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As a generalization of the Hiai–Petz geometries, we discuss two

types of themwhere the geodesics are the quasi-arithmetic means

and the quasi-geometric means, respectively. Each derivative of

such a geodesic might determine a new relative operator entropy.

Also in these cases, the Finslermetric canbe inducedby eachunitar-

ily invariant norm. If the norm is strictly convex, then the geodesic

is the shortest. We also give examples of the shortest paths which

are not the geodesics when the Finsler metrics are induced by the

Ky Fan k-norms.
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1. Introduction

In [10,11], we introduced the Uhlmann transformation from operator means in the sense of Kubo

and Ando [20] onto the derivative solidarities: let AmtB be an interpolational path, that is, a path from

A = Am0B to B = Am1B of the Kubo–Ando operator means satisfying

Am(1−r)p+rqB = (AmpB)mr(AmqB)

for all p, q, r ∈ [0, 1]. Then we showed in [11] that this path is differentiable for t and the limit
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A smB ≡ d(AmtB)

dt

∣∣∣∣∣
t=0

= lim
t→0

AmtB − A

t

is called the derivative solidarity for m. In particular, ifmt is the path of geometric operator means

A#t B = A
1
2

(
A− 1

2 BA− 1
2

)t

A
1
2 ,

then the derivative solidarity is the relative operator entropy [9,10]

S(A|B) = A
1
2 log

(
A− 1

2 BA− 1
2

)
A

1
2 .

More generally, the derivative for a path mr,t defined by

A#r,t B = A
1
2

(
1 − t + t

(
A− 1

2 BA− 1
2

)r)1/r

A
1
2

gives the Tsallis relative operator entropy in the sense of [26]

lim
t→0

A#r,t B − A

t
= Tr(A|B) ≡ A#r B − A

r
,

see also [9,10,11]. This construction of the relative entropy is due toUhlmann [24] andhencewe call the

map mt �→ sm the Uhlmann transformation in [9]. These discussions are reduced to the representing

functions ft(x) = 1mtx and F(x) = 1 smx by virtue of the ‘transformer equality’ of the Kubo–Ando

mean; If X is invertible, then

X∗(Am B)X = (X∗AX)m(X∗BX).

A remarkable property of the representing function F is that F is a strictly increasing smooth function

with F(1) = 0 and F ′(1) = 1 which follow from ft(1) = 1 and f0(x) = 1. (Here the strict increasing-

ness means F ′(x) > 0 for all x > 0, which is denoted by F ′ > 0).

But itwould be hard to find the interpolational paths in theKubo–Andomeans exceptmr,t in spite of

the importance of them. Recently Hiai and Petz [17] introduced two types of parametrized geometries

whose geodesics are

((1 − t)Ar + tBr)
1
r and (Aα #t B

α)
1
α

for r ∈ R and α > 0. They are the interpolational paths but not the ones of the Kubo–Ando means.

Based on this, we extend the Hiai–Petz geometries and discuss the induced entropies as their

derivatives.

2. Path of quasi-arithmetic means

Throughout this section, a numerical mean is a binary operation m on positive numbers which

satisfies only the following conditions:

normalization : am a = a,

monotonicity : am b � a′ m b′ whenever a � a′ and b � b′.
Moreoverweassumehere that amb is a smooth function for each term. But thehomogeneity; tam tb =
t(am b) for all t > 0, is not assumed here.

Let amtb be a (smooth) path of numerical means from a = am0b to b = am1b. Though the homo-

geneity does not always hold, we still consider the path function ft(x) = 1mtx. A path is also called

interpolational if

am(1−r)p+rq b = (amp b) mr(amq b)

holds for all p, q, r ∈ [0, 1]. In this case, we can define a smb = d(amtb)
dt

∣∣∣
t=0

, which is no longer positive

in general. First we confirm the properties of the derivative function Fm(x) = 1 smx (cf. [11]):
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Lemma 2.1. If amtb is a smooth interpolational path of numerical means, then the derivative function Fm

satisfies Fm(1) = 0 and

(amtb)sm(amt+hb) = h
d(amtb)

dt

for h � q with t + h � 1. In particular,

Fm(ft(x)) = tFm(x).

In addition, if Fm is a nonzero function, then F ′
m(1) = 1.

Proof. It follows from 1mt1 = 1 that Fm(1) = 0. The monotonicity shows that Fm is increasing. From

the interpolational property,

(amtb) sm(amt+hb)= lim
r→0

(amtb) mr(amt+hb) − (amtb)

r

= lim
r→0

am(1−r)t+r(t+h)b − (amtb)

r

= lim
r→0

h
amt+rhb − (amtb)

rh
= h

d(amtb)

dt
.

Putting t = 0 and then using t instead of h, we have

a sm(amt b) = t(a smb)

and hence Fm(ft(x)) = tFm(x) for ft(x) = 1 mtx. It follows that

Fm(x) = Fm(ft(x)) − Fm(1)

t
= Fm(ft(x)) − Fm(1)

ft(x) − 1

ft(x) − 1

t
→ F ′

m(1)Fm(x)

as t → 0. Therefore we have F ′
m(1) = 1when Fm(x) /= 0 for some x by the additional assumption. �

We also call a map ft �→ Fm the Uhlmann transformation here. If Fm is strictly increasing, then the

‘reproducing equality’ holds (see also the formula (0′) in the below):

ft(x) = F−1
m (tFm(x)) = F−1

m ((1 − t)Fm(1) + tFm(x)).

In this paper, only for a strictly increasing smooth function F on (0,∞) with F ′ > 0, we use the term

‘quasi-arithmetic mean’

amtb = F−1((1 − t)F(a) + tF(b)). (0)

Note that the assumption F ′ > 0 assures the continuous differentiability of themean, see [15]. Herewe

call a strictly increasing smooth function F a fundamental function if F(1) = 0, F ′ > 0 and F ′(1) = 1.

In fact, each quasi-arithmetic mean has the standard form (0) for a fundamental function F since the

invariant property

amtb = F−1((1 − t)F(a) + tF(b)) = F
−1
α,β((1 − t)Fα,β(a) + tFα,β(b))

holds for an affine transform Fα,β(x) = (F(x) − α)/β of F for α ∈ R and β > 0.

