
bundle. Following such procedure, we can reach the equation to get the geodesic between two points
in M. It is a simple way to obtain the geodesic without complex calculations introduced by Cartan
asin[19].

Now consider the trivial principal bundle P = M™ x ¢/ for m™ with the trivial projection
7 ((A, V)) = A. Define the left action ¥ ((A, V))X = @;1 (VXV*) of P on Tam™t = M". Here we ob-
serve the associated tangent vector bundle

Px M u=pxm
P

where each fiber is the hermitian matrices M" with the right action (4, V)W = (A, VW) of W € ¢/ on
7~ 1(A) C P and the left action p (W)X = WXW* on the tangent space TaMT = M". Then it can be
identified with the tangent vector bundle M" by the map ((A, V), X) — ¥ ((A, V))(X) since

(A VIW)p T W)X=W (A VW) WXW = & (VWW*XWW*V*)
=o,  (VXV*) = W ((A V)(X).

This identification shows that we can determine the parallel displacement of tangent vectors along
the curve y by the connection of P and a horizontal lift of ¢ as in the below, see also [19]. Consider
the canonical flat connection, that is, the horizontal vector in the tangent space 7(4,v) (P) is of the form
(X, 0) for some X = X*. Then the horizontal lift I" of a path y is I'(t) = (y (t), V) for any fixed V € u
(Once we adopt the starting point I"(0) = (y(0), V) in the fiber = ~!(y (0)), it is the integral curve

under the tangent vectors (y (t), O) of the required curve I" for each t).
Since a tangent vector Y € MM also belongs to the associated bundle M of P and

(A V)Y = VEoa(Y)V,

we have that the parallel displacement Py = Pt0 from 0 to t along a path y of a tangent vector X on y (0)
is obtained by

PX = W ((y (0. V)W (7 (0, V) "'X) = @, (@ (0) (X))

Then the covariant derivative for a vector field X (t) is

PIX(t+8) —X(1) lim @, (Py (o) X(E+€)) — X(0)

VyX=Ilim
e—>0 & e—0 &
. @ Xt + &) — Dy (X(D)) - /
1 y(t+e) y () 1
=, (S“_IPO . =P ((@,,u) X)) ) :

Theorem 3.1. The geodesic yr from A to Bin M™ for the canonical flat connectionin ® = M™ x U is the
path of quasi-arithmetic operator means

Ye(t) = AmB = F~1((1 — t)F(A) + tF(B)).
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Proof. By the above argument, the geodesic equation V;; ¥ = O implies

0=y (V1) = (20 (7)) = FY®).
So there exist C; € M" and C, € M™T with F(y (t)) = tC; + C. Since
F(A) =F(y(0)) =G and F(B) =F(y(1)) =G + G,
we have C; = F(A) and C; = F(B) — F(A),sothat y (t) = Am;(B. [
Now we define a Finsler metric by the Minkovski norm in the sense of Cartan [21,22], that is, it is

equivalent to the original norm and satisfies the Finsler condition L(X; y (0)) = L(P:X; y (t)) for all
paths y:

Theorem 3.2. For any unitarily invariant norm ||| |||, the norm of X € M" defined as

L(X; A) = Legam(X; A) = [|2aX) Il = [I(FM(d;, dj)) o U*XU|

is a Finsler metric and the geodesic length d(A, B) makes MY a metric space;
1
d(A B) = /O L(ye(0); yr(0))dt = [IF(B) — F(A)].

Proof. The equivalence for norms is clear since the space is finite dimensional. The translation
D, (1)(PX) = By (1) (D1 (P 0) (X)) = Py (0) (X)

implies the Finsler condition of L(X; A). Here it follows from (2) that
Ly (1); y () = [Py oy (7 )l = IIFCy )l

in general. Since the geodesic yr from A to B is auto-parallel, we have

1 1
/OLO}F(t); ye(©)dt=L(yr(0); VF(O))/O dt = L(yr(0); y£(0))

= 12a@r @)l = F ()| _, Il = IFB) = FAII.

