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Abstract

The Bernoulli sieve is the infinite “balls-in-boxes” occupancy scheme with random frequencies Pk =

W1 · · · Wk−1(1 − Wk), where (Wk)k∈N are independent copies of a random variable W taking values in
(0, 1). Assuming that the number of balls equals n, let Ln denote the number of empty boxes within the
occupancy range. In this paper, we investigate convergence in distribution of Ln in the two cases which
remained open after the previous studies. In particular, provided that E| log W | = E| log(1 − W )| = ∞ and
that the law of W assigns comparable masses to the neighborhoods of 0 and 1, it is shown that Ln weakly
converges to a geometric law. This result is derived as a corollary to a more general assertion concerning
the number of zero decrements of nonincreasing Markov chains. In the case that E| log W | < ∞ and
E| log(1−W )| = ∞, we derive several further possible modes of convergence in distribution of Ln . It turns
out that the class of possible limiting laws for Ln , properly normalized and centered, includes normal laws
and spectrally negative stable laws with finite mean. While investigating the second problem, we develop
some general results concerning the weak convergence of renewal shot-noise processes. This allows us to
answer a question asked by Mikosch and Resnick (2006) [18].
c⃝ 2012 Elsevier B.V. All rights reserved.
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1. Introduction

Let (Tk)k∈N0 be a multiplicative random walk defined by

T0 := 1, Tk :=

k
i=1

Wi , k ∈ N,
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where (Wk)k∈N are independent copies of a random variable W taking values in (0, 1). Let
(Uk)k∈N be independent random variables with the uniform [0, 1] law which are independent of
the multiplicative random walk. The Bernoulli sieve is a random occupancy scheme in which
‘balls’ Uk’s are allocated over infinitely many ‘boxes’ (Tk, Tk−1], k ∈ N. The scheme was
introduced in [7]. Further investigations were made in [9–13,16]. Since a particular ball falls
in box (Tk, Tk−1] with probability

Pk := Tk−1 − Tk = W1W2 · · · Wk−1(1 − Wk),

the Bernoulli sieve is also the classical infinite occupancy scheme [8,17] with random frequencies
(Pk)k∈N, where (abstract) balls are allocated over an infinite array of (abstract) boxes 1, 2, . . .
independently conditionally given (Pk) with probability Pj of hitting box j . Alternatively the
Bernoulli sieve can be thought of as a randomized variant of the leader election procedure which
appears if the law of W is degenerate at some x ∈ (0, 1) (this may be especially appropriate for
the reader familiar with the analysis of algorithms).

We will use the following notation for the moments

µ := E| log W | and ν := E| log(1 − W )|

which may be finite or infinite. Assuming that the number of balls equals n denote by Kn the
number of occupied boxes, Mn the index of the last occupied box, and Ln := Mn − Kn the
number of empty boxes within the occupancy range. The present paper is a contribution towards
understanding the weak convergence of Ln . With the account of the results obtained here and in
some previous works on the subject we can now draw an almost complete picture (Remark 1.4
which discusses two cases where the weak convergence of Ln remains unsettled reveals what is
hidden behind the word ‘almost’). Depending on the behavior of the law of W near the endpoints
0 and 1 the number of empty boxes can exhibit quite a wide range of different asymptotics.

Case µ < ∞ and ν < ∞: Ln converges in distribution and in mean to some L with proper and
nondegenerate law (Theorem 2.2(a) in [12] and Theorem 3.3 in [13]). Furthermore, there is also
convergence of all moments (Theorem 20(b) in [19]).

Case µ = ∞ and ν < ∞: Ln converges to zero in probability (Theorem 2.2(a) in [12]).

Case µ < ∞ and ν = ∞: There are several possible modes of the weak convergence of Ln ,
properly normalized and centered (see Theorem 1.2 of the present paper).

Case µ = ∞ and ν = ∞: The asymptotics of Ln is determined by the behavior of the
ratio P{W ≤ x}/P{1 − W ≤ x}, as x ↓ 0. When the law of W assigns much more mass
to the neighborhood of 1 than to that of 0 equivalently the ratio goes to 0, Ln becomes
asymptotically large. In this situation, the weak convergence result for Ln , properly normalized
without centering, was obtained in [16] under a condition of regular variation. If the roles of 0 and
1 are interchanged Ln converges to zero in probability (this follows from Theorem 7.1(i) in [11]
and Markov inequality). When the tails are comparable Ln weakly converges to a geometric
distribution (see Theorem 1.1 of the present paper).

Also it was known that whenever Ln
d
−→ L , where L is a random variable with a proper and

nondegenerate probability law, the law of L is mixed Poisson (Proposition 1.2 in [16]), and that

Ln has the geometric distribution with parameter 1/2 when W
d
= 1−W (Proposition 7.1 in [11]).

Throughout the paper, geom(a) denotes a random variable which has the geometric
distribution (starting at zero) with success probability a, i.e.,
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P{geom(a) = m} = a(1 − a)m, m ∈ N0,

and N (0, 1) denotes a random variable which has the standard normal distribution.
We are ready to state our first result which treats the case of ‘comparable tails’ when

µ = ν = ∞.

Theorem 1.1. Suppose µ = ∞ and

lim
n→∞

EW n

E(1 − W )n
= c ∈ (0,∞). (1)

Then

Ln
d
−→ L

d
= geom((c + 1)−1), n → ∞. (2)

In particular, relation (2) holds whenever the tails are comparable, i.e.,

lim
x↓0

P{1 − W ≤ x}

P{W ≤ x}
= c. (3)

The situation when µ < ∞ and ν = ∞ is covered by Theorem 1.2 which is our second result.

Theorem 1.2. Suppose ν = ∞, and the law of | log W | is non-lattice. Set

bn :=
1
µ


[1,n]

ψ(z)

z
dz,

where ψ(s) := Ee−s(1−W ), s ≥ 0.

(a) If σ 2
= Var (log W ) < ∞ then, with an :=

√
bn , the limiting distribution of Ln−bn

an
is

standard normal.
(b) Assume that σ 2

= ∞ and
[0,x]

y2P{| log W | ∈ dy} ∼ ℓ(x), x → ∞, (4)

for some ℓ slowly varying at ∞. Let c(x) be any positive function satisfying
limx→∞ xℓ(c(x))/c2(x) = 1 which implies that c(x) ∼ x1/2ℓ∗(x), x → ∞, for some
ℓ∗ slowly varying at ∞.
(b1) If

lim
x→∞

P{| log(1 − W )| > x}(ℓ∗(x))2 = 0 (5)

then, with an =
√

bn , the limiting distribution of Ln−bn
an

is standard normal.
(b2) Assume that

P{| log(1 − W )| > x} ∼ ℓ(x), x → ∞, (6)
for some ℓ slowly varying at ∞, and that

lim
x→∞

P{| log(1 − W )| > x}(ℓ∗(x))2 = ∞.

