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1. Introduction

Since public recognition of the acquired immunodeficiency syndrome (AIDS) epidemic in 1981, there are nearly 70 million
people in worldwide infected by HIV/AIDS. Now, there are approximately 5700 people everyday infected this epidemic,
which is equivalent to a new infections occur every 16 seconds. Hence the HIV/AIDS pandemic is the greatest public health
disaster of modern times. In addition, the dynamics transmission of HIV is quite complex. For instance, the incubation
period after infection with HIV is known to be extremely long about 10-15 years without treatment. During this period, the
individuals stay healthy and can unknowingly transmit the disease to others. Except that, although the disease is known as
a sexually transmitted disease, it is also passed on from contaminated needles, breast milk, and an infected mother to her
baby at birth (vertical transmission). All these factors have made it more difficult to understand how this epidemic spreads
in the population.

Mathematical models based on the underlying transmission of HIV can help us to understand better how the disease
spreads in the community and can investigate how changes in the various assumptions and parameter values affect the
course of epidemic [20]. There are many researchers to construct mathematical models, which reflect the characteristics of
this epidemic to some extent [1,5-7,18,21,22,26]. Hyman et al. also paid attention on this, see [13-17].

Especially, Hyman et al. [15] proposed a differential infectivity (DI) model that accounted for differences in infectious-
ness between individuals during the chronic stages, and the correlation between viral loads and rates of developing AIDS.
They assumed that the susceptible population was homogeneous and neglected variations in susceptibility, risk behavior,
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and many other factors associated with the dynamics of HIV spread. In addition the population they studied was a small,
highrisk subset of a larger population. They divided the population as susceptible individuals S, the HIV infection popu-
lation I, which was subdivided into n subgroups, Iy, Iy, ..., I, and the group of AIDS patients A. They gave out the DI
model:

ds 0 .
< =HST—uS =3 BiljS,
j=1
dly &
o P BiliS — (u+ v, k=1,2,....n, (1.1)
j=1
dA &
o = 2 M= 04
k=1

Here, they assumed the rate of infection, depended upon the transmission probability per partner B of individuals in sub-
group k, the proportion of individuals in the subgroup Ix/N (N=S+1 and I =Y }_; I¢), and the number of contacts of an
individual per unit of time, r(N), which was supposed r(N) = N. The other parameters in system (1.1) were summarized as
follows. S® presents a constant steady state of the susceptible population S, when no virus is in the population. y is the
rate of inflow and outflow, which maintains the equilibrium S°. py is the probability of an individual enters subgroup k,
when he is infected, where Y ;_; px = 1. y is the rate of leaving the high-risk population because of behavior changes that
are induced by either HIV-related illnesses or a positive HIV test. Last, § is the die rate of A which satisfies § > .

Since the dynamics of group A has no effects on the transmission dynamics, they omitted the last equation of (1.1)
in their analysis. Obviously, system (1.1) has only two kinds of equilibria: the infection-free equilibrium Eq = (§°, I =0,
I;=0,...,I,=0) and the endemic equilibrium E* = (S*,If,I,...,I};). Hyman et al. [15] and Ma et al. [23] showed if
Ro < 1, the infection-free equilibrium is globally asymptotically stable in the region G :={(S,[i)I0S N=S+Y }_; Ik < S0y,
while if Rg > 1, the disease-free equilibrium is unstable, and the endemic equilibrium E* is globally asymptotically stable
in region G, where R =S°Y }_; l’f‘f)fk.

In fact, epidemic models are inevitably affected by environmental white noise which is an important component in re-
alism, because it can provide an additional degree of realism in compared to their deterministic counterparts. Therefore,
many stochastic models for the epidemic populations have been developed. In addition, both from a biological and from a
mathematical perspective, there are different possible approaches to include random effects in the model. Here, we mainly
mention four approaches. The first one is through time Markov chain model to consider environment noise in HIV epidemic
[27-30]. The second is with parameters perturbation, such as [10,11]. Imhof and Walcher in [19] introduced random fluc-
tuations in the deterministic chemostat model, following the way of [3], in which they considered the environmental noise
was proportional to the variables. This is the third one. The last important issue to model stochastic epidemic system is
to robust the positive equilibria of deterministic models. In this situation, it is mainly to investigate whether the stochastic
system preserves the asymptotic stability properties of the positive equilibria of deterministic models, see [4,8,9].

In this paper, taking into account the effect of randomly fluctuating environment in system (1.1), we incorporate white
noise with the last two approaches, respectively. For the one issue, in detail we show that a reasonable stochastic analogue
of system (1.1) is given by

n
ds = (;,LSO — S — Zﬂﬂ,&) dt + 01SdB1 (t),
j=1

n
dl = |:Pk Z,lejs — (U + )/1<)11<:| dt + o1l dBr (1), k=1,2,...,n, (1.2)
=1

n
dA = (Z vilj — SA) dt + 0n42AdB (1),

j=1
where B1(t), B2(t), ..., Bp42(t) are independent Brownian motions, and o1, 02, ..., op4 are their intensities.
The other one, we assume Rg > 1, then system (1.1) exists the positive equilibria E* = (§*,I7, 15, ..., I}, A*). We intro-

duce stochastic perturbations of the white noises are directly proportional to distances S(t), Ii(t), A(t) from values of S*,

I, A*, respectively. In detail, that is,



164 D. Jiang et al. / J. Math. Anal. Appl. 372 (2010) 162-180

n
ds = (Mso — S — Zﬁﬂjs) dt + o1 (S — S*)dB1(0),
=1
n
dly = |:Pk Z,lejs —(n+ Vk)lk:| dt + o1 (I — If) dBy1 (), k=1,2,....n, (1.3)
=1

n
dA = (Z yilj — 8A> dt 4 ony2(A — A*) dBnya (1),
j=1

where By (t), k=1,2,...,n+ 2, are also independent standard Brownian motions and o} >0, k=1, 2,...,n + 2, represent
the intensities of B(t), k=1, 2,...,n+ 2, respectively.

As the deterministic system, we also omit the last equation of (1.2) and (1.3) in our analysis.