It is clear that d is a metric function. [

Finally in this section, we mention a new class of relative entropy. By the differential formula (2),
we have

. . 1 o U* _ %
”(t)_U‘<<F“1<di<r>,dj<r>>> v e Fm)m) o

So we can define the arithmetic relative operator entropy for F as
1
Gr(AIB) = y£(0) = AsuB=U || ===——— ] o U*(F(B) — F(A))U ) U*.
F(AIB) = 5(0) = Asn ((F[”(di,dj)> (F(B) — F(A)) )
Also we define the arithmetic relative entropy as
se(A|B) = tr Gp(A|B) = tr (F’(A)_l(F(B) - F(A))) .

In case F = log, we have the minus quantity of the Umegaki entropy sy (A|B) [25] for matrices;

5p(A|B) = tr Gp(A|B) = tr (A(logB — logA)) = —sy(A|B).
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4. Path of quasi-geometric means

Let F be an increasing positive smooth function F with F/ > 0. Based on one of the Hiai-Petz
geometries whose geodesic is (A% #; B*)'/® we define the quasi-geometric operator mean #g; for
positive invertible operators A and B on a Hilbert space as

A#pB=F '(F(A) # F(B)). 3)

This mean is invariant for a positive scalar multiplication F — «F, so that we may assume F(1) = 1.
Then we have a bijective correspondence between these means and such functions:

Lemma 4.1. A map #f — F from the quasi-geometric operator means to the smooth increasing positive
function F with F’ > 0 and F(1) = 1 is one-to-one.

Proof. For strictly increasing positive smooth functions F and G with F(1) = G(1) = 1, assume
A#p: B = A#¢; B. Here we take commuting positive definite matrices A and B whose spectra are
greater than 1 and put C = log A and D = log B. A function f(x) = log F(e*) — log F(e) is smooth and
satisfies f(1) = O and f/ > 0. Then

F™' (F(A) # F(B)) = F~' (F(e) TF(eP)") = ¢ (1m0 400D
and taking g(x) = log G(e*) — log G(e), we have g(1) = 0,g’ > 0and

FTHA = Of(©) + (D)) = g~ (1 = Dg(C) + tg(D)).
Thus we have the two numerical quasi-arithmetic means are the same. Then, by Lemma 2.1, we have

g (ty) = tgf ()

and hence gf ~! is linear. Thus there exists s > 0 with g(x) = sf(x), thatis, G(z) = F(z)*. Since we can
take positive definite matrices X and Y such that

O # Y5)S # X#, Y
for s # 1, then s must be 1 and hence f = g. Since F(1) = G(1) = 1, we have
—logF(e) = f(0) = g(0) = —logG(e),
so that we have F(x) = G(x) for allx > 1. Since the case x < 1 is similarly shown, we have F = G. [J

We give a simple example for positive semi-definite matrices, but the continuity guarantees the
1
example for (X° #; Y5)s # X #; Y in the above proof:

Example 1. For o, x > 0, put

1 X 1
A=(] 0), B=P=7(} }) and Py=——| ;
0 X 2 x+1\ 5

Since P and Py are projections, we have

i=(y %)

6 W6 W6 W6 %)
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and hence
(A#B)* = LX“F.
Jx+1
On the other hand, the formula
o
AY #B* = 7@ P
X% + 1

shows the above is not equal ifx # 1 and o« > 0.

The derivative at t = 0 is given by

(1 #¢, x) . FUF0)) —1 1 log F(x)

ot |, 0 ' = Py 8FW = o

d(A#r; B)
dt

The derivative are discussed in the next section.

5. QGM geometry

As a geometry of a type of the CPR one [7,8] or the Bhatia-Holbrook one [6,5], we will discuss a
geometry for a manifold M™ where the geodesic is the quasi-geometric mean. It is a generalization
of the other type of the Hiai-Petz geometry (the case F(x) = x“) and is called the QGM geometry.