Then we have the inverse of the Uhlmann transformation in these means: each quasi-arithmetic

mean has the standard form

amtb = F−1
m ((1 − t)Fm(a) + tFm(b)). (0′)

Theorem 2.2. A path of quasi-arithmetic means defined by (0) is interpolational and the Uhlmann trans-

formation ft �→ Fm is a bijection from path functions of quasi-arithmetic means onto the fundamental

functions, precisely Fm = F.
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Proof. This path is interpolational since

(ampb) mr(amqb)=F−1((1 − p)F(a) + pF(b)) mrF
−1((1 − q)F(a) + qF(b))

=F−1((1 − r)((1 − p)F(a) + pF(b)) + r((1 − q)F(a) + qF(b)))

=F−1([1 − (1 − r)p − rq)]F(a) + [(1 − r)p + rq]F(b))
=am(1−r)p+rqb.

By F(1) = 0 and F ′(1) = 1, we have

Fm(x)≡1 smx = lim
t→0

1mtx − 1

t
= lim

t→0

F−1(tF(x)) − 1

t

= ∂F−1(tF(x))

∂t

∣∣∣∣∣
t=0

= F(x)

F ′(F−1(0))
= F(x)

F ′(1)
= F(x).

Thus we have that the Uhlmann transformation is bijective. �

For a fundamental function F , we also define a path of quasi-arithmetic operator means for positive

invertible operators A and B on a Hilbert space:

AmtB ≡ AmF,tB = F−1((1 − t)F(A) + tF(B)). (1)

Immediately we have AmtA = A, but this mean is not a Kubo–Ando operator mean. Moreover it is not

always chaotic operator mean in [12].

Here, for amonotone increasing functionG,wedefineaG-orderA≤
G
BbyG(A) ≤ G(B) for all positive

operators A and B in the usual order of operators.We also callH isG-monotone if the compositionG ◦ H

is operatormonotone. Thus a chaotic operatormean (e.g. the case F(x) = xr for r ∈ [−1, 1]) is a chaotic
(i.e., log-monotone) operator mean. Then we obtain properties of the path of quasi-arithmetic means

like numerical case:

Theorem 2.3. A path AmtB of quasi-arithmetic means defined by (1) is interpolational and the derivative

A smB has the representing function F itself. In addition, if F is operator monotone and F−1 is G-monotone,

then mt has a monotone property: If A ≤ A′ and B ≤ B′, then AmtB≤
G
A′ mtB

′.

In the next section, we give the derivative
d(AmtB)

dt
, which is a kind of entropy, in the discussion of

a geometry.

3. QAM geometry

Nowwe observe a geometry of the n × n positive definitematricesM+ with a geodesic of a path of

quasi-arithmeticmeans AmtB, which is called theQAMgeometry here. Fromnowon, for A ∈ M+ and a

smooth path γ (t) onM+, U (resp.Ut) is assumed to be any unitary such thatU∗AU (resp.U∗
t γ (t)Ut) is

a diagonalmatrixD (resp.Dt) with entries dj (resp. dj(t)). Let F be a strictly increasing smooth function

on (0,∞) and F[1] the divided difference:

F[1](x, y) =
{

F(x)−F(y)
x−y

, (x /= y),

F ′(x), (x = y).

As in [18,14], we observe the following differential formula:

dF(γ (t))

dt
= Ut((F

[1](di(t), dj(t))) ◦ U∗
t γ̇ (t)Ut)U

∗
t . (2)
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Immediately we have the inverse formula:

γ̇ (t) = Ut

((
1

F[1](di(t), dj(t))

)
◦ U∗

t

dF(γ (t))

dt
Ut

)
U∗
t . (2′)

For each A ∈ M+, define the linear transform on Mh by

ΦA(X) = U((F[1](di, dj)) ◦ U∗XU)U∗.
Here we introduce a geometry of fiber bundles to obtain the geodesic as an auto-parallel curve. For

this, we should define a ‘parallelism’ between tangent vectors at distinct points in M+. Each fiber of a

principal fiber bundle is considered as the transformation group of each tangent space. A ‘connection’

determines a relation between transformations in different tangent spaces and defines a parallelism,

that is, an affine connection (or a covariant derivative) on tangent vector bundles as an associated

bundle. Following such procedure, we can reach the equation to get the geodesic between two points

in M+. It is a simple way to obtain the geodesic without complex calculations introduced by Cartan

as in [19].

Now consider the trivial principal bundle P = M+ × U for M+ with the trivial projection

π((A, V)) = A. Define the left action Ψ ((A, V))X = Φ
−1
A (VXV∗) of P on TAM+ = Mh. Here we ob-

serve the associated tangent vector bundle

P × Mh/ U = P ×
ρ

Mh,

where each fiber is the hermitian matrices Mh with the right action (A, V)W = (A, VW) ofW ∈ U on

π−1(A) ⊂ P and the left action ρ(W)X = WXW∗ on the tangent space TAM+ = Mh. Then it can be

identified with the tangent vector bundle Mh by the map ((A, V), X) �→ Ψ ((A, V))(X) since

Ψ ((A, V)W)ρ−1(W)X=Ψ ((A, VW))W∗XW = Φ
−1
A (VWW∗XWW∗V∗)

=Φ
−1
A (VXV∗) = Ψ ((A, V))(X).

This identification shows that we can determine the parallel displacement of tangent vectors along

the curve γ by the connection of P and a horizontal lift of γ as in the below, see also [19]. Consider

the canonical flat connection, that is, the horizontal vector in the tangent space T(A,V)(P) is of the form

(X, O) for some X = X∗. Then the horizontal lift Γ of a path γ is Γ (t) = (γ (t), V) for any fixed V ∈ U
(Once we adopt the starting point Γ (0) = (γ (0), V) in the fiber π−1(γ (0)), it is the integral curve

under the tangent vectors (γ̇ (t), O) of the required curve Γ for each t).