The paper is organized as follows. In Section 2, we mainly study system (1.2). First, we show there is a unique nonnega-
tive solution of system (1.2) for any nonnegative initial value. Next, we investigate the asymptotic properties. We conclude,
although the solution of system (1.2) does not converge to Eg or E*, under some conditions, there is a stability result like
that

t
1imsupl/15||x(t)—150||2
t—00 tO

or

t
limsupl/E”X(t)—E*H2
t—o00 tO

is small, provided the diffusion coefficients are sufficiently small, where X(t) denotes the solution of system (1.2), and
E|IX(t) — X*||2 = E[Zﬁzl(xk(t) — x;’;)2]. In Section 3, we discuss system (1.3). When Ry > 1, E* is also the endemic equilib-
rium of system (1.3). We explore the solution of system (1.3) is stochastically asymptotically stable by Lyapunov’s function.

Throughout this paper, unless otherwise specified, let (£2, {#};>0, P) be a complete probability space with a filtration
{Ft}r>0 satisfying the usual conditions (i.e. it is right continuous and % contains all P-null sets). Denote

R} ={xeR" x; >0forall 1 <i<n},
R} ={xeR" x; >0forall 1 <i<n},

Snhi={xeR% |x| <hl}.

1

In general, consider d-dimensional stochastic differential equation [24]

dx(t) = f(x(t),t)dt + g(x(t),t)dB(t) ont > tg (14)

with initial value x(tg) = xo € RY. B(t) denotes d-dimensional standard Brownian motions defined on the above probability
space. Define the differential operator L associated with Eq. (1.4) by

D 1 2
L=— ix,0)— + - Tx,t)gx, t)] ;=
8t+i§fl( )axi+2i;[g< 8005

If L acts on a function V € C>1(S, x Ry; R4), then

LV(x,t) = Vi(x, £) + Vi(x,0) f(x, ) + %trace[gT(x, ) Vi (x, DX, )],

where V; =2/ v, = (%, e %) and V= (%)dxd. By Itd's formula, if x(t) € Sp, then
dV (x(t), t) = LV (x(t), t) dt + Vx(x(t), t) g (x(t), t) dB(t).
2. The dynamics of system (1.2)

In this section, we discuss system (1.2). First, we show there is a unique nonnegative solution no matter how large the
intensities of noises are. In the next two parts, we mainly study the long time behavior of the solution.
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2.1. Existence and uniqueness of the nonnegative solution

To investigate the dynamical behavior, the first concern thing is whether the solution is global existence. Moreover, for
a model of epidemic population dynamics, whether the value is nonnegative is also considered. Hence in this section we
first discuss the solution of system (1.2) is global and nonnegative. In order for a stochastic differential equation to have
a unique global (i.e. no explosion in a finite time) solution for any given initial value, the coefficients of the equation are
generally required to satisfy the linear growth condition and local Lipschitz condition (cf. Arnold [2], Mao [24]). However,
the coefficients of system (1.2) do not satisfy the linear growth condition (for the incidence is bilinear), though they are
locally Lipschitz continuous, so the solution of system (1.2) may explode at a finite time (cf. Arnold [2], Mao [24]). In this
section, using Lyapunov analysis method (mentioned in Mao [25]), we show the solution of system (1.2) is positive and
global.

For convenience, we change the variables: Qj = %, k=1,2,...,n, then (1.2) can be written as

n
dsS = (/,LSO N ZﬂjijjS> dt + 01SdB1(¢),
= 1)

n
dQy = [ZﬂijQJS - (U«+Vk)Qk:| dt + 0y41 QrdBryq(t), k=1,2,...,n.
=1

Hence we only need to show the solution of system (2.1) is positive and global existence. Besides, if that, from the last
equation of system (1.2), we easily get

02 L p o2
A(t) = e~ 0+ n2+2 )t+0n42Bni2(t) |:A(O) + / Z Vi Ij (r)e(8+“7+2)rfan+28n+2(r) dri| i
j=1

which is also positive and global. This also verifies we can omit to analyze the last equation of (1.2).

Theorem 2.1. There is a unique solution (S(t), Q1(t), Qa(t), ..., Qu(t)) of system (2.1) on t > 0 for any initial value (5(0), Q1(0),
Q2(0), ..., Qn(0)) € R, and the solution will remain in R with probability 1, namely (S(t), Q1(t), Q2(0), ..., Qn(t)) € R}
forallt > 0 almost surely.

Proof. Since the coefficients of the equation are locally Lipschitz continuous for any given initial value (S(0), Q1(0), Q2(0),
..., Qn(0)) € R’f], there is a unique local solution (S(t), Q1(t), Q2(t),..., Qn(t)) on t € [0, 7o), where 7, is the explosion
time (see Arnold [2]). To show this solution is global, we need to show that 7, = co a.s. Let mg > 0 be sufficiently large so
that S(0), Qx(0), k=1,2,...,n, all lie within the interval [1/mg, mp]. For each integer m > mg, define the stopping time

T = inf{t € [0, T): min{S(t), Q1 (t), Q2(1), ..., Qu(®)} < 1/mor max{S(t), Q1(t), Q2(t), ..., Qu(t)} > m},

where throughout this paper, we set infJ = co (as usual ¥ denotes the empty set). Clearly, 7, is increasing as m — oo. Set
Too = limp_s o0 Ty, Whence 7, < T, a.s. If we can show that 7., =00 a.s., then 7. =00 and (S(t), Q1(t), Q2(t),..., Qn(t)) €
R"++1 a.s. for all t > 0. In other words, to complete the proof all we need to show is that To, = 0o a.s. For if this statement
is false, then there is a pair of constants T > 0 and € € (0, 1) such that

Pl{too < T} > €.