Then, with an := µ−3/2c(log n)ψ(n), the limiting distribution of Ln−bn
an

is standard
normal.

(c) Assume that

P{| log W | > x} ∼ x−αℓ(x), x → ∞, (7)
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for some ℓ slowly varying at ∞ and α ∈ (1, 2). Let c(x) be any positive function satisfying
limx→∞ xℓ(c(x))/cα(x) = 1 which implies that c(x) ∼ x1/αℓ∗(x), x → ∞, for some ℓ∗

slowly varying at ∞.
(c1) If

lim
x→∞

P{| log(1 − W )| > x}x2/α−1(ℓ∗(x))2 = 0, (8)

then, with an =
√

bn , the limiting distribution of Ln−bn
an

is standard normal.
(c2) Assume that

P{| log(1 − W )| > x} ∼ x−βℓ(x), x → ∞, (9)
for some β ∈ [0, 2/α − 1] and some ℓ slowly varying at ∞. In the case β = 2/α − 1
assume additionally that

lim
x→∞

P{| log(1 − W ) > x |}x2/α−1(ℓ∗(x))2 = ∞.

Then
Ln − bn

µ−1−1/αc(log n)ψ(n)
d
−→


[0,1]

v−β dZ(v),

where (Z(v))v∈[0,1] is an α-stable Lévy process such that Z(1) has a characteristic
function

u → exp{−|u|
αΓ (1 − α)(cos(πα/2)+ i sin(πα/2) sgn(u))}, u ∈ R. (10)

Throughout one can take b′
n := µ−1


[0, log n]

P{| log(1 − W )| > x} dx in place of bn .

Remark 1.3. The integrals

[0,1]

v−β dZ(v) appearing in the theorem and also in formulas (34)
and (35) are understood to be equal to Z(1) in the case β = 0 and to be defined by integration
by parts formula

[0,1]

v−β dZ(v) = Z(1)+ β


[0,1]

v−β−1 Z(v) dv

in the case β ∈ (0, 1/α) (when referring to formula (34) we take α = 2). Note that the latter is
consistent with the standard definition of stochastic integrals (with respect to semimartingales).
It is known that

log E exp


it


[0,1]

v−β dZ(v)


=


[0,1]

log E exp

itv−β Z(1)


dv, t ∈ R,

from which it follows that the integral is indeed well-defined only if β ∈ [0, 1/α) and that
[0,1]

v−β dZ(v)
d
=(1 − αβ)−1/αZ(1).

Remark 1.4. Theorem 1.2 does not cover two interesting cases. Assume that the standing
assumptions of the theorem hold.
Case (b3): Condition (4) holds, σ 2

= ∞, and

P{| log(1 − W )| > x} ∼
d

(ℓ∗(x))2
, x → ∞,

for some d > 0 and ℓ∗(x) defined in part (b) of the theorem.
Case (c3): Condition (7) holds, and

P{| log(1 − W )| > x} ∼
dx1−2/α

(ℓ∗(x))2
, x → ∞,

for some d > 0 and ℓ∗(x) defined in part (c) of the theorem.
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Some partial results and discussion of the problems which arise in these cases can be found
in Remark 3.7.

Remark 1.5. We conjecture that under the assumption µ < ∞ the conditions given in
Theorem 1.2 and Remark 1.4 are necessary and sufficient for the weak convergence of Ln ,
properly normalized and centered.

The rest of the paper is structured as follows. In Section 2, we point out the set of conditions
under which the number of zero decrements of a nonincreasing Markov chain weakly converges
to a geometric law (Theorem 2.1). Theorem 1.1 then follows as a particular case. Section 3 is
devoted to proving Theorem 1.2. Some results derived in Section 3 can be used to answer a
question asked in [18]. A detailed discussion of this is given in Section 4. Some auxiliary facts
are collected in Appendix.

2. Number of zero decrements of nonincreasing Markov chains

2.1. Definitions

With M ∈ N0 given and any n ≥ M , n ∈ N, let I :=

Ik(n)


k∈N0

be a nonincreasing Markov
chain with I0(n) = n, state space N and transition probabilities

P{Ik(n) = j |Ik−1(n) = i} = πi, j , i ≥ M + 1 and either M < j ≤ i or M = j < i,

P{Ik(n) = j |Ik−1(n) = i} = 0, i < j,

P{Ik(n) = M |Ik−1(n) = M} = 1.

Denote by

Zn := #

k ∈ N0 : Ik(n)− Ik+1(n) = 0, Ik(n) > M


the number of zero decrements of the Markov chain before the absorption. Assuming that, for
every M + 1 ≤ i ≤ n, πi, i−1 > 0, the absorption at state M is certain, and Zn is a.s. finite.

Neglecting zero decrements of I along with renumbering of indices leads to a decreasing
Markov chain J :=


Jk(n)


k∈N0

with J0(n) = n and transition probabilities

πi, j =
πi, j

1 − πi, i
, i > j ≥ M

(the other probabilities are the same as for I ). The chain J visits a given state k and the chain I
visits the state k for the first time with the same probability

gn,k :=


m≥0

P{Jm(n) = k}, k ≤ n, k ∈ N.

Note that gn,n = 1 and that gn,k is the potential function of J .

Let (R j )M+1≤ j≤n be independent random variables such that R j
d
= geom(1−π j, j ). Assuming

the R j ’s independent of the sequence of states visited by J we may identify R j with the time
I spends in the state j provided this state is visited. With this at hand Zn can be conveniently
represented as

Zn
d
=


k≥0

RJk (n)1{Jk (n)>M}. (11)
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2.2. Main result of the section

Theorem 2.1 given below proves that the number of zero decrements of a nonincreasing
Markov chain weakly converges to a geometric law whenever the probability of delay at the
present state and that of transition to the absorption state are asymptotically balanced, and the
Markov chain has no ‘stationary’ version. An interesting feature of this quite general result is
that its proof needs nothing beyond simple distributional recurrence (16).

Theorem 2.1. Assume that limn→∞ gn,k = 0 for each k ∈ N, limn→∞ πn,n = 0 and

lim
n→∞

πn,n

πn,M
= c ∈ (0,∞). (12)

Then

Zn
d
−→ Z

d
= geom((c + 1)−1), n → ∞.

Theorem 2.1 will be proved by the method of moments. To this end, we have to possess some
information about the moments of integer orders of the limiting geometric law. The explicit
expressions are complicated and actually not needed. The moments satisfy a simple recurrence
which is sufficient for our needs.

Lemma 2.2. Let X
d
= geom(a), a > 0. The moments mk := EX k , k ∈ N can be recursively

obtained via

m1 = b, m j = b


1 +

j−1
i=1


j

i


mi


, j = 2, 3, . . . , (13)

where b := (1 − a)/a.