Since a tangent vector Y ∈ Mh also belongs to the associated bundle Mh of P and

Ψ ((A, V))−1Y = V∗ΦA(Y)V,

we have that the parallel displacement Pt = P 0
t from 0 to t along a path γ of a tangent vector X on γ (0)

is obtained by

PtX = Ψ ((γ (t), V))(Ψ ((γ (0), V))−1X) = Φ
−1
γ (t)(Φγ (0)(X)).

Then the covariant derivative for a vector field X(t) is

∇γ̇ X= lim
ε→0

P
t+ε
t X(t + ε) − X(t)

ε
= lim

ε→0

Φ
−1
γ (t)(Φγ (t+ε)(X(t + ε))) − X(t)

ε

=Φ
−1
γ (t)

(
lim
ε→0

Φγ(t+ε)(X(t + ε)) − Φγ(t)(X(t))

ε

)
= Φ

−1
γ (t)

((
Φγ(t)(X(t))

)′)
.

Theorem 3.1. The geodesic γF from A to B in M+ for the canonical flat connection in P = M+ × U is the

path of quasi-arithmetic operator means

γF(t) = AmtB = F−1((1 − t)F(A) + tF(B)).
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Proof. By the above argument, the geodesic equation ∇γ̇ γ̇ = O implies

O = Φγ(t)(∇γ̇ γ̇ ) =
(
Φγ(t)(γ̇ (t))

)′ = (F(γ (t)))
′′
.

So there exist C1 ∈ Mh and C2 ∈ M+ with F(γ (t)) = tC1 + C2. Since

F(A) = F(γ (0)) = C2 and F(B) = F(γ (1)) = C1 + C2,

we have C2 = F(A) and C1 = F(B) − F(A), so that γ (t) = Amr,tB. �

Now we define a Finsler metric by the Minkovski norm in the sense of Cartan [21,22], that is, it is

equivalent to the original norm and satisfies the Finsler condition L(X; γ (0)) = L(PtX; γ (t)) for all

paths γ :

Theorem 3.2. For any unitarily invariant norm ‖| ‖|, the norm of X ∈ Mh defined as

L(X; A) ≡ LF,QAM(X; A) ≡ ‖|ΦA(X)‖| = ‖|(F[1](di, dj)) ◦ U∗XU‖|
is a Finsler metric and the geodesic length d(A, B) makes M+ a metric space;

d(A, B) =
∫ 1

0
L(γ̇F(t); γF(t))dt = ‖|F(B) − F(A)‖|.

Proof. The equivalence for norms is clear since the space is finite dimensional. The translation

Φγ(t)(PtX) = Φγ(t)(Φ
−1
γ (t)(Φγ (0)(X))) = Φγ(0)(X)

implies the Finsler condition of L(X; A). Here it follows from (2) that

L(γ̇ (t); γ (t)) = ‖|Φγ(t)(γ̇ (t))‖| = ‖|F(γ (t))′‖|
in general. Since the geodesic γF from A to B is auto-parallel, we have∫ 1

0
L(γ̇F(t); γF(t))dt=L(γ̇F(0); γF(0))

∫ 1

0
dt = L(γ̇F(0); γF(0))

=‖|ΦA(γ̇F(0))‖| = ‖|F(γF(t))
′∣∣∣
t=0

‖| = ‖|F(B) − F(A)‖|.
It is clear that d is a metric function. �

Finally in this section, we mention a new class of relative entropy. By the differential formula (2′),
we have

γ̇F(t) = Ut

((
1

F[1](di(t), dj(t))

)
◦ U∗

t (F(B) − F(A))Ut

)
U∗
t .

So we can define the arithmetic relative operator entropy for F as

SF(A|B) = γ̇F(0) = AsmB = U

((
1

F[1](di, dj)

)
◦ U∗(F(B) − F(A))U

)
U∗.

Also we define the arithmetic relative entropy as

sF(A|B) = tr SF(A|B) = tr
(
F ′(A)−1(F(B) − F(A))

)
.

In case F = log, we have the minus quantity of the Umegaki entropy sU(A|B) [25] for matrices;

sF(A|B) = tr SF(A|B) = tr (A(log B − log A)) = −sU(A|B).
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4. Path of quasi-geometric means

Let F be an increasing positive smooth function F with F ′ > 0. Based on one of the Hiai–Petz

geometries whose geodesic is (Aα #t B
α)1/α , we define the quasi-geometric operator mean #F,t for

positive invertible operators A and B on a Hilbert space as

A#F,t B = F−1(F(A)#t F(B)). (3)

This mean is invariant for a positive scalar multiplication F �→ αF , so that we may assume F(1) = 1.

Then we have a bijective correspondence between these means and such functions:

Lemma 4.1. A map #F,t �→ F from the quasi-geometric operator means to the smooth increasing positive

function F with F ′ > 0 and F(1) = 1 is one-to-one.

Proof. For strictly increasing positive smooth functions F and G with F(1) = G(1) = 1, assume

A#F,t B = A#G,t B. Here we take commuting positive definite matrices A and B whose spectra are

greater than 1 and put C = log A and D = log B. A function f (x) = log F(ex) − log F(e) is smooth and

satisfies f (1) = 0 and f ′ > 0. Then

F−1(F(A)#t F(B)) = F−1(F(eC)1−tF(eD)t) = ef
−1((1−t)f (C)+tf (D))

and taking g(x) = log G(ex) − log G(e), we have g(1) = 0, g′ > 0 and

f−1((1 − t)f (C) + tf (D)) = g−1((1 − t)g(C) + tg(D)).

Thus we have the two numerical quasi-arithmetic means are the same. Then, by Lemma 2.1, we have

gf−1(ty) = tgf−1(y)

and hence gf−1 is linear. Thus there exists s > 0with g(x) = sf (x), that is, G(z) = F(z)s. Since we can

take positive definite matrices X and Y such that

(Xs #t Y
s)

1
s /= X #t Y

for s /= 1, then s must be 1 and hence f = g. Since F(1) = G(1) = 1, we have

− log F(e) = f (0) = g(0) = − log G(e),

so that we have F(x) = G(x) for all x > 1. Since the case x � 1 is similarly shown, we have F = G. �

We give a simple example for positive semi-definite matrices, but the continuity guarantees the

example for (Xs #t Y
s)

1
s /= X #t Y in the above proof:

Example 1. For α, x > 0, put

A =
(
1 0

0 x

)
, B = P = 1

2

(
1 1

1 1

)
and Px = x

x + 1

⎛
⎝1 1√

x
1√
x

1
x

⎞
⎠ .