For a smooth and positive function F with F/ > 0, consider a principal fiber bundle Pr =
{g, MY, u, T} where G is the regular matrices, 7ty is the projection 7r(G) = F~1(GG*) and i/ is the
unitary matrices as the structure group which acts naturally from the right. Then each fiber is of the
form nF_1 (F~'(GG*)) = Gu. Define a connection by the horizontal subspace GM" of the tangent space

TcPr of G at G. Note that the vertical subspace is iGM" which is the tangent space of the fiber Gt/ at G.
Let I" be the horizontal lift of the path y. Then

y =np(I)=F Y(I'T*) and ' '[" e M
and consequently
I'T*=F(y) and I'"'[F=(r~'r)*=r*r".
Thereby I"I"* = I'I"* and hence (F(y)) = I'T* + I'I"* = 2I"T"*, so that we have
F = G () = SE@) (T = S EG) EG) T
which is called the transport equation. Thus the horizontal lift I" is the solution of the transport

differential equation though it is hard to express it explicitly.
We also use a linear transformation ®, on the tangent space 73(M™1) = Mm"

@4(X) = U[(F")(d;, d))) o U*XU] U*.

For G € G, its action on the tangent vector X of M™ at A is defined by
O(G)X = Or(G)X = @, ' (GXGY).

Note that the point G can be identified with the linear map ® (G). Then the inverse action is
OG) X =6 To,x) (G

Here the associated bundle Pr x Mh/u = Pr Xp M" with the fiber M" and the left action
o (V)X = VXV* of V € U can be identified with the tangent vector bundle M" since the equivalence
relation in Pr X Mh
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(G, X) ~ (G, X)V = (GV, p(V¥)X) = (GV, V*XV)
is compatible with the identification G — ©(G);
OGV)VFXV = & 1 (GV(V*XV)(GV)*) = @' (GXG¥) = O(G)X.
Therefore the parallel displacement Pt0 of a tangent field X along the path y from O to ¢ is defined as
PAX=6O(I ())(O(I'(0))”'X(0))
=4, (FOT )@ XO)T (O T 1)

Then we obtain the covariant derivative V;; :

Fy) Fy) 1o, X) + &, X)(F(y)) ! (F(y))’)
: .

VpX = q>y‘1 ((q‘zy(x))’ —

Theorem 5.1. The connection in the principal fiber bundle Pr in the above yields the geodesic equation
(F(y)) = F@) F@N~ " Fy)

and the geodesic from A to B
Sr(t) = F~'(F(A) #: F(B)).

Proof. Since the geodesic § is auto-parallel, we have the geodesic equation;
0=5(V;8) = (@5(8)) — (F(8))'(F(8)) ' ®5(8)
=(F®) — () FE) ™ F @)
As in the CPR geometry, we have
F(8(t)) = F(5(0)) #; F(8(1)) = F(A) #: F(B)

and hence the required geodesic is obtained. [

Remark 5.1. Here we give another proof to solve the geodesic equation. Let
h(t) = F(3(0)"2F(0)F(5(0) /2 = FA) T 2F@(e)F(A) /2.

Then h is a smooth path from I to F(A) ~"/2F(B)F(A)~'/2 and also satisfies i’ = W'h~'I’. By
WY ="' —Wh 'R = (W = WhT )R =0,

we have I (t)h(t)~! = C for some matrix C.Since C = h’(0) is hermitian, i’ (t) and h(t) are commuting
for each t. Then, using the Cauchy integral for a curve §2 with Re £2 > 0 as the boundary of an open
region including all the spectra o (h(t)), we have