Proof. Let (ζk)k∈N be independent Bernoulli random variables with success probability a. Then

X
d
= inf{k ∈ N : ζk = 1} − 1 = 1{ζ1=0}


1 + (inf{k ∈ N \ {1} : ζk = 1} − 1)


=: 1{ζ1=0}(1 + X ′),

where X ′ is independent of ζ1 and X ′ d
= X . The latter implies

EX j
= (1 − a)E(1 + X) j , j ∈ N,

and representation (13) follows. �

Now we are ready to prove Theorem 2.1. For notational convenience we assume that M = 0.
For other M’s the argument is the same.

Let Vn denote the size of the last decrement. Then

P{Vn = k} = gn,kπk,0 = gn,k
πk,0

1 − πk,k
, k = 1, 2, . . . , n, (14)

and

lim
n→∞

P{Vn = k} = 0, for each k ∈ N. (15)
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Since the geometric law is uniquely determined by its moments, it suffices to prove that, for
each i ∈ N, limn→∞ EZ i

n = EZ i . To this end, we will use the induction on i and start with the
case i = 1. Using representation (11) and conditioning on the first decrement of J we deduce
the distributional equality

Zn
d
=Z J (n) + Rn, (16)

where, for each k ∈ N,Zk is independent of both J (n) := J1(n) and Rn , and has the same law
as Zk . Equality (16) (or just (11)) implies that

EZn =

n
k=1

gn,kERk
(14)
=

n
k=1

P{Vn = k}
πk,k

πk,0
.

Recalling (15) and (12) and applying Lemma A.1 to the last sum lead to the conclusion
limn→∞ EZn = c = EZ .

Assume now that limn→∞ EZ i
n = EZ i for all i ≤ j − 1, i ∈ N. We have to prove that

limn→∞ EZ j
n = EZ j . In view of Lemma 2.2 it suffices to check that limn→∞ EZ j

n = m j , where
m j satisfies (13) with b = c and mi = EZ i . Using (16) yields

EZ j
n = EZ j

J (n) +

j−1
i=0


j

i


EZ i

J (n)ER j−i
n =: EZ j

J (n) + bn,

or, equivalently,

EZ j
n =

n
k=1

gn, kbk =

n
k=1

P{Vn = k}
1 − πk, k

πk, 0
bk .

In view of Lemma A.1 to finish the proof it remains to show that

lim
n→∞

1 − πn, n

πn, 0
bn = c


1 +

j−1
i=1


j

i


mi


or equivalently that, for i ≤ j − 1,

lim
n→∞

1 − πn, n

πn, 0
EZ i

J (n)ER j−i
n = c EZ i and lim

n→∞

1 − πn, n

πn, 0
ER j

n = c. (17)

Applying Lemma 2.2 with a = 1 − πn, n to the Rn’s we conclude that

ER j−i
n ∼ ERn ∼ πn, n, n → ∞.

Further, one can easily check that limn→∞ bn = 0, hence

lim
n→∞

EZ i
J (n) = EZ i , i ≤ j − 1.

These two observations immediately establish (17). The proof is complete.

2.3. Proof of Theorem 1.1

In this subsection, we prove Theorem 1.1 by an application of Theorem 2.1. To distinguish
general (nonincreasing) Markov chains in the previous subsections from the particular Markov
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chain discussed below we mark all the quantities which correspond to the latter with asterisk, for
instance, I → I ∗, gn,k → g∗

n,k etc.
Now we present one more construction of the Bernoulli sieve which highlights the connection

with nonincreasing Markov chains. The Bernoulli sieve can be realized as a random occupancy
scheme in which n ‘balls’ are allocated over an infinite array of ‘boxes’ indexed 1, 2, . . .
according to the following rule. At the first round each of n balls is dropped in box 1 with
probability W1. At the second round each of the remaining balls is dropped in box 2 with
probability W2, and so on. The procedure proceeds until all n balls get allocated. Let I ∗

k (n)
denote the number of remaining balls (out of n) after the kth round. Then I ∗

:= (I ∗

k (n))k∈N0 is a
pattern of nonincreasing Markov chains described in Section 2.1 with M = 0 and

π∗

i, j =


i

j


EW j (1 − W )i− j , j ≤ i. (18)

It is plain that Ln is the number of zero decrements of I ∗ before the absorption.
The assumptionµ = ∞ implies that limn→∞ g∗

n,k = 0, for each k ∈ N. In the case that the law
of | log W | is non-lattice this fact was pointed out in formula (16) in [12]. The complementary
case does not require any new proof once one has noticed that the overshoot at point x of a
standard random walk diverges to +∞ in probability (as x → ∞) under the sole assumption
that the step of the random walk has infinite mean. In view of (18) π∗

n,n = EW n
→ 0, as n → ∞

(recall that the law of W has no atom at 1), and condition (12) reduces to (1). According to
Theorem 2.1, relation (2) holds.

Condition (3) is equivalent to

lim
x↓0

P{| log W | ≤ x}

P{| log(1 − W )| ≤ x}
= c.

Applying Lemma A.2 with ξ = | log W | and η = | log(1 − W )| establishes implication (3) ⇒

(1), thereby completing the proof of Theorem 1.1.

3. Proof of Theorem 1.2

In the first (main) part of the proof, we work with a Poissonized version of the Bernoulli
sieve. Specifically we assume that the balls are thrown at arrival times (τn)n∈N of a unit rate
Poisson process (πt )t≥0. The quantity in focus is then L(t) := Lπt , where (πt ) is independent of
(L j ). At the last step of the proof, we return to the original, fixed n problem (this step is called
depoissonization) and prove the implication

L(t)− b(t)

a(t)
d
−→ X, t → ∞ ⇒

Ln − b(n)

a(n)
d
−→ X, n → ∞.

Set

Sk := − log Tk = | log W1| + · · · + | log Wk | and Sk := S0 + Sk, k ∈ N0,

where S0 is a random variable which is independent of (Sk) and has distribution

P{S0 ≤ x} = µ−1


[0,x]

P{| log W | > y} dy, x ≥ 0.
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Define

N (x) := inf{k ∈ N0 : Sk > x} = #{k ∈ N0 : Sk ≤ x} andN (x) := #{n ∈ N0 : Sn ≤ x}, x ≥ 0,

and recall that (N (x))x≥0 and (N (x))x≥0 are non-stationary and stationary renewal processes,
respectively. For later use, we recall (see p. 55 in [14] for the proof) that N (x) enjoys the
following (distributional) subadditivity property

N (x + y)− N (x)
d
≤ N (y), x, y ≥ 0. (19)

In the sequel, we work with the following random variables

C(t) :=


k≥0

ϕ(t − Sk)1{Sk≤t} =


[0, t]

ϕ(t − x) dN (x), t ≥ 0

and

C(t) :=


k≥0

ϕ(t −Sk)1{Sk≤t} =


[0, t]

ϕ(t − x) dN (x), t ≥ 0,

where ϕ(t) := ψ(et ), t ∈ R, ψ(t) := Ee−t (1−W ), t ≥ 0.
We show in Lemma 3.1 that convergence in distribution of L(t) is completely determined by

convergence in distribution of

L∗(t) :=


k≥1

exp(−te−Sk−1(1 − Wk))1{Sk−1≤log t}.