Since P and Px are projections, we have

A# B=
(
1 0

0
√

x

)√√√√√1

2

⎛
⎝1 1√

x
1√
x

1
x

⎞
⎠(1 0

0
√

x

)

=
(
1 0

0
√

x

)√
1 + x

2x
Px

(
1 0

0
√

x

)
=
√
1 + x

2x

(
1 0

0
√

x

)
Px

(
1 0

0
√

x

)

=
√
1 + x

2x

x

x + 1

(
1 1

1 1

)
=

√
2x√

x + 1
P,
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and hence

(A# B)α =
√

2x
α

√
x + 1

α P.

On the other hand, the formula

Aα # Bα =
√

2x
α

√
xα + 1

P

shows the above is not equal if x /= 1 and α > 0.

The derivative at t = 0 is given by

∂(1 #F,t x)

∂t

∣∣∣∣∣
t=0

= lim
t→0

F−1(F(x)t)) − 1

t
= 1

F ′(F−1(1))
log F(x) = log F(x)

F ′(1)
.

The derivative
d(A#F,t B)

dt
are discussed in the next section.

5. QGM geometry

As a geometry of a type of the CPR one [7,8] or the Bhatia–Holbrook one [6,5], we will discuss a

geometry for a manifold M+ where the geodesic is the quasi-geometric mean. It is a generalization

of the other type of the Hiai–Petz geometry (the case F(x) = xα) and is called the QGM geometry.

For a smooth and positive function F with F ′ > 0, consider a principal fiber bundle PF =
{G,M+, U ,πF} where G is the regular matrices, πF is the projection πF(G) = F−1(GG∗) and U is the

unitary matrices as the structure group which acts naturally from the right. Then each fiber is of the

formπ−1
F (F−1(GG∗)) = GU . Define a connection by the horizontal subspace GMh of the tangent space

TGPF of G at G. Note that the vertical subspace is iGMh which is the tangent space of the fiber GU at G.

Let Γ be the horizontal lift of the path γ . Then

γ = πF(Γ ) = F−1(Γ Γ ∗) and Γ −1Γ̇ ∈ Mh

and consequently

Γ Γ ∗ = F(γ ) and Γ −1Γ̇ = (Γ −1Γ̇ )∗ = Γ̇ ∗(Γ ∗)−1.

Thereby Γ̇ Γ ∗ = Γ Γ̇ ∗ and hence (F(γ ))′ = Γ̇ Γ ∗ + Γ Γ̇ ∗ = 2Γ̇ Γ ∗, so that we have

Γ̇ = 1

2
(F(γ ))′(Γ ∗)−1 = 1

2
(F(γ ))′(Γ Γ ∗)−1Γ = 1

2
(F(γ ))′(F(γ ))−1Γ ,

which is called the transport equation. Thus the horizontal lift Γ is the solution of the transport

differential equation though it is hard to express it explicitly.

We also use a linear transformation ΦA on the tangent space TA(M+) = Mh

ΦA(X) = U
[
(F[1](di, dj)) ◦ U∗XU

]
U∗.

For G ∈ G, its action on the tangent vector X of M+ at A is defined by

Θ(G)X ≡ ΘF(G)X = Φ
−1
A (GXG∗).

Note that the point G can be identified with the linear map Θ(G). Then the inverse action is

Θ(G)−1X = G−1ΦA(X)(G∗)−1.

Here the associated bundle PF × Mh/U = PF ×ρ Mh with the fiber Mh and the left action

ρ(V)X = VXV∗ of V ∈ U can be identified with the tangent vector bundle Mh since the equivalence

relation in PF × Mh
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(G, X) ∼ (G, X)V = (GV, ρ(V∗)X) = (GV, V∗XV)

is compatible with the identification G �→ Θ(G);

Θ(GV)V∗XV = Φ
−1
A (GV(V∗XV)(GV)∗) = Φ

−1
A (GXG∗) = Θ(G)X.

Therefore the parallel displacement P 0
t of a tangent field X along the path γ from 0 to t is defined as

P 0
t X=Θ(Γ (t))(Θ(Γ (0))−1X(0))

=Φ
−1
γ (t)

(
Γ (t)Γ (0)−1Φγ(0)(X(0))(Γ (0)∗)−1Γ (t)∗

)
.

Then we obtain the covariant derivative ∇γ̇ :

∇γ̇ X = Φ−1
γ

(
(Φγ (X))′ − (F(γ ))′(F(γ ))−1Φγ (X) + Φγ (X)(F(γ ))−1(F(γ ))′

2

)
.

Theorem 5.1. The connection in the principal fiber bundle PF in the above yields the geodesic equation

(F(γ ))
′′ = (F(γ ))′(F(γ ))−1(F(γ ))′

and the geodesic from A to B

δF(t) = F−1(F(A)#t F(B)).

Proof. Since the geodesic δ is auto-parallel, we have the geodesic equation;

O=Φδ(∇δ̇δ) = (Φδ(δ̇))
′ − (F(δ))′(F(δ))−1Φδ(δ̇)

=(F(δ))
′′ − (F(δ))′(F(δ))−1(F(δ))′.

As in the CPR geometry, we have

F(δ(t)) = F(δ(0))#t F(δ(1)) = F(A)#t F(B)

and hence the required geodesic is obtained. �

Remark 5.1. Here we give another proof to solve the geodesic equation. Let

h(t) = F(δ(0))−1/2F(δ(t))F(δ(0))−1/2 = F(A)−1/2F(δ(t))F(A)−1/2.