Hence there is an integer my > mg such that

P{tm <T}>e€e forallm>m;. (2.2)
Define a C2-function V : R — R, by

n

S
V(S(), Q1(t), Q2(t), ..., Qu(t)) = Zak[(s —c—clog ;) +(Qr—1~—log Qk)],

k=1

where ai, k=1,2,...,n,c, are n + 1 positive constants to be determined later. The nonnegativity of this function can bee
seen from u — 1 —logu > 0, Yu > 0. Using Itd’s formula, we get

= e (1= )as+ S s+ (1- ) dawr —— @aw?
v _;ak[<1 S>d5+252(d5) +(1 Qk)ko-i—zQ’?(ko) ]

. 1
=LV dt+k§;ak|:(l — %)O’]SdB](f) + (] — ) >O’k+1 deBk+1(t)i|,

k
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where

2 2
Lv = Za"{< )(MSO_MS ZﬂJP1Q1)+T+< )|:Z/3}p]Q] (M+Vk)Qk:|+%}

o o
_Zak[MSO_MS———i—C Zﬂ]p]—s—i-(u—i—yk)—i- +%]
k

+Zak|:CZ/3jijj— (ﬂ+yk)Qk:|'

k=1 j=1
Note that
n n
Zak[CZﬂijQj_(ﬂ+Vk)Qk:| Z ZakCﬁJPJQJ Zak('““"'yk)Qk
k=1 j=1 k=1 j=1
= Z ZajcﬁkPka - Zak(,u + Vi) Qk
k=1 j=1
= Z[Zajcﬁkpk —ap(pu+ Vk):| Qs
k=1L j=1
choosing a; = l’f’jrp}’jk, k=1,2,...,n,and c= Zj = , then

Zak[CZﬂijQj —(u+ Vk)Qk:| =0,

k=1 j=1

which implies

n BrDi cuSO Qj ,2 1
K 0 k+
= E —— | uS"—uS — +cu— E S+(/L+’}//)+—+
M ]k|: S i= ]ﬂ]p] Qi g 2 i|

Z B Pk |:M50+CM+(M+VR)+ el +ﬂi| =K.

* I+ Vi 2
Therefore,

TmAT
V(S1), Q1(1), Q2(r), ..., Qu(1))

0
TmAT AT :

< Kd S(r)dB 1 Qr(r)dBy

/ r+ / I;a;{( S())Jl ) 1(r)+< Q()>0,+1Q;(r) ,+1(r)]

0 0

Taking expectation, yields

E[V(S@m AT), Qi(tm AT), Q2(tm AT), ..., Qu(tm A T))]

TmAT

V(5(0), Q1(0), Q2(0), ..., Qn(0)) + E / Kdr <V (5(0),Q1(0), Q2(0),..., Qn(0)) + KT. (2.3)
0

Set 2m = {tm < T} for m > my and by (2.2), P(£2;) > €. Note that for every w € 2, there is at least one of S(tj, w),
Q1(tm, ), Q2(Tm, W), ..., Qu(Ttm, ®) equals either m or 1/m. If S(ty, w) =m or 1/m, then

V(S@m AT), Qi(tm AT), Q2(Tm AT), ..., Qu(tm A T))

n
1 1
> — — _ = — e = | — — — _ = — _
/kE_lak< c—clog — ) Eak< c clog ) [ 1-—log— } [cm 1 logcm],
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while if for some 1 <kg <n, Qg,(Tm, @) =m or 1/m, then
1 1
V(S@m AT, Qi@ AT), Qo AT, s Qu(Tm AT)) > [agy (m =1 —logm)| A |ag, | — —1—log — | |
Consequently,
V(S@mAT), Qi(tm AT), Q2(tm AT), ..., Qu(tm A T))
m m 1 1 1 1
> [— —1- log—] A [— -1 —log—] A [ag,(m =1 —logm)] A [ako(— -1- log—)].
c c cm cm m m
It then follows from (2.2) and (2.3) that

V(5(0), Q1(0), Q2(0), ..., Qn(0)) + KT
> E[10,)V (S@mAT), QT AT), Q2(Tn AT), ..., Qu(tim A T))]

>emllom/\11101/\[a(mllom)]/\alllo1
= c gC cm ng ko g kom gm s

where 1g,,(w) is the indicator function of £2,. Letting m — oo leads to the contradiction oo > V(5(0), Q1(0), Q2(0), ...,
Q,(0)) + KT = 00. So we must therefore have 7, =00 a.s. O

In reality, the initial value S(0), Qx(0), k=1,2,...,n, can be zero. It is both interesting and practically important to
consider what happens when this occurs, i.e. (5(0), Q1(0), Q2(0),..., Q(0)) € R'J'r“.

Theorem 2.2. For any initial value (S(0), Q1(0), Q2(0), ..., Qn(0)) € R™F1, the solution of system (2.1) will remain in R""" with
probability 1, namely (S(t), Q1 (t), Q2(t), ..., Qn(t)) € R for all t > 0 almost surely.

Proof. Clearly,

t
2 2
S(t) = e+ PI-Tha féﬂjquj<u)du—0131<t>[so+M50/ew+"71)u+2?_1 I3 Bipi Q) dv+o1Brw) du}
0

then S(t) > 0 no matter S(0) > 0 or S(0) = 0. Next we investigate Qk(t), k=1,2,...,n,

2
0,
Qu(t) = e~ %t K1)t 4 01 Brep1 (O+FBipi fy S du

t 2
X [QkﬁZﬁjm / Q,-(u)s(u)ewww#)u—okﬂBk+1<u>—ﬂkpk/;)”S<r>drdu}_
J#k 0

Obviously, Qg(t) >0 when Qx(0) >0,k=1,2,...,n. O

2.2. Asymptotic behavior around the disease-free equilibrium of the deterministic model

Obviously, Eg = (5°,0,...,0) is the solution of system (1.1), which is called the disease-free equilibrium. If Ry < 1,
then Eq is globally asymptotically stable, which means the disease will die out after some period of time. Therefore, it is
interesting to study the disease-free equilibrium for controlling infectious disease. But, there is no disease-free equilibrium
in system (1.2). It is natural to ask how we can consider the disease will be extinct. In this section we mainly through
estimating the oscillation around Eg to reflect whether the disease will die out.