The Bernoulli sieve is governed by two sources of randomness: randomness of the ‘environment’
(Wk) and sampling variability (i.e. the variability of the occupancy scheme with deterministic
frequencies obtained by conditioning on (Wk)). Since L∗(t) is a function of the environment
alone, we conclude that the weak convergence of L(t) (Ln) is completely determined by the
randomness of the environment, whereas the influence of the sampling variability is negligible.

In its turn convergence in distribution of L∗(t) is determined either by that of L∗(t)−C(log t)
or that of C(log t), or that of both, and our main task is to find out what is the extent of their
interplay. In the cases (a), (b1) and (c1) the contribution of L∗(t)− C(log t) dominates, whereas
in the cases (b2) and (c2) it is negligible in comparison with the contribution of C(log t).1

We divide the proof of the theorem into several steps.

Step 1. The purpose of this step is proving a central limit theorem for L(t) − C(log t)
(Lemma 3.3). To this end, we first show that the asymptotic behavior of L(t) coincides with
that of L∗(t).

In what follows, we write that the family of random variables is tight meaning that the family
of laws of these random variables is tight.

Lemma 3.1. Whenever µ < ∞ and the law of | log W | is non-lattice, the families

L(t) −

L∗(t)


t≥1 and

C(t)− C(t)t≥0 are tight.

1 It seems that there are situations (cases (b3) and (c3) introduced in Remark 1.4) when contributions of both variables
are significant, and both of these determine the asymptotics of L(t). See Remarks 1.4 and 3.7 for more details.
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Proof. Set M(t) := Mπt and K (t) := Kπt . These are the index of the last occupied box and
the number of occupied boxes in the Poissonized version of the Bernoulli sieve, respectively.
Clearly, L(t) = M(t)− K (t).

Fact 1. The family

M(t)− N (log t))t≥1 is tight.

We use the representation M(t) = N (| log U1,πt |), where U1,n := min1≤ j≤n U j . It is well-

known that | log U1,n| − log n
d
−→ G, n → ∞, where G is a random variable with the standard

Gumbel distribution. Since (πt ) is independent of U1,n we also have | log U1,πt | − logπt
d
−→ G,

t → ∞. By noting that logπt −log t
P
−→ 0, t → ∞ we finally conclude that | log U1,πt |−log t

d
−→

G, t → ∞. Using (19) along with independence of

N (x)


and U1, πt we obtain

M(t)− N (log t) ≤

N (| log U1, πt |)− N (log t)


1{| log U1, πt |≥log t}

d
≤ N (| log U1, πt | − log t


1{| log U1, πt |≥log t}

d
−→ N (G)1{G≥0}, t → ∞.

Similarly

M(t)− N (log t) ≥ −

N (log t)− N (| log U1,πt |)


1{| log U1,πt |<log t}

d
≥ −N


log t − | log U1,πt |


1{| log U1,πt |<log t}

d
−→ −N (−G)1{G<0},

t → ∞.

Fact 2. The family

K (t)− E(K (t)|(Wk))


t≥0 is tight.

This was proved in formula (28) in [10].

Fact 3. The family
L(t)− N (log t)+


k≥1


1 − exp(−te−Sk−1(1 − Wk))


t≥1

is tight.

Since

E(K (t)|(Wk)) =


k≥1


1 − e−t Pk


=


k≥1


1 − exp(−te−Sk−1(1 − Wk))


,

Facts 1 and 2 together imply the statement.

Fact 4. The family

Y (t)


t≥1, where

Y (t) :=


k≥1


1 − exp(−te−Sk−1(1 − Wk))


1{Sk−1>log t},

is tight.

Since 1 − ϕ is monotone and integrable on (−∞, 0], it is directly Riemann integrable on
(−∞, 0]. Hence, by the key renewal theorem (see Theorem 4.2 in [1])

EY (et ) = E

k≥0


1 − ϕ(t − Sk)


1{Sk>t} → µ−1


[0,1]


1 − ψ(y)


y−1 dy < ∞,

and Fact 4 follows.
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Now we are ready to prove the lemma. Since

L(t)− L∗(t) =


L(t)− N (log t)+


k≥1


1 − exp(−te−Sk−1(1 − Wk))


− Y (t),

the first assertion of the lemma follows from Facts 3 and 4.
In view of the inequality

−

ϕ(t −Sk)− ϕ(t − Sk)


1
{Sk≤t} ≤ ϕ(t − Sk)1{Sk≤t} − ϕ(t −Sk)1{Sk≤t}

= ϕ(t − Sk)1{Sk≤t<Sk }

−

ϕ(t −Sk)− ϕ(t − Sk)


1
{Sk≤t}

≤ ϕ(t − Sk)1{Sk≤t<Sk }

= ϕ(t − Sk)1{Sk≤t,S0>t}

+ϕ(t − Sk)1{t−S0<Sk≤t,S0≤t} a.s.,

to prove the second assertion it suffices to check the tightness of

C1 :=


k≥0

ϕ(t − Sk)1{Sk≤t<Sk }


t≥0

and

C2 :=


k≥0


ϕ(t −Sk)− ϕ(t − Sk)


1
{Sk≤t}


t≥0

.

Using (19) gives
k≥0

ϕ(t − Sk)1{t−S0<Sk≤t,S0≤t} ≤ ϕ(0)

N (t)− N (t −S0)


1
{S0≤t}

d
≤ϕ(0)N (S0).

It is clear that
k≥0

ϕ(t − Sk)1{Sk≤t}


1
{S0>t}

P
−→ 0, t → ∞,

and the tightness of C1 follows. Using the mean value theorem for differentiable functions and
the monotonicity of ψ ′ we obtain

ϕ(t −Sk)− ϕ(t − Sk)


1
{Sk≤t} ≤ et−Sk (−ψ ′(et−Sk ))1

{Sk≤t}
S0

= −ϕ′(t −Sk)1{Sk≤t}
S0e

S0 .

Since

E

k≥0

(−ϕ′(t −Sk))1{Sk≤t} = µ−1


[0,t]
(−ϕ′(y)) dy → µ−1ϕ(0), t → ∞,

the family C2 is tight. The proof is complete. �

Further, we need a preliminary result which establishes a weak law of large numbers for C(t).