1
logh(t) = — / (log2)(z — h(t))"\dz
2wi Je2
and the commutativity shows

dlog h(t) _

[ Goge — n(e) W 06z — () dz
dt 2mi Je

= @ /(logz)(z — h(t))"2dz = W' (t) log h(t) = K (H)h(t) ! = C.
2mi Jc

Thus we have log h(t) = tC, or h(t) = exp(tC). Moreover h is determined as
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h(t) = (F(A) "' /FB)F(A)1/%)!
by h(1) = F(A)~'/2F(B)F(A)~'/2 and hence
8e(t) = F~ ' (F(A) # F(B)).
Similarly to the preceding case, we also show that M is a Finsler space:

Theorem 5.2. For a unitarily invariant norm ||| |||, the following Minkovski norm
L A) = Leqom (X A) = [IF@) 2 @a(X)F@A) 12|

defines a Finsler metric and the geodesic length d(A, B) from A to B makes M™ a metric space:

1 .
d(AB) = /O L(8r(t); 8(6))dt = || log F(A)~/2F(B)F(A)~V/?||.

Proof. It follows from F(y) = I' I'* that
F(y (1)~ 2 (6) 1 (0)~'F(y (0) (I (0)) " I (0)* F(y ()~ /2 = 1,
so that we have W = F(y (t))~"/2I" ()" (0) " 'F(y (0))'/? is unitary and hence
LPPX(O): y ()= [F&r )70 (X Oy )~
=|Fr )™ (PO r© ™ @, 0XO) @' T ©)) Fiy )|
= |WF(r (@)@, o) X(O)F(y (0)) W

=||F(r )72, 0 (X(@)F(y (0)) 2| = L(x(0); ¥ (0)).

Thus it is a Finsler metric. By the differential formula (2),
Ly @); y ) =IF(y ()™ 2@, 0y (7 O)F (v () /2|
=[IF(y )2 F )Y OF ()~ 2.

Since the geodesic 8¢ from A to B is auto-parallel, we have d(A, B):

[ 1Gr©): 8r)dt=16r@): 5101 [t = LGr(0): 3+(0))
= IFA) 2048 (0)F(A) 2| = [IF(A) > (F(8p)) (O)F @A) ~/2||
= IF(A) " *S(F@A)FB)F@A) || = [l log F(A) ™2 F(B)F(A) /||
Moreover the translation invariance ofL(<§p(t); Sr(t)) implies the symmetric law of d:
d(A B) = L(§¢(1); 8¢(1)) = [IF(B) "2 (F(8p)) (DF(B) /|| = d(B, A),

so that d is a metric function. [

Remark 5.2. To make this metric L an exact extension in the Hiai-Petz geometry, it should be
1
F'(1)

But in this paper, we use the above definition for simplicity.

L(X; A) = IIFA) 2@ (X)F(A) /2.

By the differential formula (2’) again, we have
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S — U 1 U*dF(A)#tF(B)U -
PO = U FUI(d;(t), dj(¢)) o dt [t

As the derivative at 0 of the geodesic, the geometric relative operator entropy for F is defined as

Sr(AIB)=48r(0) = @, ' (S (F(A)|F(B)))

1 * *
-y ((F“J(d:d;)> oU S(F(A)|F(B))U) U

and also its geometric relative entropy is
se(AIB) = tr F'(A)"'S(F(A)|F(B)).

In case F(x) = x, it is the minus quantity of the Belavkin-Staszewski relative entropy [3].
For a path y and an invertible matrix Y, define the path yy by

w(® =F ' (Y*F(y (1)Y).

Then we have an invariance property, cf. [13]:
Lemma 5.3. Lir) (Yy: yy) = Ly (v: y) and d(yy, 8y) = d(y, 8).