Theorem 2.3. Let (S(t), I1(t), I2(t), ..., I (t)) be the solution of system (1.2) with initial value (S(0), I1(0), I2(0), ..., [,(0)) € R1H~

N 2
IfRO:SOZ?:1 fﬂrp}jj <l pu>oland p+y > U"Z—“foreachk:l,Z,.‘.,n, then

n Bk Ty
2k=1 Giryom KV~ 75

Zn Bipj
j=1 204+yj

l,%(r)] dr < o2(s°)’. (2.4)

t—00

t
limsup %E/[(M —ad) (s - 50)2 +
0
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Proof. To prove (2.4), we only need to show the solution of system (2.1) has

n BiPk k+1
Zk:] 20+ Yk (H’ + Vie —
Z /31171
j=1 2u+Yj

First change the variables u =S — S°, v, = Qy, k=1,2,...,n, then

Q,f(r)] dr <o2(s%)’.

t—o00

t
limsup — E/[ 1w —o?)(sr) —s°)° +
0

n n
du= (—/Lu - Z,ijjvju - Z,ijjSOV]) dt + o1 (Ll + 50) dB1(t),
=1 =1
. 0 (2.5)
dvi = [Zﬂmﬂ’ju + Zﬂ,-pjs"vj —(u+ Vk)Vk:| dt + o1V dBr1(t), k=1,2,...,n.
=1 =1

Define C? function V : R — R, by

V(u,vi,va,...,vp) = Zak(u +vi? + Zbkvkv

k=1

where ay, by, k=1,2,...,n, are positive constants. Then V is positive definite, and along the trajectories of system (2.5) we
have

n
v = [ > a2+ vio[—pu — (i + yovie] + o2 (u+ 5°)° + 0, vE]
k=1

+Zbk|:zl3jpjvju +> BipiSOvi— (u+ Vk)Vk:| } dt

k=1 Lj=1 j=1

n
+ Zak[Zum (u+S°) dB1(t) + 2vkOk11 Vi dByy1] + Zkak+1vk dBjy1(t)
k=1 k=1

n n
=LVdt+2) aor(u+vi) (u+ SO dBy(t) + ) et (20 (u + vio) + bie) viedBig1 (1),

k=1 k=1
where
‘ 2
- Zak[(ZM —o)u? + (21 + 2% — 0 )i — 207 5% — 07 (S%)7]
k=1
n n n n n n
-2 Zak(zﬂ + Yiuvg + Z Zbkﬂjpjuvj + Z Zbkﬂjpjsovj - Zbk(ﬂ + Vi) Vk. (2.6)
k=1 k=1 j=1 k=1 j=1 k=1
Note that
Z Zbkﬁm;s vj— Zbk(ﬂ + Vv = Z ijﬂkpks Vi — Zbk(ﬂ + Vi) vk
k=1 j=1 k=1 j=1
=Z|:ij/3kpk50 _bk(M+Vk):|Vka (2.7)
k=1L j=1
then we choose by = Bebie o — 1 2,...,n, such that

Aty T

n n
Bjpj
> " biBeprS® — b + vi) = Z<# S0 — 1)ﬁkpk = (Ro — 1)BPr.
= S\t

which together with Ry < 1 implies (2.7) that

n n n
DD biBipiSOvi— D b+ v vk <O. (2.8)

k=1 j=1 k=1
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In the meantime, we see

n

n n
D D bkBipiuv =2 ) ac@u+ vouv

k=1 j=1 k=1
n n n n n
= Z ijﬁkpkuvk -2 Zak(2,u + Viduvg = Z[ijﬁkpk — 20,2 + Vk):|UVk
k=1 j=1 k=1 k=1L j=1
n Ro
= Z[Z p 7 )f/ Bibi — 2021 + yk)}uvk = Z[Fﬁkpk — 20,2 + yk)]uvk, (2.9)
k=1
choosing a; = m;ﬁ% > 0 such that for each k, & 58 3 Bkpk — 2a, (2 + i) =0, and so
n Ro
Z[@ﬁkpk — 22 + VI<)]UVk =0. (2.10)
k=1

Taking (2.8)-(2.10) together, (2.6) can be written as

n
B Ropkpr 2,2 0y — 52(5%)2
LV < §—2(2M+yk)50 [2u — o)u? + 2u + 2y — 04, )vE — 2075% — 02 (59)7].

Besides, 207S% < o2u? 4+ 02(S%)2, then

RoBkpk |: N2 ( ) :| - ROﬁkpk 5250
=y 22KV u—od)ud+ [+ +
,;(2u+yk)50 (1 =o1) e Loy’

and

" RoBip "\ Ropkp
dvgi 270 kZk [(u—af)uz—i—(u—i—yk k“) ]+ RoPkpr fO]dt
k=1

= Qur+ns° 21+ Vi

n
+2 Zakm W+ vi) (u+ S°)dB1 () + ) 01 (20 (U + Vi) + bie) vie By 1 (0). (211)
k=1 k=1

Integrating both sides of (2.11) from 0 to t, and taking expectation, yields
t

E[Vi]- V() = E|:/LV(r)dri|

0

RoBkpk 02 RoBkPk 5.0
Z/(zwms(’[(“ Ao+ (srn- )V"(r)}dHZ 2utn "

k=1 k

Hence

RoBkpk 2\,.2 k2+1 RoBkpr o2
li E — dr < s0
Pt Z/ (2u+yk>50[(“ ot (= =57 i fdr Zz T

which can be simplified to

2
Bk Pk

t
ket B (4 e — A1)
limsup — E/|: p— o) u(r) + K lz’“’: ] 2 v,%(r)} drgalz(SO)z.
t=oo 5 2 j=1 2u+y;j

Consequently,

2
Skt R (e i — B
2u+yi) Pk .l 2 lk(r)z] drgof(so)z. O
Zn Bipj
J=12p+y;

t—00

t
limsup — E/[M 01 (Sr) - )2+
0
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Remark 2.1. From Theorem 2.3, we can know, under some conditions, the solution of system (1.2) will oscillate around the
disease-free equilibrium, and the intensity of fluctuation is only relation to the intensity of the white noise B (t), but do not
relation to the intensities of the other white noises. In a biological interpretation, if the intensity of stochastic perturbations
on S is small, the solution of system (1.2) will be close to the disease-free equilibrium of system (1.1) most of the time.