Lemma 3.2. Suppose µ < ∞, ν = ∞, and the distribution of | log W | is non-lattice. Then

C(t)

k(t)
P
−→ µ−1, t → ∞,
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where

k(x) :=

 x

0
ϕ(y) dy, x > 0.

Proof. The assumption ν = ∞ is equivalent to limx→∞ k(x) = ∞. In view of Chebyshev’s
inequality it is enough to check that

EC2(t) ∼ (EC(t))2 ∼ µ−2k2(t), t → ∞.

By Lemma A.4(a), the required asymptotics of EC(t) follows easily. Using the equality

C(t) = ϕ(t)+ C ′(t − S1)1{S1≤t} a.s.,

where C ′(t) :=


k≥1 ϕ(t − Sk + S1)1{Sk−S1≤t}
d
= C(t) is independent of S1, we have

EC2(t) = 2


[0, t]
ϕ(t − x)EC(t − x) dEN (x)−


[0, t]

ϕ2(t − x) dEN (x). (20)

The second term exhibits the following asymptotics
[0, t]

ϕ2(t − x) dEN (x) = o(k(t)), t → ∞. (21)

To see this, use the key renewal theorem in the case

[0,∞)

ϕ2(x) dx < ∞ or Lemma A.4(a)

followed by l’Hôpital rule in the case limt→∞


[0, t] ϕ

2(x) dx = ∞.
Since both k(t) and (1 − ϕ(t))k(t) are nondecreasing functions, we apply Lemma A.4(b) to

obtain, as t → ∞,
[0, t]

ϕ(t − x)k(t − x) dEN (x) ∼ µ−1


[0, t]
ϕ(x)k(x) dx = (2µ)−1k2(t). (22)

Further, for fixed a ∈ (0, t)
[t−a, t]

ϕ(t − x)k(t − x) dEN (x) ≤ k(a)

EN (t)− EN (t − a)


≤ k(a)EN (a) (23)

in view of (19). Hence
[0, t]

ϕ(t − x)k(t − x) dEN (x) ∼


[0, t−a]

ϕ(t − x)k(t − x) dEN (x), t → ∞.

Likewise, since

sup
x∈[0, a]

EC(x) < ∞,

we conclude that
[t−a, t]

ϕ(t − x)EC(t − x) dEN (x) ≤ sup
x∈[0,a]

EC(x)EN (a) < ∞. (24)
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Now we are ready to derive the asymptotics of EC2(t). For any ε ∈ (0, µ−1) there exists x0 > 0
such that µ−1

− ε ≤ EC(y)/k(y) ≤ µ−1
+ ε for y ≥ x0. With this x0 we have

[0, t]
ϕ(t − x)EC(t − x) dEN (x) ≤ (µ−1

+ ε)


[0, t−x0]

ϕ(t − x)k(t − x) dEN (x)

+


[t−x0, t]

ϕ(t − x)EC(t − x) dEN (x)

(23), (24)
∼ (µ−1

+ ε)


[0, t]

ϕ(t − x)k

× (t − x) dEN (x)+ O(1)
(22)
∼ (µ−1

+ ε)(2µ)−1k2(t).

Sending ε → 0 and recalling (20) and (21), we conclude that

lim sup
t→∞

EC2(t)

k2(t)
≤ µ−2.

Arguing similarly we obtain the converse inequality for the lower limit. The proof is
complete. �

Lemma 3.3. Suppose µ < ∞, ν = ∞, and the distribution of | log W | is non-lattice. Then

L(t)− C(log t)
µ−1k(log t)

d
−→ N (0, 1), t → ∞.

Proof. By Lemma 3.1, it is enough to prove that

L∗(t)− C(log t)
µ−1k(log t)

d
−→ N (0, 1), t → ∞. (25)

Set

X ti :=


exp


−te−Si−1(1 − Wi )


− ψ(te−Si−1)


1{Si−1≤log t}

µ−1k(log t)
, i ∈ N, t > 1,

and note that E

X ti |(Wk)k≤i−1


= 0. By a martingale central limit theorem (Corollary 3.1

in [15]), relation

L∗(n)− C(log n)
µ−1k(log n)

d
−→ N (0, 1), n → ∞, (26)

which is just (25) with continuous variable t replaced by integer n, will hold once we can show
that 

i≥1

E(X2
ni |(Wk)k≤i−1)

P
−→ 1, n → ∞, (27)

and that, for all ε > 0,
i≥1

E(X2
ni 1{|Xni |>ε}|(Wk)k≤i−1)

P
−→ 0, n → ∞. (28)

It suffices to establish (27), as, in view of |Xni | ≤ 1/

µ−1k(log n), (28) will follow from it.
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We have
i≥1

E(X2
et i |(Wk)k≤i−1) =


[0,t]


ψ(2et−x )− ϕ2(t − x)


dN (x)

µ−1k(t)

=
C(t)

µ−1k(t)
−


[0,t]


ψ(et−x )− ψ(2et−x )


dN (x)

µ−1k(t)

−


[0,t] ϕ

2(t − x) dN (x)

µ−1k(t)
.

By Lemma 3.2, limt→∞ C(t)/(µ−1k(t)) = 1 in probability. To complete the proof of (27), one
has to check that the second and the third terms converge to zero in probability. For the third this
follows from (21) and Markov’s inequality. The function t → ψ(et )−ψ(2et ) is directly Riemann
integrable on R since it is nonnegative and integrable, and the function t → e−t


ψ(et )−ψ(2et )


is nonincreasing (see, for instance, the proof of Corollary 2.17 in [6]). By the key renewal
theorem

E


[0,t]


ψ(et−x )− ψ(2et−x )


dN (x) ≤ E


[0,∞)


ψ(et−x )− ψ(2et−x )


dN (x)

→ µ−1E


[0,∞]


e−y(1−W )

− e−2y(1−W )

y−1 dy

= µ−1 log 2, t → ∞,

which proves the required result for the second term.
It remains to pass from (26) to (25). We first note that the function k(log t) is slowly varying at

∞. This follows from the equality k(log t) =

[1, t] ψ(y)y

−1 dy and the representation theorem

for slowly varying functions (Theorem 1.3.1 in [4]). To prove that limt→∞
k(log t)
k(log[t]) = 1, where

[t] denotes the integer part of t , use the slow variation of k(log t) together with the monotonicity
to conclude

1 ≤
k(log t)

k(log[t])
≤

k(log([t] + 1))
k(log[t])

→ 1, t → ∞.

Now we intend to prove the tightness of the family

C(t) − C([t])


. To this end, we use the

equality

C([t])− C(t) =


[0,[t]]


ϕ([t] − x)− ϕ(t − x)


dN (x)−


[[t],t]

ϕ(t − x) dN (x).