Then h is a smooth path from I to F(A)−1/2F(B)F(A)−1/2 and also satisfies h′′ = h′h−1h′. By
(h′h−1)′ = h′′h−1 − h′h−1h′h−1 = (h′′ − h′h−1h′)h−1 = O,

wehaveh′(t)h(t)−1 = C for somematrixC. SinceC = h′(0) is hermitian,h′(t)andh(t)are commuting

for each t. Then, using the Cauchy integral for a curve Ω with ReΩ > 0 as the boundary of an open

region including all the spectra σ(h(t)), we have

log h(t) = 1

2π i

∫
Ω

(log z)(z − h(t))−1dz

and the commutativity shows

d log h(t)

dt
= 1

2π i

∫
Ω

(log z)(z − h(t))−1h′(t)(z − h(t))−1dz

= h′(t)
2π i

∫
C
(log z)(z − h(t))−2dz = h′(t) log′ h(t) = h′(t)h(t)−1 = C.

Thus we have log h(t) = tC, or h(t) = exp(tC). Moreover h is determined as



J.I. Fujii / Linear Algebra and its Applications 434 (2011) 542–558 551

h(t) = (F(A)−1/2F(B)F(A)−1/2)t

by h(1) = F(A)−1/2F(B)F(A)−1/2 and hence

δF(t) = F−1(F(A)#t F(B)).

Similarly to the preceding case, we also show that M+ is a Finsler space:

Theorem 5.2. For a unitarily invariant norm ‖| ‖|, the following Minkovski norm

L(X; A) = LF,QGM(X; A) = ‖|F(A)−1/2ΦA(X)F(A)−1/2‖|
defines a Finsler metric and the geodesic length d(A, B) from A to B makes M+ a metric space:

d(A, B) =
∫ 1

0
L(δ̇F(t); δF(t))dt = ‖| log F(A)−1/2F(B)F(A)−1/2‖|.

Proof. It follows from F(γ ) = Γ Γ ∗ that

F(γ (t))−1/2Γ (t)Γ (0)−1F(γ (0))(Γ (0)∗)−1Γ (t)∗F(γ (t))−1/2 = I,

so that we haveW = F(γ (t))−1/2Γ (t)Γ (0)−1F(γ (0))1/2 is unitary and hence

L(P 0
t X(0); γ (t))=

∥∥∥∣∣∣F(γ (t))−1/2Φγ(t)(P
0
t X(0))F(γ (t))−1/2

∥∥∥∣∣∣
=
∥∥∥∣∣∣F(γ (t))−1/2

(
Γ (t)Γ (0)−1Φγ(0)(X(0))(Γ (0)∗)−1Γ (t)∗

)
F(γ (t))−1/2

∥∥∥∣∣∣
=
∥∥∥∣∣∣WF(γ (0))−1/2Φγ(0)(X(0))F(γ (0))−1/2W∗∥∥∥∣∣∣

=
∥∥∥∣∣∣F(γ (0))−1/2Φγ(0)(X(0))F(γ (0))−1/2

∥∥∥∣∣∣ = L(X(0); γ (0)).

Thus it is a Finsler metric. By the differential formula (2),

L(γ̇ (t); γ (t))=‖|F(γ (t))−1/2Φγ(t)(γ̇ (t))F(γ (t))−1/2‖|
=‖|F(γ (t))−1/2(F(γ ))′(t)F(γ (t))−1/2‖|.

Since the geodesic δF from A to B is auto-parallel, we have d(A, B):∫ 1

0
L(δ̇F(t); δF(t))dt=L(δ̇F(0); δF(0))

∫ 1

0
dt = L(δ̇F(0); δF(0))

=‖|F(A)−1/2ΦA(δ̇F(0))F(A)
−1/2‖| = ‖|F(A)−1/2(F(δF))

′(0)F(A)−1/2‖|
=‖|F(A)−1/2S(F(A)|F(B))F(A)−1/2‖| = ‖| log F(A)−1/2F(B)F(A)−1/2‖|.

Moreover the translation invariance of L(δ̇F(t); δF(t)) implies the symmetric law of d:

d(A, B) = L(δ̇F(1); δF(1)) = ‖|F(B)−1/2(F(δF))
′(1)F(B)−1/2‖| = d(B, A),

so that d is a metric function. �

Remark 5.2. To make this metric L an exact extension in the Hiai–Petz geometry, it should be

L(X; A) = 1

F ′(1)
‖|F(A)−1/2ΦA(X)F(A)−1/2‖|.

But in this paper, we use the above definition for simplicity.

By the differential formula (2’) again, we have
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δ̇F(t) = Ut

((
1

F[1](di(t), dj(t))

)
◦ U∗

t

d F(A)#t F(B)

dt
Ut

)
U∗
t .

As the derivative at 0 of the geodesic, the geometric relative operator entropy for F is defined as

SF(A|B)= δ̇F(0) = Φ
−1
A (S (F(A)|F(B)))

=U

((
1

F[1](di, dj)

)
◦ U∗S(F(A)|F(B))U

)
U∗

and also its geometric relative entropy is

sF(A|B) = tr F ′(A)−1S(F(A)|F(B)).
In case F(x) = x, it is the minus quantity of the Belavkin–Staszewski relative entropy [3].

For a path γ and an invertible matrix Y , define the path γY by

γY (t) ≡ F−1(Y∗F(γ (t))Y).

Then we have an invariance property, cf. [13]:

Lemma 5.3. L[F](γ̇Y ; γY ) = L[F](γ̇ ; γ ) and d(γY , δY ) = d(γ , δ).