Besides, if o1 =0, then Eg is also the disease-free equilibrium of system (1.2). From the proof of Theorem 2.3, we can
get

n
B Roprkpr 2,2 0 2 (602
LV < k; RS [(21 — 0f)u? + (2p +2y1 — 02,1 )vi — 2025%u — 02(5°)7]

1. RofkPk k
_ K u + +1 >v2],
Z 2t + 1050 [“ <“ Ty )N

2
which is negative-definite, if @ + y > ”"2—“ k=1,2,...,n. Therefore the solution of system (1.2) is stochastically asymptot-
ically stable in the large (see Mao [24]).

2.3. Asymptotic behavior around the endemic equilibrium of the deterministic model

When studying epidemic dynamical system, we are interested in two problems. One is when the disease will die out,
which has been shown in the above part, another is when the disease will prevail and persist in a population. In the
deterministic models, the second problem is solved by showing that the endemic equilibrium to corresponding model is
a global attractor or is globally asymptotic stable. But, there is none of endemic equilibrium in system (1.2). Since system
(1.2) is the perturbation system of system (1.1) which has an endemic equilibrium E*, it seems reasonable to consider the
disease will be prevail if the solution of system (1.2) is going around E* at the most time. We get following results.

Theorem 2.4. Let (S(t), [1(t), I2(t), ..., In(t)) be the solution of system (1.2) with any initial value (S(0), I1(0), 12(0), ..., In(0)) €
R IfRo > 1, then

I*
(S(r) — §%)2 Dkt Be (5*‘712+ﬁ0k2+1)
limsup — E/ r< ”
t—00 5(r) ZZk 1ﬂk1 (M+Z] 1:3111)

where (S*, 17, I3, ..., I}) is the endemic equilibrium of system (1.1).

Proof. When R > 1, there is the endemic equilibrium E* = (S*,I7, ..., I*). Setting the right-hand sides of system (1.1) to
be zero, we get

Zﬂ,l S*=0, kaﬂ]I S*—(u+y)li=0, k=1,2,....n

which gives

/LSO n n
=p+Y Bili=pn+Y BipjQ} (212)
j=1 j=1
and
sz 1/311*5* Z 1ﬂ]P1Q S*
pA = = (213)
I Q¢
Let S=2, Q= Q*,then system (2.1) can be written as
. S0 R I .
dS = u§—M5—ZﬁjijjQ,-s dt + 015 dB (t),

j=1

L Q7 . .
dQy = |:Z,3113] Q* QS —(u +Vl<)Qk:| dt + og4+1QrdBis1(t), k=1,2,....,n

j=1
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Define
n _ _ Q* _ _
V(S.Q1.Qa. ... Qo) =Zak[<5— 1-log$) + £ (Q — 1 —long)],

k=1
where qi, k=1, 2,...,n, are positive constants to be determined later. Then V is positive definite, and

S0 & ~ 012
Zak < ) Mg—us ZﬁjijijS + 5
a@Q; - o2
+Z%[( - >(Zﬂm] Qk _(IL‘FVk)Qk)-l-%:”df

é 1 1 -
+ Zak[(l - §>015d31(t) + o & ( - €>01<+1 de3k+1(f)]

k

=1V dr+2ak[m(§ —1)dBi(®) + Qk (- 1>dBk+1(r)]
k=1

We compute
S0 s = 012
LV = Zak( )u§—us Z,ijijQjS + =
aQp - o2
+Z o [( )(Zﬂm] Qk —(u+yk)Qk>+%}

k=1
uS° uS°
—;ak[ - —M5—§+M+—+Zﬂ;P1Q Q;
Qi+ 710 = LQi- Qu+w  Qio?
—’<in< Zﬁ;pl ’s+ k = o "25’;“ . (2.14)
Note that
n n n
~ Qi+ 1) ~
Zzakﬁjij;‘Qj—Zakks—Qk
k=1 j=1 k=1

—Zza]ﬁkkaka Z ka(M+Vk) ~<—Z|:Za].3kkak Zakﬂjpj :|Qk,

k=1 j=1
where (2.13) is used in the last equality. Choose ay = ijl akﬁjij]’f. This together

with (2.12) implies (2.14) that

= BkpkQ; such that Y7, a;Bkpr Q)

n 0 2 n * 2
pS c_ HS Q Qu+v) Q9
S R YU e e

2
04

- MY BipiQ;
_Zak[u—i—ZﬂJPJ — uUS — jg l—l—,u—i-?

B Qi Qi+ Qo4
Zﬂ]P]Q Q S+ g + 25%

j=1

. " BipiQF & 9 -
:Zak[—ﬁm+s2—25)+2ﬂjqu;‘—z i J—Zﬂjquj&s
k=1 S j=1 § j=1 Qk

j=1

" Qiu+y  of n Qljgkz—&-]
S* 2 25* ’
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which can be simplified to

LV = Zak[——a—S) +2Zﬂ1pJQ* Z

k= j=1

ﬁ]P]

2
QJ 12 Qr 0%
*
S — |,
Zﬂﬂjf ot

according to (2.13). Besides, by Cauchy inequality,

ZakZ,BJPJ S ZﬂkPkaZﬁJp] *QJS Zﬂkpké Zﬂ]ij Q}
Jj=

k=1

(Z ,kak = )(Z Bk Q) Qk )52 (ZﬁkPka) S,
k=1

then
0 : BipiQ} ¢ vz O U%n
Zak[—g(l—s) 23 gm0 - 3 PP ‘Zﬁiprfs+71+ 25
=1 j=1 j=1
1< 2 (S
=Zak 5(1—5) Zﬂjpf Zak of + 2
= k 1
512 - Q
:_Zak|:u+2131p] :|( ) + = Za (01 +S—Uk2+1>
k
and

( Zak[wZﬁmJ } ‘41 Zak(a] (7,(2+1))dt

Qk k+1

Zak [m (S = 1)dB1(t) + —“—(Qi — 1) dByys (t)]

Integrating both sides of it from 0 to t, and taking expectation, yields

S
E[V(t) V() < Z%(M-i—Zﬁ;P; )/((r) r+ - Zak<01+ k+1>

k=1
Therefore,
- S 2 n 2, % 2

limsuplE S -1 dr < > k=1 (0] + S0, ) _ > ko1 BepkQj (0 + *ng)

t>oo , S() ZZ;::]ak(,U«'FZr}:] ﬁjij;‘) 2Zk:1 ,kaka V“"'Zj:] ,ijij)
i.e.