Proof. Since [|Z[|| = [lIZ|ll = llvZ*Z|| = lIv/ZZ* ||, we have

Lir (v yv) = |[FOx) ™2 (F()) Fly) ™2

= (Y F()Y) "2 (Y F(»)Y) (Y*E(y)Y) 2

= (Y F()Y) 1Y (F(»)) Y (Y*F(y)Y) "2

= IV F oY)y ) YR Y)Y F G ) Y(YE(r)Y)

= IV F ) Y)Y FO) T EG)) Y EG )Y

= IVEG) 2 FOY Y EG ) 1Y (F ()Y F )

= IVEG) EEYFON 1 FG)YEG) S

=F) 2T FOYF) 2| = Lin(7: 1)

Let y and § be geodesics. By the relation for all s, t € [0, 1]
F(yy(s) #pe Sy (5)) = Y*F(y (s) #£,¢ 8(5))Y,

similarly we have

d #r: O
L (VY“)d:Y(” o 8y(5)> =1 (

which implies d(yy, §y) = d(y,8). O

d #r: 6
W; Y (s) #50 6(s)> ,

So we have the following property like the CPR geometry which suggests the curvature would be
negative, see [2,5]:
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Theorem 5.4. For geodesics y and § in the QGM geometry, the followings hold and they are equivalent:
() J(6) = d(y (6),6(6) = [|logF (v (©)~2) FB(O)F (v (t)72) | is convex.
(ii) d(F~ (F(A)"), "1 (F(B)") < td(A B).
(iii) d(y (£), 8(6)) = (1 — £)d(y (0), 8(0)) + td(y (1), 8(1)).

Proof. Based on Araki’s inequality in [1] for positive semidefinite X and Y
HA (y2xty~t2) < H,\f ( zxr%)
j=1

for0 <t < 1and1 < k < nwhere A is the jth eigenvalue (singular value in this case) under the
decreasing order, we have the majorization

log Y~2Xty Y2 < tlog Y~ 2XY 3.

Since positive semidefinite matrices X and Y are arbitrary, we have
log F(B)~*/2F(A)'F(B)™/? < tlog F(B)~ 2 F(A)F(B) "2

and consequently we have (ii) holds by the convexity of f (x) = |x|:
d(F~ (F(A)), F~ (F(B)") = ||log F(B)~/2F(A) F(B) /2|

<t |[log F(B) "2 F(A)F(B) >

= td(A, B).

Thus (ii) holds.
Next, we show that (ii) implies (iii): For y (t) = A#fg; B, 5(t) = C#r: D and {(t) = C #f; B, the
triangle inequality and Lemma 5.3 show (iii) by

d(y (), 8(1)) < d(y (1), £(t)) +d(g(t),8(t)
- d( Vet O e 1(0) ( Syt O O3 @ )>

3
(F_l <<F(B)_2F(A)F(B) 2 ) P <(F (B)‘ZF(C)F(B)‘%)“»
< ((F(C)_zF(B)F(C)_>) ((F(C)_;F(D)F(C)—§>t>)

<(1-1td <F <F(B)_%F(A)F(B)‘i),r1 F(B)_%F(C)F(B)_%>>
ted (F*‘ (F(CY%F(B)F(CY%) F (F(C)*%F(D)F(C)*%»

- t)d(F(B)_,(>;F(B)_1<0))+m( eyt F(Q_%m)
— (1 — 0d(y (0), £(0)) + td(E (1), 5(1)) = (1 — O)d(y (0), 5(0)) + td(y (1), 5(1)).

Next we show (iii) implies (i). Let I'(t) = (A#fp B) #; (A#r 4 B) and A(t) = (C#gp D) #; (C#pq D).
Then, by the interpolationality, we have

F(t) = A#F,(l—t)p+th and A(t) = C#F,(l—[)p—i-tq D
and then

) =A#p,B I'(1) =A#gB, A(0)=C#pp,D and A(1) = C#ggD.
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Thus, we have (iii) for I" and A implies (i) for y and 8. Considering geodesics y (t) = F~ ! (F(A)") and
8(t) = F~1(F(B)Y), we have (i) implies (ii);

dFETTEADY, FHEB)Y)) =J(0) =J(1 =0+ 1) < (1 —6)J(0) + (1)
=(1—t)d(, 1) + td(A B) = td(A, B).