Proof. Since ‖|Z‖| = ‖||Z|‖| = ‖|√Z∗Z‖| = ‖|√ZZ∗‖|, we have

L[F](γ̇Y ; γY )=
∥∥∥∥
∣∣∣∣F(γY )

− 1
2 (F(γY ))

′F(γY )
− 1

2

∥∥∥∥
∣∣∣∣

=
∥∥∥∥
∣∣∣∣(Y∗F(γ )Y)−

1
2 (Y∗F(γ )Y)′(Y∗F(γ )Y)−

1
2

∥∥∥∥
∣∣∣∣

=
∥∥∥∥
∣∣∣∣(Y∗F(γ )Y)−

1
2 Y∗(F(γ ))′Y(Y∗F(γ )Y)−

1
2

∥∥∥∥
∣∣∣∣

=
∥∥∥∥
∣∣∣∣
√

(Y∗F(γ )Y)− 1
2 Y∗(F(γ ))′Y(Y∗F(γ )Y)−1Y∗(F(γ ))′Y(Y∗F(γ )Y)− 1

2

∥∥∥∥
∣∣∣∣

=
∥∥∥∥
∣∣∣∣
√

(Y∗F(γ )Y)− 1
2 Y(F(γ ))′F(γ )−1(F(γ ))′Y∗(Y∗F(γ )Y)− 1

2

∥∥∥∥
∣∣∣∣

=
∥∥∥∥
∣∣∣∣
√
F(γ )− 1

2 (F(γ ))′Y(Y∗F(γ )Y)−1Y∗(F(γ ))′F(γ )− 1
2

∥∥∥∥
∣∣∣∣

=
∥∥∥∥
∣∣∣∣
√
F(γ )− 1

2 (F(γ ))′F(γ )−1(F(γ ))′F(γ )− 1
2

∥∥∥∥
∣∣∣∣

=
∥∥∥∥
∣∣∣∣F(γ )−

1
2 (F(γ ))′F(γ )−

1
2

∥∥∥∥
∣∣∣∣ = L[F](γ̇ ; γ ).

Let γ and δ be geodesics. By the relation for all s, t ∈ [0, 1]
F(γY (s)#F,t δY (s)) = Y∗F(γ (s)#F,t δ(s))Y,

similarly we have

L[F]
(
d γY (s)#F,t δY (s)

dt
; γY (s)#F,t δY (s)

)
= L[F]

(
d γ (s)#F,t δ(s)

dt
; γ (s)#F,t δ(s)

)
,

which implies d(γY , δY ) = d(γ , δ). �

So we have the following property like the CPR geometry which suggests the curvature would be

negative, see [2,5]:
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Theorem 5.4. For geodesics γ and δ in the QGM geometry, the followings hold and they are equivalent:

(i) J(t) = d(γ (t), δ(t)) =
∥∥∥∣∣∣log F

(
γ (t)− 1

2

)
F(δ(t))F

(
γ (t)− 1

2

)∥∥∥∣∣∣ is convex.
(ii) d(F−1(F(A)t), F−1(F(B)t)) � td(A, B).
(iii) d(γ (t), δ(t)) � (1 − t)d(γ (0), δ(0)) + td(γ (1), δ(1)).

Proof. Based on Araki’s inequality in [1] for positive semidefinite X and Y

k∏
j=1

λj(Y
−t/2XtY−t/2) �

k∏
j=1

λt
j

(
Y− 1

2 XY− 1
2

)

for 0 � t � 1 and 1 � k � n where λj is the jth eigenvalue (singular value in this case) under the

decreasing order, we have the majorization

log Y−t/2XtY−t/2 ≺ t log Y− 1
2 XY− 1

2 .

Since positive semidefinite matrices X and Y are arbitrary, we have

log F(B)−t/2F(A)tF(B)−t/2 ≺ t log F(B)−
1
2 F(A)F(B)−

1
2

and consequently we have (ii) holds by the convexity of f (x) = |x|:
d(F−1(F(A)t), F−1(F(B)t))=

∥∥∥∣∣∣log F(B)−t/2F(A)tF(B)−t/2
∥∥∥∣∣∣

�t

∥∥∥∥
∣∣∣∣log F(B)−

1
2 F(A)F(B)−

1
2

∥∥∥∥
∣∣∣∣ = td(A, B).

Thus (ii) holds.

Next, we show that (ii) implies (iii): For γ (t) = A#F,t B, δ(t) = C #F,t D and ζ(t) = C #F,t B, the

triangle inequality and Lemma 5.3 show (iii) by

d(γ (t), δ(t)) � d(γ (t), ζ(t)) + d(ζ(t), δ(t))

= d

(
γ
F(B)

− 1
2
(t), ζ

F(B)
− 1

2
(t)

)
+ d

(
ζ
F(C)

− 1
2
(t), δ

F(C)
− 1

2
(t)

)

= d

(
F−1

((
F(B)−

1
2 F(A)F(B)−

1
2

)1−t
)
, F−1

((
F(B)−

1
2 F(C)F(B)−

1
2

)1−t
))

+d

(
F−1

((
F(C)−

1
2 F(B)F(C)−

1
2

)t
)
, F−1

((
F(C)−

1
2 F(D)F(C)−

1
2

)t
))

�(1 − t)d

(
F−1

(
F(B)−

1
2 F(A)F(B)−

1
2

)
, F−1

(
F(B)−

1
2 F(C)F(B)−

1
2

))

+td

(
F−1

(
F(C)−

1
2 F(B)F(C)−

1
2

)
, F−1

(
F(C)−

1
2 F(D)F(C)−

1
2

))

= (1 − t)d

(
γ
F(B)

− 1
2
(0), ζ

F(B)
− 1

2
(0)

)
+ td

(
ζ
F(C)

− 1
2
(1), δ

F(C)
− 1

2
(1)

)
= (1 − t)d(γ (0), ζ(0)) + td(ζ(1), δ(1)) = (1 − t)d(γ (0), δ(0)) + td(γ (1), δ(1)).

Next we show (iii) implies (i). Let Γ (t) = (A#F,p B)#t (A#F,q B) and Δ(t) = (C #F,p D)#t (C #F,q D).
Then, by the interpolationality, we have

Γ (t) = A#F,(1−t)p+tq B and Δ(t) = C #F,(1−t)p+tq D

and then

Γ (0) = A#F,p B, Γ (1) = A#F,q B, Δ(0) = C #F,p D and Δ(1) = C #F,q D.
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Thus, we have (iii) for Γ and Δ implies (i) for γ and δ. Considering geodesics γ (t) = F−1(F(A)t) and
δ(t) = F−1(F(B)t), we have (i) implies (ii);

d(F−1(F(A)t), F−1(F(B)t))= J(t) = J((1 − t)0 + t) � (1 − t)J(0) + tJ(1)

=(1 − t)d(I, I) + td(A, B) = td(A, B).