F(S() — 5% > k=1 Bil; (S*a1+ Uk+1)
llmsup E

r<
e £ S(r) 2 Bl + Y BT

Theorem 2.5. Let (S(¢), [1(t), I2(t), ..., In(t)) be the solution of system (1.2) with any initial value (S(0), I1(0), 12(0), ..., In(0)) €
RV IFRo>1, uw>02and o+ y > 02, k=1,2,....n, then

t

t
+
limsup — Zak[u o?) /S(r) dr—i—“ Vk k+1 /Ik(r) Ik ]
0

t—o00
k 0

n
< Zal<012(5*)2 n Zak Uk-gl (1;)2 + Z %(1;)25*,
= e Py 2pi

k=1

where a; = ‘Z”I‘ﬁf’: Z’}Z] ﬁjl;f, k=1,2,...,n,and (S*,I], 15, ..., I}) is the endemic equilibrium of system (1.1).
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Proof. Define

n
ﬂkl*s* Iy
Vil I, Iy = ) = (T = I = Iflog 1 ).
k

=1 Dk

By Itd’s formula, we get

Bk I*S* IZ
dVq=LVqydt+ Z 1-— I_ Gk+1ll<dBk+1 o),
P Pk k

where

I B0y
Lvy= Zﬁk’ S*<1__>[P’<Zﬂﬂf (M+Vk)1ki|+z "I;’“ (I7)*s*

k=1 k=1
I;: * 1 2k
Z—Ik PkZﬂj’jS_(M+Vk)1k_Pk;ﬂjl_kljs‘f‘(//«‘i‘yk)lk+50k+11k :

Substituting (2.13) into (2.15), gives

LVy = Z lkS* pk2511]5_
n Z 13 *S* n
1Pi
=D _Adis [Zﬂﬂs = Zﬁ;,’<15+2ﬁ1115* ””‘}
k=1

2pk

ka] ]:3] ]

ka,BjI_l 5+ka,3]I S+ - Uk+1’k:|

By Cauchy inequality, we get

ZﬂkaS*Zﬁ] kIJs ZﬂklkS* L ZﬂJ I* o= (Zﬂklks —)(Zﬂk 7:5*,*> ;

n n
S
> ( > 5k1;5*> o= ( > ﬂkﬁf) §*S,
k=1 k=1

Z] 1‘3] *S*

then

2pk

LV, < ZﬁIJkS*[Zﬂ]I]S—
= *G* Sl —I* px Iy Uk+11k
_Zﬂklks Zﬂ]s(lj—lj)-i-Zﬂ]IjS 1—1— LS L N9

k=1 j=1 j=1 k

2pk

Zﬁj115+2ﬂjl S* k+11ki|

Note that

> s Zﬂﬂs*( ¥) -t Zﬁ;] P =SB~ 1) LA ()
j=1 k=1
Z—Zﬂklk Zﬁj(fj—lf)s
j=1

then (2.16) gives
- * ok - % " ﬁ’<01<2+l \2 o
LVy <Zl3k1k5 S Bl 1 Zﬁklk Zﬂ (=15 + 3=, )’s
k=1 j=1 j=1 k=1 <
By I<+1 5*
_Zﬁkzks Zﬂ] j—I¥)(S — 5%) +Z

=1 2pi

173

(2.15)

(2.16)
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n n
=3 S B B (1 - 1) (5 - S +Z,3k2k+1 .
Dk

k=1 j=1 k=1

N
=3 S e ) 57+ 3 P s

k=1 j=1 i—1 <P

Next, define

1 I — IF\?
vz(s,h,lz,...,ln>=ElZ;ak<S—5*+—’<) ,
k=

Pk

where ai, k=1, 2,...,n, are positive constants to be determined later. Then

n
Iy — I
dVy,=LV,dt + E Gk<5—5*+u>|:0’15d31(f)+%Ikd3k+](t)j|,
=1 Pk Pk

where

n
LV, ZZak<5 _S*t 4 >< ,u-H/k ) Zak<‘71 s2 4 k+1 Ik)
k=1 p
LB yk I+ Vi 1¢ 262,
_Zak<5 S* 4+ >( —uS — o <[,(>+§Zak ‘715
k=1
M+
__Zak[
P

Vi 20+ Y
- (z—fk] > a5 =50 1 1)

k=1 k

Besides

n
_Zak(g]SZ ;+11,<):%Zak[012(5—5*+5) +%(1k_1k+1k ] Zak(71 (S—15%

k

+Zak Ik Ik —i—Zakal +Zak Ik
k=1

k=1

which implies from (2.17) that

n + Y — 02
<= Yo (u—ot)(s -5+ Lz"“ak—z:f}

k=1 pk
n 2 +
- Lot (S =) (I — 1) Za’<al Zak Ik
k=1 Pk k=1 k=1

Taking V1 and V; together, define V =V + V3, then

LV =LV1+LV;,

n 2
M+ V=0 .
L
— k

n 2 +
3[R s i)
2/ e\ 2 Uk+1 @2 . ,3I<Uk2+1 2 s
JrZakol (s*) +Zak—p2 )+ oy )°S™
k=1 k=1

k k=1

k+1
Ik
k

)

(2.17)
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Choosing a; = ‘z’fﬁ’;ik P 1851 such that ak2“+y" B Y- 1Bi158* =0,k=1,2,....n, yields

n + — o2
—zak[m —of)(s -+ 2
k=1 Pi

n 2
Bro,
+ Zakal + Zak I,< Z ‘2;:1 (1”:)25*,
k=1

k=1

and so

n

U+ yi—o?
dv<{—Z O ]
k=1 k

n 2
+) a0l (s +Za "“ (z)? Z%(I,f)zs* dt
k=1 k=1 P 2Pk

k=1

n
/SkI;:S*( I,*)
+ — (1-= k411 dByyq(t)
Z Pk Iy ok o

k=1
n
+ Zak(s —S* 4
k=1

Integrating both sides of (2.18) from 0 to t, and taking expectation, gives

*

—1
kK k ) [cn SdBy(t) + G;“ Iy dBjiq (t)i|. (218)
k k

t t
E[V]-vO) < Zak[u—aE)E /(S<r>—5*)2 MR Y f () = 17)? ]
0

0 pk
. 2(cx\2 “ JkZ-H *\2 . IBkUkZ_H N\ 2 %
+ Zal<01 (S ) + ak—z(’k) +Z ) (Ik) STt
k=1 k= Pk k=1 <Pk