Thus all the conditions hold and they are equivalent. []

6. Shortest paths

Recall that the norm || || is strictly convex if ||x 4+ y|| < 2 for distinct unit vectors x and y. This is
equivalent to the condition that ||x 4+ y|| = ||x|| + ||y|| if and only if one vector is the positive scalar
multiple of the other.

By the differential formula (2), we have

1 1 t
| 1@ y@nde = NEG©) e = qll [ F@©Ydell = 1FE) ~ F@ll
0 0 0

so that the geodesic A mr (B attains the shortest length. Moreover only the geodesic is the shortest path
if the norm is strictly convex:

Theorem 6.1. Let F be a smooth function on (0, c0) with F' > 0. If a unitarily invariant norm is strictly
convex, the geodesic

yr(t) = AmgeB = F~1((1 — DF(A) + tF(B))
is the unique shortest path for the metric

Le(X; A) = Lr.qam (X; A) = [I(F(d;, d)) o U*XU|
where the shortest length is ||F(B) — F(A)|]|.

Proof. Suppose y attains the shortest length. Since

dF
Le(7; ) = IFTEG (0. 4i(6)) 0 Uy (ULl = ‘ (th”m

for a parametrized diagonalization Uy (t)U; = diag(d;(t)), the length £(y ) satisfies

1 1 dF
IF(B) — F(A)[| = /0 LF()?;V)dtqu /0 wdr = IF®) — FA)|.

For H(t) = F(y (t)), it must satisfy

ol = | [ H (O] = IF®) ~ FAIl.

Here we use the broken line approximation to obtain the length of H(t):

1
J W ©nde = Jim S W) — HEIL

theA

Take the following monotone increasing sequence converging to fol [|H'(t)]|dt:

(o) - ()] 1 [ o

2H

2

k=1
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Then all the triangle inequalities

() w5
<o) - (o) o) - (50|

are equal, so that there exists s 21 > 0 with
ont

2k 2k — 1 2k — 1 2(k—1)
H<2n+1>_H< ont1 )ZS?,;;} H( ot >_H ot '

that is, H (é’ﬁﬂ) at each binary fraction zz’ﬁﬂ in [0,1] is the convex combination for H ( ) and

k.
H ()

S 2k— H + H
H(Zk—l): s ( ) ( )
2n+1 -1 +1
on+1

holds for all n and k = 1, ...,2". Thus, all the constants s -1 are defined from the terminal points

on+1

H(0) = F(A) and H(1) = F(B) with sy = 0 and s; = 1. Therefore we can define a function w on the
binary fractions in [0,1] inductively with the relation

2k —1 2k —1 2k — 1
H< ont ) - (1 _W< 2t ))F(A)+W( gnt )F(B)'
In fact, paying attention to the coefficient of F(B), we have the recurrence equation

2% — 1 52l< 1W<2,1 1)+W(2nk,1)
w(%) - .

2n Sa—1 + 1
on

By the initial conditions w(0) = 0 and w(1) = 1, the function w is monotone increasing on the
above fractions. The smoothness of y implies that w is smoothly extended to a function on [0,1] which
is monotone increasing and satisfies

F(y(t)) = H(t) = (1 — w(t))F(A) + w(t)F(B).
Thus

y(© = F~1((1 = w()F(A) + w()F(B)) = AmE, (B,
that is, y can be identified with Amg¢B. [

Example 2. Similarly to the Hiai-Petz geometry shown in [13], each Ky Fan k-norm gives another path
attaining the shortest length. We may assume that F(x) is a non-affine fundamental function since
we have already shown the case F(x) = x“ in [13]. Then there exists an interval (a, b) withb > a > 0
such that

F'aA+tty+F(1+ty) >0

holds for ally € (a, b). This condition implies F'(1 + t(x — 1))(x — 1) is monotone increasing for x €
(a + 1,b + 1). Take monotone decreasing numbers b; € (a + 1,b + 1) and put the diagonal matrix
B = diag(b;) > 1.Recall that the Ky Fan k-norm of f (B) for a increasing function f is

k

If By = D_F(by).