By the mean value theorem

ϕ([t] − x)− ϕ(t − x) = −ϕ′(θ)(t − [t]) ≤ eθ (−ψ ′(θ))

≤ et−x (−ψ ′([t] − x)) = −ϕ′([t] − x)et−[t]
≤ −ϕ′([t] − x)e,

where θ is some value from [[t] − x, t − x]. Consequently,

C([t])− C(t) ≤ e


[0,[t]]
(−ϕ′([t] − x)) dN (x),

and the right-hand side is bounded in probability as, by the key renewal theorem, its expectation
goes to eψ(1)µ−1 (the function t → −ϕ′(t) is directly Riemann integrable on R+ since it
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is integrable on R+ and nonnegative, and t → e−t (−ϕ′(t)) = −ψ ′(et ) is a nonincreasing
function). On the other hand, in view of (19)

C([t])− C(t) ≥ −


[[t],t]

ϕ(t − x) dN (x) ≥ −(N (t)− N ([t]))
d
≥ −N (1).

Finally, we want to show that the family

L∗(t)− L∗([t])


is tight. By Lemma 3.1, it is enough

to check the tightness of

L(t) − L([t])


. Since L(t) − L([t]) represents the fluctuation of the

number of empty boxes after throwing πt − π[t] balls, and the latter variable is bounded from
above by a Poisson variable with mean one, the desired tightness follows. The proof of the lemma
is complete. �

Step 2. The purpose of this step is investigating convergence in distribution of C(t). The cases
(a), (b1) and (c1) and the cases (b2) and (c2) are treated separately in Lemmas 3.4 and 3.6,
respectively.

In what follows, we use the following notation. If σ 2 < ∞ we denote by Z(·) the Brownian
motion and set g(t) :=


σ 2µ−3t . If condition (4) holds we denote by Z(·) the Brownian motion

and let g(t) be any nondecreasing function such that g(t) ∼ µ−3/2c(t), t → ∞. If condition
(7) holds we denote by Z(·) the α-stable Lévy process such that Z(1) has characteristic function
(10), and let g(t) be any nondecreasing function such that g(t) ∼ µ−1−1/αc(t), t → ∞.

It is well-known that under either of the conditions of the preceding paragraph, i.e. whenever
the law of | log W | belongs to the domain of attraction of an α-stable law, α ∈ (1, 2],

S[t ·] − µ(t ·)

const g(t)
⇒ −Z(·), t → ∞

in D := D[0, 1] under the J1 topology. While the one-dimensional convergence is a classical
result [7], the functional version is due to Skorohod (Theorem 2.7 in [21]). Since

sup
u∈[0,1]

|S[tu] − S[tu]| = S0,

the same functional limit theorem as above also holds for S[t ·]. An appeal to Theorem 13.7.1 in
[22] allows us to conclude that2

Wt (·) :=

N (t ·)− µ−1(t ·)

g(t)
⇒ Z(·), t → ∞, (29)

in D under the M1-topology. Certainly, (29) entails the one-dimensional convergence Wt (1) ⇒

Z(1), t → ∞. Hence, by Skorohod’s representation theorem there exist versions W̄t (1)
d
= Wt (1)

and Z̄(1)
d
= Z(1) such that

W̄t (1) → Z̄(1), t → ∞,

almost surely. In particular, for any ε > 0 there exists an a.s. finite T > 0 such that

|W̄v(1)| ≤ |Z̄(1)| + ε for all v ≥ T . (30)

2 According to Theorem 1b in [3], relation (29) also holds for the non-stationary renewal process (N (t))t≥0. Since our
argument imitates one given in [3], we omit details.
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For multiple later use let us write the following estimate: for any positive x(t) such that
limt→∞ x(t) = ∞ and any a > 0

[0, at](
N (v)− µ−1v) d(−ϕ(v))


x(t)

d
≤ oP (1)+ (|Z̄(1)| + ε)


[0, at] g(v) d(−ϕ(v))

x(t)
, (31)

where oP (1) denotes a term that converges to zero in probability, as t → ∞. This can be proved
as follows:

[0, at]
(N (v)− µ−1v) d(−ϕ(v))

d
=


[0, at]

W̄v(1)g(v) d(−ϕ(v))

=


[0, at]

. . . 1{T>at}

+


[0, T ]

. . . 1{T ≤at} +


[T, at]

. . . 1{T ≤at}

=: I1(t)+ I2(t)+ I3(t).

It is plain that limt→∞ I1(t) = 0 in probability. As to I2(t), write

|I2(t)|

x(t)
≤


[0, T ]

W̄v(1)
 g(v) d(−ϕ(v))

x(t)
P
−→ 0, t → ∞.

Finally

|I3(t)|

x(t)
≤


[T, at]

W̄v(1)
 g(v) d(−ϕ(v))

x(t)
1{T ≤at}

(30)
≤ (|Z̄(1)| + ε)


[0, at] g(v) d(−ϕ(v))

x(t)
.

Lemma 3.4. Let the assumptions of parts (a) or (b1), or (c1) of Theorem 1.2 hold. Then

C(log t)− µ−1k(log t)
k(log t)

P
−→ 0, t → ∞, (32)

and

L(t)− µ−1k(log t)
µ−1k(log t)

d
−→ N (0, 1), t → ∞. (33)

Proof. We start by noting that relation (33) is an immediate consequence of (32) and Lemma 3.3.
By Lemma 3.1 relation (32) is equivalent to

C(t)− µ−1k(t)
√

k(t)
P
−→ 0, t → ∞.

To prove it, we represent the latter ratio in a more convenient form
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C(t)− µ−1k(t)
√

k(t)
=


[0,t] ϕ(t − v) dN (v)− µ−1k(t)

√
k(t)

d
=


[0,t] ϕ(v) dN (v)− µ−1


[0,t] ϕ(v) dv

√
k(t)

=
ϕ(t)(N (t)− µ−1t)

√
k(t)

+


[0,t](

N (v)− µ−1v) d(−ϕ(v))
√

k(t)

= Wt (1)
g(t)ϕ(t)
√

k(t)
+


[0,t](

N (v)− µ−1v) d(−ϕ(v))
√

k(t)
.

By Lemma A.3, limt→∞
g(t)ϕ(t)
√

k(t)
= 0. Since, in view of (29), Wt (1)

d
−→ Z(1), t → ∞, we have

Wt (1)
g(t)ϕ(t)
√

k(t)
P
−→ 0, t → ∞.

Use now inequality (31) with a = 1 and x(t) =
√

k(t). Since, by Lemma A.3,

limt→∞


[0,t] g(v) d(−ϕ(v))

√
k(t)

= 0 we conclude that
[0,t](

N (v)− µ−1v) d(−ϕ(v))
√

k(t)
P
−→ 0, t → ∞.