Thus all the conditions hold and they are equivalent. �

6. Shortest paths

Recall that the norm ‖ ‖ is strictly convex if ‖x + y‖ < 2 for distinct unit vectors x and y. This is

equivalent to the condition that ‖x + y‖ = ‖x‖ + ‖y‖ if and only if one vector is the positive scalar

multiple of the other.

By the differential formula (2), we have∫ 1

0
LF(γ̇ (t); γ (t))dt =

∫ 1

0
‖|(F(γ (t))′‖|dt ≥ q‖|

∫ t

0
(F(γ (t))′dt‖| = ‖|F(B) − F(A)‖|,

so that the geodesic AmF,tB attains the shortest length.Moreover only the geodesic is the shortest path

if the norm is strictly convex:

Theorem 6.1. Let F be a smooth function on (0,∞) with F ′ > 0. If a unitarily invariant norm is strictly

convex, the geodesic

γF(t) = AmF,tB = F−1((1 − t)F(A) + tF(B))

is the unique shortest path for the metric

LF(X; A) = LF,QAM(X; A) = ‖|(F[1](di, dj)) ◦ U∗XU‖|
where the shortest length is ‖|F(B) − F(A)‖|.
Proof. Suppose γ attains the shortest length. Since

LF(γ̇ ; γ ) = ‖|(F[1](di(t), dj(t))) ◦ U∗
t γ̇ (t)Ut‖| =

∥∥∥∥∥
∣∣∣∣∣dF(γ (t))

dt

∥∥∥∥∥
∣∣∣∣∣

for a parametrized diagonalization U∗
t γ (t)Ut = diag(dj(t)), the length �(γ ) satisfies

‖|F(B) − F(A)‖| =
∫ 1

0
LF(γ̇ ; γ )dt ≥ q

∥∥∥∥∥
∣∣∣∣∣
∫ 1

0

dF(γ (t))

dt
dt

∥∥∥∥∥
∣∣∣∣∣ = ‖|F(B) − F(A)‖|.

For H(t) = F(γ (t)), it must satisfy∫ 1

0
‖|H′(t)‖|dt =

∥∥∥∥
∣∣∣∣
∫ 1

0
H′(t)dt

∥∥∥∥
∣∣∣∣ = ‖|F(B) − F(A)‖|.

Here we use the broken line approximation to obtain the length of H(t):∫ 1

0
‖|H′(t)‖|dt = lim|Δ|→0

∑
tn∈Δ

‖|H(tn+1) − H(tn)‖|.

Take the following monotone increasing sequence converging to
∫ 1
0 ‖H′(t)‖dt:

2n∑
k=1

∥∥∥∥
∣∣∣∣H
(

k

2n

)
− H

(
k − 1

2n

)∥∥∥∥
∣∣∣∣ ↑

∫ 1

0
‖|H′(t)‖|dt.
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Then all the triangle inequalities∥∥∥∥
∣∣∣∣H
(

k

2n

)
− H

(
k − 1

2n

)∥∥∥∥
∣∣∣∣

�
∥∥∥∥
∣∣∣∣H
(

2k

2n+1

)
− H

(
2k − 1

2n+1

)∥∥∥∥
∣∣∣∣+

∥∥∥∥∥
∣∣∣∣∣H
(
2k − 1

2n+1

)
− H

(
2(k − 1)

2n+1

)∥∥∥∥∥
∣∣∣∣∣

are equal, so that there exists s 2k−1

2n+1
> 0 with

H

(
2k

2n+1

)
− H

(
2k − 1

2n+1

)
= s 2k−1

2n+1

(
H

(
2k − 1

2n+1

)
− H

(
2(k − 1)

2n+1

))
,

that is, H
(
2k−1

2n+1

)
at each binary fraction 2k−1

2n+1 in [0,1] is the convex combination for H
(
k−1
2n

)
and

H
(

k
2n

)
;

H

(
2k − 1

2n+1

)
=

s 2k−1

2n+1
H
(
k−1
2n

)
+ H

(
k
2n

)
s 2k−1

2n+1
+ 1

holds for all n and k = 1, . . . , 2n. Thus, all the constants s 2k−1

2n+1
are defined from the terminal points

H(0) = F(A) and H(1) = F(B) with s0 = 0 and s1 = 1. Therefore we can define a function w on the

binary fractions in [0,1] inductively with the relation

H

(
2k − 1

2n+1

)
=
(
1 − w

(
2k − 1

2n+1

))
F(A) + w

(
2k − 1

2n+1

)
F(B).

In fact, paying attention to the coefficient of F(B), we have the recurrence equation

w

(
2k − 1

2n

)
=

s 2k−1
2n

w
(

k−1

2n−1

)
+ w

(
k

2n−1

)
s 2k−1

2n
+ 1

.

By the initial conditions w(0) = 0 and w(1) = 1, the function w is monotone increasing on the

above fractions. The smoothness of γ implies thatw is smoothly extended to a function on [0,1] which

is monotone increasing and satisfies

F(γ (t)) = H(t) = (1 − w(t))F(A) + w(t)F(B).