Consequently,

t

t
+ Yk — o
lim sup — Zak[ " — o] / S@r) — dr+ LZ’ME/(Ik(T)—]’j)Mr]
0

t—o00
l_l 0

n 2
<> a0 (s +Zak k+l Ik Z%(li)25*~ =
k=1

= 2pk

Remark 2.2. From the results of Theorems 2.3 and 2.4, we can see, if X* is the equilibrium of the undisturbed system (1.1),
but not of system (1.2), then under some conditions,

t

limsup ~ /E[||X(s)—X*H2]ds< 0(0?),

t—o00
0

where X(t) is the solution of system (1.2), [|X(s) — X*[|2 = Y z_; (Xk(s) — X;)? and 62 =} }_; 0>. When the intensities of
white noises are sufficiently small, we consider it as a stability.

3. The dynamics of system (1.3)

In this section we study the dynamics of system (1.3), which is the robustness of the endemic equilibrium E* of the
deterministic system (1.1). Thus we always assume Rp > 1. Compared with system (1.2), system (1.3) does not always have
nonnegative solutions, which is explained at the last of this section. Consequently, we only pay attention to the stability of
solution around E* and do not care whether the solution is positive.

If Ro > 1, then E* =(S*,I7, 13, ..., I};) is the equilibrium of system (1.3). Changing the variables

u=S-S5% vk=I—1I;, k=1,2,...,n,

gives
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n n n
du= (—Mu — Y Bilju—=> "BjS*v;— Zﬂjuv]) dt + o1udB1(t),
j=1 j=1 j=1 (31)

n n
dvi = |:Pk D (Bilju+BiS*vj) — (U + Yiovi + Pk Zﬂjvjui| dt + Ok41Vk dBrga (), k=1,2,....n.
j=1 j=1
It is easy to see that the stability of the endemic equilibrium of system (1.3) is equivalent to the stability of zero solution
of system (3.1). In this section, following the way in [31], we show the zero solution of system (3.1) is stochastically
asymptotically stable in local.

Before proving the main theorem we put forward a lemma in [24].

Assume system (1.4) that

f,t)=0 and g(0,t)=0 forallt> tg.

So system (1.4) has the solution x(t) = 0 corresponding to the initial value x(tp) = 0. This solution is called the trivial
solution or equilibrium position.

Definition 3.1. (i) The trivial solution of system (1.4) is said to be stochastically stable or stable in probability if for every
pair of € € (0, 1) and r > 0, there exists a § =§(¢e, 1, tg) > 0 such that

P{|x(t; to, x0)| <rforallt >to} >1—¢,

whenever |xg| < §. Otherwise, it is said to be stochastically unstable.
(ii) The trivial solution is said to be stochastically asymptotically stable if it is stochastically stable and, moreover, for
every € € (0, 1), there exists a o = (&, to) > 0 such that

P{ lim X(t; to, Xo) = 0} >1—¢,
t—o00
whenever |xg| < &p.

Lemma 3.1. If there exists a positive-definite decrescent function V (x,t) € C>1(S, x [to, 0ol; R4) such that LV (x, t) is negative-
definite, then the trivial solution of system (1.4) is stochastically asymptotically stable.

From the above lemma, we can obtain the stochastically asymptotically stability of equilibrium as follows.

Theorem 3.1. Let (S(t), I1(t), Ix(t), ..., I5(t)) be the positive solution of system (1.3) with initial value (S(0), I1(0), I2(0), ...,

- 2 2
1n(0)) € R’]r“. IfRo>1, u> 671 and (l’fr%’;k) > G"Z“, k=1,2,...,n, then the endemic equilibrium E* is stochastically asymp-
totically stable.

Proof. To show this result, we only need to prove the zero solution of system (3.1) is stochastically asymptotically stable.
Define

1< T QL
V(u,v1,vz,...,vn):EZ%(u—i-a) +§Zb’<vk’ (3.2)
k=1 k=1
where a; >0, by >0, k=1, 2,...,n, are positive constants to be chosen later. Obviously, V is positive-definite and decres-

cent.
For sake of simplicity, divide (3.2) into two functions: V =V + V;, where

1< v\ T,
Vl(U»VIaVZy-u,Vn):EkX_;ak<u+ﬂ>, Vz(vLVz,...,vn)=5k;bkvk-

Using 1td’s formula, we compute

n
dvy =LVidt+ ) a (u + g) [mu dB1(t) + GZ“ VidByy1 (t)],
k k
k=1

n
dVa=LVadt + ) " boks1Vi dBrs (0),
k=1

where
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n n n n
Vi M+ Yk
LV; = Z%(“ " E) [_Mu =D Bilju=) BiS*vi+ Y (Bilju+piS*vj) - Vk}
pa e =1 j=1

Dk

n

1

2

+22aka1u + = Z 20’k+1vk
k=1 k 1

n 2 2
o of 2
_ ak|:—<u——1)u2—<'u+y’<— k+1>v2_ M—i—)/kuvk]
Z 2 2 k
k=1 2 P 2pj Pk

and
n n n ,1 n
LV, = Zbkvk |:pk Z(ﬁﬂ}*u + ﬁjS*Vj) — (W + Y Vi + Pk Zﬂjvju:| + ) Zbkal<2+1 VI%
k=1 j=1 j=1 k=1
n n n n n
= bepiBiliuvic+ Y > bipiBiSTvivi— Y b + Vi) vi
k=1 j=1 k=1 j=1 k=1
1 n n n
+ 3 Zbl<01(2+1 V]% + Z Zbkpkﬂjvkvju-
k=1 k=1 j=1
Obviously,
n n n o n Vi v 2 Vi 2
> Y hntys =3 Yo mmtis i) < 33 Ymanssstin () + ()]
k=1 j=1 k=1 j=1 J k 1 j=1 J