The proof of the lemma is complete. �

Remark 3.5. Set

m(x) :=


[0, x]

P{| log(1 − W )| > y} dy, x > 0.

Lemma 5.4 in [9] proves that |m(x)− k(x)| is a bounded function. This justifies the last sentence

of Theorem 1.2. Also this implies that the normalization

µ−1k(t)


µ−1k(log t)


used in

Lemmas 3.2–3.4 can be safely replaced by

µ−1m(t)


µ−1m(log t)


.

Lemma 3.6. (I) Assume that σ 2
= ∞ and that x

0
y2P{| log W | ∈ dy} ∼ ℓ(x), x → ∞,

for some ℓ slowly varying at ∞. Let c(x) be any positive function such that

limx→∞
xℓ(c(x))

c2(x)
= 1. Assume further that

P{| log(1 − W )| > x} ∼ x−βℓ(x), x → ∞,

for some β ∈ [0, 1/2) and some ℓ slowly varying at ∞. Then

C(t)− µ−1k(t)

µ−3/2c(t)ϕ(t)
d
−→


[0,1]

v−β dZ(v), t → ∞, (34)

where (Z(v))v∈[0,1] is the Brownian motion.
(II) Assume that

P{| log W | > x} ∼ x−αℓ(x), x → ∞
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for some α ∈ (1, 2) and someℓ slowly varying at ∞. Let c(x) be any positive function such

that limx→∞
xℓ(c(x))

cα(x) = 1. Assume further that

P{| log(1 − W ) > x |} ∼ x−βℓ(x), x → ∞,

for some β ∈ [0, 1/α) and some ℓ slowly varying at ∞. Then

C(t)− µ−1k(t)

µ−1−1/αc(t)ϕ(t)
d
−→


[0,1]

v−β dZ(v), t → ∞, (35)

where (Z(v))v∈[0,1] is the α-stable Lévy process such that Z(1) has characteristic function
(10).

Proof. The condition

P{| log(1 − W )| > x} ∼ x−βℓ(x), x → ∞

is equivalent to the following

P{1 − W ≤ x} ∼ (log(1/x))−βℓ(log(1/x)), x ↓ 0.

By Theorem 1.7.1’ in [4], the latter is equivalent to

ϕ(t) ∼ t−βℓ(t), t → ∞. (36)

Recalling the relation g(t) ∼ const c(t), t → ∞, we conclude that

lim
t→∞

g(t)ϕ(t) = ∞. (37)

In view of Lemma 3.1 it suffices to prove that

C∗(t) :=

C(t)− µ−1k(t)

g(t)ϕ(t)
d
−→


[0,1]

v−β dZ(v), t → ∞.

Case β = 0. Recalling Wt (1)
d
−→ Z(1), t → ∞ and using the equality

C∗(t) = Wt (1)+


[0,t](

N (v)− µ−1v) d(−ϕ(v))

g(t)ϕ(t)

we conclude that it remains to check that the second term in the right-hand side converges to zero
in probability. According to (31) (with a = 1 and x(t) = g(t)ϕ(t)), it is enough to show that

lim
t→∞


[0, t] g(v) d


−ϕ(v)


g(t)ϕ(t)

= 0. (38)

In view of Potter’s bound (Theorem 1.5.6 in [4]), given A > 0 and δ ∈ (0, 1/α − β) (here we
take α = 2 in the case (I) of the lemma) there exists t0 > 0 such that

g(tu)

g(t)
≤ Au1/α−δ, (39)

whenever t ≥ t0, tu ≥ t0 and u ≤ 1. Since
[t0,t]

g(v) d(−ϕ(v))

g(t)ϕ(t)

(39)
≤ A


[t0, t] v

1/α−δ d(−ϕ(v))

t1/α−δϕ(t)
→ 0, t → ∞,
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where the last relation is justified by Theorem 1.6.4 in [4], and

lim
t→∞


[0,t0]

g(v) d(−ϕ(v))

g(t)ϕ(t)
= 0,

which holds in view of (37), (38) follows.

Case β ≠ 0. We use the representation: for any fixed ε > 0,

C∗(t) = Wt (1)+


[0,1]

Wt (v)µt (dv)

= Wt (1)+


[0, ε]

· · · +


[ε, 1]

· · ·

=: Wt (1)+ I1(ε, t)+ I2(ε, t),

where the measure µt is defined by µt ((v, 1]) = ϕ(vt)/ϕ(t), v ∈ [0, 1).
According to (36), as t → ∞, µt converges weakly on [ε, 1] to a measure µ defined by

µ((v, 1]) := v−β . Together with (29) this entails the convergence

I2(ε, t)
d
−→ β


[ε,1]

Z(v)v−β−1 dv, t → ∞

by Lemma A.6. Further one can check that

Wt (1)+ I2(ε, t)
d
−→ Z(1)+ β


[ε,1]

Z(v)v−β−1 dv, t → ∞.

According to Theorem 4.2 in [2], it remains to show that, for any γ > 0,

lim
ε↓0

lim sup
t→∞

P{|I1(ε, t)| > γ } = 0.

In view of inequality (31) (with a = ε and x(t) = g(t)ϕ(t)) this will follow once we can prove
that

lim
ε↓0

lim sup
t→∞


[0, εt] g(v) d(−ϕ(v))

g(t)ϕ(t)
= 0. (40)

Since limt→∞


[0,t0]

g(v) d(−ϕ(v))

g(t)ϕ(t) = 0 (use (37)) and
[t0,t]

g(v) d(−ϕ(v))

g(t)ϕ(t)

(39)
≤ A


[t0, t] v

1/α−δ d(−ϕ(v))

t1/α−δϕ(t)
∼

β

1/α − β − δ
ε1/α−β−δ,

where the last relation is justified by Theorem 1.6.4 in [4], (40) follows. The proof of the lemma
is finished. �

Step 3. The purpose of this intermediate step is to combine results of the two previous steps
into a single statement concerning convergence in distribution of L(t), properly normalized and
centered. In particular, we conclude that under the assumptions of the theorem

L(t)− b(t)

a(t)
d
−→ X, t → ∞, (41)

for b(t) := µ−1k(log t), case-dependent normalizing function a(t) and case-dependent random
variable X . Now we identify the functions a(t) and the laws of X for each case.
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Cases (a), (b1) and (c1): X
d
= N (0, 1) and a(t) =


µ−1k(log t). This immediately follows

from (33).