Thus

γ (t) = F−1((1 − w(t))F(A) + w(t)F(B)) = AmF,w(t)B,

that is, γ can be identified with AmF,tB. �

Example 2. Similarly to the Hiai–Petz geometry shown in [13], each Ky Fan k-norm gives another path

attaining the shortest length. We may assume that F(x) is a non-affine fundamental function since

we have already shown the case F(x) = xα in [13]. Then there exists an interval (a, b) with b > a > 0

such that

F ′′(1 + ty)ty + F ′(1 + ty) > 0

holds for all y ∈ (a, b). This condition implies F ′(1 + t(x − 1))(x − 1) is monotone increasing for x ∈
(a + 1, b + 1). Take monotone decreasing numbers bj ∈ (a + 1, b + 1) and put the diagonal matrix

B = diag(bj) > 1. Recall that the Ky Fan k-norm of f (B) for a increasing function f is

‖f (B)‖(k) =
k∑

j=1

f (bj).
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Thenwe can see thatα(t) = (1 − t)I + tB = I + t(B − I)has the shortest length: since α̇(t) = B − I,

LF,‖ ‖(k)
(α̇; α)=‖F ′(α(t)) ◦ (B − I)‖(k)

=‖diag(F ′(1 + t(bj − 1))(bj − 1))‖(k)

=∑k

j=1
F ′(1 + t(bj − 1))(bj − 1) =

k∑
j=1

(F(1 + t(bj − 1)))′,

so that,

�‖ ‖(k)
(α)=

∫ 1

0

k∑
j=1

(F(1 + t(b − 1)))′dt =
k∑

j=1

[
F(1 + t(bj − 1))

]1
0

=∑k

j=1
F(bj) = ‖F(B)‖(k) = ‖F(B) − F(I)‖(k).

Also, in the QGM geometry, the geodesic δF(t) = F−1(F(A)#t F(B)) is the shortest if the norm is

strictly convex:

Theorem 6.2. Let F be an increasing smooth nonnegative function on (0,∞) with F(1) = 1 and F ′ > 0.

If a unitarily invariant norm is strictly convex, the geodesic

δF(t) = A#F,t B = F−1(F(A)#t F(B))

is the unique shortest path for the metric LF,QGM(X; A) = L[F] defined by

L[F](X; A) =
∥∥∥∥
∣∣∣∣F(A)− 1

2 U
[
(F[1](di, dj)) ◦ U∗XU

]
U∗F(A)−

1
2

∥∥∥∥
∣∣∣∣ ,

where the shortest length is∥∥∥∥
∣∣∣∣log(F(A)− 1

2 F(B)F(A)−
1
2 )

∥∥∥∥
∣∣∣∣ .

To show this theorem, we use Dyson’s expansion in [4] for H(t) = log F(γ (t));

(F(γ (t)))′ = d

dt
eH(t) =

∫ 1

0
euH(t)H′(t)e(1−u)H(t)du.

Proof. The Hiai–Kosaki logarithmic–geometric mean inequality in [16] implies

L[F](γ̇ ; γ )=
∥∥∥∥
∣∣∣∣F(γ )−

1
2 (F(γ ))′F(γ )−

1
2

∥∥∥∥
∣∣∣∣

=
∥∥∥∥
∣∣∣∣e− H(t)

2

(∫ 1

0
euH(t)H′(t)e(1−u)H(t)du

)
e−

H(t)
2

∥∥∥∥
∣∣∣∣

=
∥∥∥∥
∣∣∣∣
∫ 1

0
euH(t)e−

H(t)
2 H′(t)e−

H(t)
2 e(1−u)H(t)du

∥∥∥∥
∣∣∣∣

≥q

∥∥∥∥
∣∣∣∣e H(t)

2 e−
H(t)
2 H′(t)e−

H(t)
2 e

H(t)
2

∥∥∥∥
∣∣∣∣ = ‖|H′(t)‖|.

For each path γ from A to B, consider δ(t) ≡ γF(A)−1/2 is a path from I to F−1(F(A)− 1
2 F(B)F(A)− 1

2 ) and

H(t) = log F(δ(t)). In this case,

H(0) = O and H(1) = log F(A)−
1
2 F(B)F(A)−

1
2 .
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Then the length �(δ) is estimated in the below:

�(δ)≡
∫ 1

0
L[F](δ̇; δ)dt ≥ q

∫ 1

0
‖|H′(t)‖|dt ≥ q

∥∥∥∥
∣∣∣∣
∫ 1

0
H′(t)dt

∥∥∥∥
∣∣∣∣

=‖|H(1) − H(0)‖| =
∥∥∥∥
∣∣∣∣log(F(A)− 1

2 F(B)F(A)−
1
2 )

∥∥∥∥
∣∣∣∣ ,

so that, the geodesic δF attains the shortest length by Lemma 5.3.

Now suppose a path γ from A to B attains the shortest length. Then it must satisfy

∫ 1

0
‖|H′(t)‖|dt =

∥∥∥∥
∣∣∣∣
∫ 1

0
H′(t)dt

∥∥∥∥
∣∣∣∣ =

∥∥∥∥
∣∣∣∣log F(A)−

1
2 F(B)F(A)−

1
2

∥∥∥∥
∣∣∣∣ .

Therefore, similarly to the preceding proof, we have

H(t) = (1 − w(t))H(0) + w(t)H(1) = w(t) log F(A)−
1
2 F(B)F(A)−

1
2 ,

that is,

δ(t) = F−1

((
F(A)−

1
2 F(B)F(A)−

1
2

)w(t)
)

and hence γ (t) equals A#α,t B as paths. �

We also give another path with the shortest length for the Ky Fan k-norm:

Example 3. The path β(t) = F−1((1 − t)F(I) + tF(B)) attains the shortest length for the matrix B in

the preceding example. In fact,

L[F],k(β̇; β)=‖F(β)−1/2(F(β))′F(β)−1/2‖(k)

=‖(F(B) − F(I))((1 − t)F(1) + tF(B))−1‖(k).

Putting

G(x) = F(x) − F(1)

(1 − t)F(1) + tF(x)
,

we have

G′(x) = F(1)F ′(x)
((1 − t)F(1) + tF(x))2

> 0

and hence G is monotone increasing. Therefore L[F],k(β̇; β) = ∑k
j=1 G(bj) and hence

�(β)=
∫ 1

0

k∑
j=1

G(bj)dt =
k∑

j=1

∫ 1

0

F(bj) − F(1)

(1 − t)F(1) + tF(bj)
dt

=∑k

j=1

[
log((1 − t)F(1) + tF(bj))

]1
0

=
k∑

j=1

(log F(bj) − log F(1))

=‖ log F(B) − log F(I)‖(k) =
∥∥∥∥ log F(I)−

1
2 F(B)F(I)−

1
2

∥∥∥∥
(k)

,

so that β is one of the shortest paths.
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