J=1
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Then we cansee thata(t) = (1 — t)I + tB = I + t(B — I) has the shortest length: since &t (t) = B — I,

LE,| 1o (&: @) = [IF"((t)) o (B — Dl (ky
= || diag(F' (1 + t(bj — 1))(bj — D)l

k
=3 (1t — D)y — 1) = Y (F(L + £l — 1)),
j=1
so that,
1k k
116 (a)=/0 SUFQ A+t —1))dt = > [F(1 +t(b; — 1)];
j=1 j=1

:Zj;]l:(bj) = IFB) gy = [IF(B) — F(D) | (k-

Also, in the QGM geometry, the geodesic 8¢ (t) = F~1(F(A) #; F(B)) is the shortest if the norm is
strictly convex:

Theorem 6.2. Let F be an increasing smooth nonnegative function on (0, oo) with F(1) = 1and F’ > 0.
If a unitarily invariant norm is strictly convex, the geodesic

Sr(t) = A#p, B =F ' (F(A) #. F(B))
is the unique shortest path for the metric Lr oom (X; A) = LiF defined by

’

Lip(X; A) = 'HF(A)—%U [(F[”(df, dj)) o U*XU} U*F(A)">

To show this theorem, we use Dyson’s expansion in [4] for H(t) = log F(y (t));

where the shortest length is

log(FA)HFBIFA) )

d 1
(Fiy @) = "0 = /O O (1)e1—0HO gy

Proof. The Hiai-Kosaki logarithmic-geometric mean inequality in [16] implies

. _1 _1
L[F](y;y)zmuy) 3 () F(y)~
‘87# </l e”H(t)H’(t)e(F”)H(t)du> et

0

_ 'H/l O =5 1 ()= 5 1-WHO) gy m
0

H(®) H® H@O
e 2

HO _HO
>qllez e 2 H(t)e” 2

' — IHOI-

For each path y from A to B, consider § (t) = y(4)-1/2 is a path from I to F1(F(A)~ 2 F(B)F(A)~ 2 ) and
H(t) = log F(8(t)). In this case,

H©0) =0 and H(1) = log F(A)~2F(B)F(A) 2.
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Then the length £(§) is estimated in the below:

()= [ o= q [ 8@l = af| [0 ]

|

so that, the geodesic §f attains the shortest length by Lemma 5.3.
Now suppose a path y from A to B attains the shortest length. Then it must satisfy

[ ona =] ["woa =

Therefore, similarly to the preceding proof, we have

—IHA) — HO)| = 'Hlog(F(A)*%F(B)F(Ar%)

log F(A)~2F(B)F(A)~2

H(t) = (1 — w(t))H(0) + w(t)H(1) = w(¢) log F(A) 2 F(B)F(A) 2,

that is,
1 1 1\ W(®
s(t)y=F <F(A)_5F(B)F(A)_5>
and hence y (t) equals A#,,¢ B as paths. [

We also give another path with the shortest length for the Ky Fan k-norm:

Example 3. The path 8(t) = F~1((1 — t)F(I) + tF(B)) attains the shortest length for the matrix B in
the preceding example. In fact,

Liene(B: B =F(B) 2 (F(B)YF(B) o
=[(F(B) — F()((1 — )F(1) + tF(B) | k-

Putting
Gl) = F(x) — F(1) '
(1 —t)F(1) + tF(x)
we have
G FOF®

(1 = OF(1) + tF(x))?
and hence G is monotone increasing. Therefore L[F],k(ﬂ'; B) = Z]’;] G(bj) and hence

g K B ko1 F(bj) — F(1)
aﬂ)—/%“bﬂdt _le/o (=0 () + by

k
= ]',‘:1 [log((1 — t)F(1) + tF(b))]) = ;(logF(b]-) —log F(1))
j=

_1 _1
| logF<B>—logF<1>||<k>=H logFDIFBF() |

so that B is one of the shortest paths.
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