Besides, from (2.13) we know

Zbk(u +YvE = Zb

Yl usjljs

n 2
=Z kkakZlBJI]S (1*) .

k=1 j=1
Combing (3.3) and (3.4), yields
Z Zbkpkﬂjs VkVj— Zbk(ﬂ"'yk)vk
k=1 j=1
1 2 Vi 2 1 n n
<33 Ywnesin](7) - () ] bkpkms*,—*vj 53 2w
k1]1 k k=1j=1 k=1 j=1
_Zzb]p] kS* Vk_—zzbkpkﬂ] l_*V ZZ G (bjp]:Bk bkpkﬂj)vla
k=1 j=1 k=1 j=1 k]j:] k
Choose by = %, k=1,2,...,n, such that
n n n
DD bkpkBiS*vivi— Y k(i + vi)vi =0.
k=1 j=1 k=1
Therefore
n n
LV <Y > bipiBiliuvic+ = Zbl<01<+1vl( + Z Zbkpkﬁjvkvj
k=1 j=1 k=1 j=1

and

n 2 2
o H+Ve 91\ 2 2+ W
LVi+LVy < ay [—(M——1>u2—< - vy — uvy
; k P P/% 2132 k Dk k

—|—Z Zbkpkﬁjljuvk—i— Zbk(’k+1"k —|—Z Zbkpkﬂ]vkv u.

=1 j=1 k=1 j=1
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Choose ay = 2u+yk Z] 1Bil}. k=1,2,....n, such that
n n n
2+ Yy
Zakiwuvk = Z Zbkpl<,3j17uvl<-
k=1 Pi k=1 j=1
Consequently
n 2 2
g “L+ve O
LV1+LV2<ZGI<|:_<H«_7]>L[2_< . k 2k+2]) ] Zbko‘,<+]vk+22b,<pkﬂjvkv u
k=1 Pi Pi k=1 j=1
n 2
o m+ Vi 1
= —Z{W(ﬂ - Tl)uz + |:_ ZVC _ 5( +bk>0'k+1i|vk} +Z Zbkpkﬂjvkvj
k=1 Pi Pi k=1 j=1
2 2
—Ay®[" +o(ly®]).
where

n 2
o 1/1
:(U,V1V25---,Vn) and )":mln{zak<l’l’_;>7M+2y’<_2< +bk)0k+], k:1527...7n}.
k=1 pk pk

Hence LV (y,t) is a negative-definite in a sufficiently small neighborhood of y =0 for ¢t > 0. By Lemma 3.1 we therefore
conclude that under conditions in the theorem, the trivial solution of system (3.1) is stochastically asymptotically stable. O

At the end of this section, we explain system (1.3) does not always have a nonnegative solution. In fact, the solution may
be negative at some time. By Itd’s formula, we can get the expression of S(t),

¢ ¢
S(t) = S(0)e*® 4+ us° / eAO=AG) g5 _ oy 5* / eAO=AG) 4B, (s),
0 0

where A(t) = —(u + )t — Z] 1 Bj fo Ii(s)ds 4 o1B1(t). Clearly, the first two terms are positive, but the last term may be
positive or negative. Moreover the properties of Brownian motion can arose the abstract of the last term very large at some
time, which may lead to S(t) < 0. From the expressions of Iy, k=1,2,...,n,

t

t
I(®) = 1(0)e™® + p . > Bj | S(5)1(5)e™ O~ ds — oy 4 I / eMO=AG 4By 1 (s),
J#k 0 0

2
where Ag(t) = —(1 + Yk + %)t + pPrBr fot S(s)ds + ok+1Bk+1(t), we can see the last term also may make the value of Iy
be negative at some time. Thus, the solution of system (1.3) is not always nonnegative.
Next, we explain it from illustrations. We use Milstein’s higher order method in [12] to find the strong solution of system
(1.3) with given initial value and the values of parameters for k = 2. The corresponding discretization equation is

2 2
o
Xir1 =X+ (MSO — WXy — ZﬂijYj,k) At + 01 (x — S*)V AtE i + Tl(xk — S*)(Atg] — At),
j=1
2 0_2
Yiks1 =V1k + |:p1 Z,Bjxkyj,k —(u+ Vl)Y1,I<i| At + 0y (y1k— I7)VAtE | + 72 (yix—I7)(AtES, — At),
j=1
2 02
Y2k+1=Y2k + |:P2 Z.Bjxk}’j.k —(u+ )/2)3’2,k:| At +03(yax — I3)V Atz + 73 (Yo — 1;)(&532’1{ — At),
j=1
where &1k, &k and &, k=1,2,...,n, are independent Gaussian random variables N(0, 1), and o1, 02,03 are intensi-

ties of white noises. In Fig. 1, we choose the initial value (5(0), I1(0), I2(0)) = (0.2,1,0.8) and the parameters S? =2,
n=03, 1 =02, B =04, y1 =0.1, y, =0.2, p; =04, pp =0.6 such that Ro > 1. In (a)-(d), we give out the so-
lution of system (1.3) with different values of oy, k =1, 2, 3. Specifically, in (a), o1 = 0.7, 02 = 0.2, 03 = 0.2 such that
u>o; 212 (4 v/ + prBr) > ok+1/2 k=1,2; in (b), o1 =1, 02 =0.1, 03 = 0.1 such that u > o} 2 /2 does not satis-
fied; in (c) and (d), o1 =0.1, 02 =2, 03 =0.1 and o1 =0.1, 02 = 0.1, 03 =2 such that (u +y1)/(1+p1B1) > 05 2/2 and
(w4 y2)/A+p2B2) > 032 /2 do not hold, respectively. Obviously, Fig. 1 shows the solution of system (1.3) may have negative
values at some time.



D. Jiang et al. / J. Math. Anal. Appl. 372 (2010) 162-180 179

(a) (b)

S(H)

15

0.5 12(t)

hn SUTT g pemmnan T T ST e TR

0 I 1)
0O 10 20 30 40 50

Fig. 1. The solution of system (1.3) with k = 2. The parameters of (a)-(d) are the same except with different values of oy, k=1, 2, 3.
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