Case (b2): X
d
= N (0, 1) and a(t) = µ−3/2c(log t)ψ(t). By Lemmas 3.3 and 3.6 (case β = 0),

L(t)− C(log t)
µ−1k(log t)

d
−→ N (0, 1) and

C(log t)− µ−1k(log t)

µ−3/2c(log t)ψ(t)
d
−→ N (0, 1), t → ∞,

According to (36), ϕ(t) ∼ ℓ(t), t → ∞. Therefore, as t → ∞, k(t) ∼ tℓ(t) (use
Proposition 1.5.8 in [4]) and c(t)ϕ(t) ∼ t1/2ℓ∗(t)ℓ(t) which, in view of the assumption

limt→∞ ℓ(t)(ℓ∗(t))2 = ∞, implies limt→∞

√
k(log t)

c(log t)ψ(t) = 0. Hence,

L(t)− µ−1k(log t)

µ−3/2c(log t)ψ(t)
d
−→ N (0, 1), t → ∞.

Case (c2): X
d
=

[0,1]

v−β dZ(v) and a(t) = µ−1−1/αc(log t)ψ(t). By Lemmas 3.3 and 3.6,

L(t)− C(log t)
µ−1k(log t)

d
−→ N (0, 1) and

C(log t)− µ−1k(log t)

µ−1−1/αc(log t)ψ(t)
d
−→


[0,1]

v−β dZ(v),

t → ∞,

respectively. According to (36), ϕ(t) ∼ t−βℓ(t), t → ∞. Therefore, as t → ∞, k(t) ∼

const t1−βℓ(t) by Proposition 1.5.8 in [4], and c(t)ϕ(t) ∼ t1/α−βℓ∗(t)ℓ(t). While in the case

β ∈ [0, 2/α − 1) the relation limt→∞

√
k(log t)

c(log t)ψ(t) = 0 holds trivially, in the case β = 2/α − 1 it

is secured by the assumption limt→∞ ℓ(t)(ℓ∗(t))2 = ∞. Hence,

L(t)− µ−1k(log t)

µ−1−1/αc(log t)ψ(t)
d
−→


[0,1]

v−β dZ(v), t → ∞.

Step 4. Depoissonization. Since L(τn) = Ln , where (τn)n∈N are arrival times of (πt ), it suffices
to check that

L(τn)− b(n)

a(n)
d
−→ X, n → ∞.

In the subsequent computations, we will use arbitrary but fixed x ∈ R. Given such an x we will
choose n0 ∈ N and t0 > 0 such that n ± x

√
n ≥ 0 for n ≥ n0 and t ± x

√
t ≥ 0 for t ≥ t0. With

this notation laid down all the inequalities or equalities that follow will be considered either for
t ≥ t0 or n ≥ n0.

The functions a(t) are slowly varying. While in the cases (b2) and (c2) this is trivial, in
the remaining cases, as has already been mentioned, this follows from the equality k(log t) =
[1, t] ψ(y)y

−1 dy and Theorem 1.3.1 in [4]. The slow variation implies that the convergence

limt→∞
a(t y)
a(t) = 1 takes place locally uniformly in y. In particular,

lim
t→∞

=
a

t ± x

√
t


a(t)
= 1. (42)

The function b(t) enjoys the following property

lim
t→∞


b


t ± x
√

t


− b(t)


= 0
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which entails

lim
t→∞

b

t ± x

√
t

− b(t)

a(t)
= 0. (43)

Indeed,

0 ≤ b


t + x
√

t


− b(t) = µ−1


t,t+x

√
t
 y−1ψ(y) dy

≤ µ−1ψ(t) log(1 + xt−1/2) ∼ µ−1ψ(t)xt−1/2,

and the corresponding relation with ‘minus’ sign follows similarly.
Now (42) and (43) ensure that (41) is equivalent to

L

t ± x

√
t

− b(t)

a(t)
d
−→ X, t → ∞. (44)

We will need the following observation

M

t + x

√
t

− M


t − x

√
t


a(t)
P
−→ 0, t → ∞, (45)

where the notation M(t) = Mπt has to be recalled. Actually, we can prove a stronger assertion

M


t + x
√

t


− M


t − x
√

t


P
−→ 0, t → ∞,

as follows. Since M(t) is nondecreasing it suffices to show that the expectation of the left-hand
side converges to zero. To this end, we first prove the formula

EM(t) = E

k≥0


1 − exp(−te−Sk )


= E


[0,∞)


1 − exp(−te−y)


dN (y). (46)

We use a variant of the random occupancy scheme with the random frequencies Pk’s defined in
the Introduction in which balls are thrown at the arrival times of the Poisson process (πt ). It is
clear that M(t) = 0 on the event {πt = 0} and that

M(t) = inf{k ∈ N : πk+1, t + πk+2, t + · · · = 0}

on the event {πt ≥ 1}, where πk, t is the number of balls (out of πt ) falling in the kth box. Given
Pk

(π j, t )t≥0 is a Poisson process with intensity Pj , and, for different j , these Poisson processes

are independent. With this at hand, it remains to write

E

M(t)|(Pj )


=


k≥0

P{M(t) > k|(Pj )}

= 1 − e−t
+


k≥1

P{πk+1, t + πk+2, t + · · · ≥ 1|(Pj )}

= 1 − e−t
+


k≥1


1 − exp(−t (1 − P1 − · · · − Pk))


=


k≥0


1 − exp(−te−Sk )


,
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and (46) follows on passing to the expectation. Using (46) we have

E


M


t + x
√

t


− M


t − x
√

t


= E


[0,∞)


exp


−


t − x

√
t


e−y


− exp

−


t + x

√
t


e−y


dN (y)

≤
2x

√
t

t − x
√

t
E


[0,∞)

exp

−


t − x

√
t


e−y
 

t − x
√

t


e−y dN (y)

∼ 2µ−1xt−1/2, t → ∞,

where the last relation follows by the key renewal theorem (the function t → exp

t − et


is

directly Riemann integrable on R since it is integrable on R and nonnegative, and t → exp(−et )

is a nonincreasing function).

Further, setting An(x) :=

|τn − n| > x

√
n


and recalling the notation K (t) := Kπt , we
have, for any ε > 0,

P


L(τn)− L


n − x

√
n


a(n)
> 2ε



= P


M(τn)− K (τn)− L


n − x

√
n


a(n)
> 2ε


= P


. . . 1Ac

n(x) + · · · 1An(x) > 2ε


≤ P


M

n + x

√
n

− K


n − x

√
n

− L


n − x

√
n


a(n)
> ε


+ P


. . . 1An(x) > ε


≤ P


M

n + x

√
n

− M


n − x

√
n


a(n)
> ε


+ P


An(x)


.

Hence

lim sup
n→∞

P


L(τn)− L


n − x

√
n


a(n)
> 2ε


≤ P


|N (0, 1)| > x


, (47)

by (45) and the central limit theorem. Since the law of X is continuous, we conclude that, for any
y ∈ R and any ε > 0,

lim sup
n→∞

P


L(τn)− b(n)

a(n)
> y


≤ lim sup

n→∞

P


L(τn)− L


n − x

√
n


a(n)
> 2ε



+ lim
n→∞

P


L

n − x

√
n

− b(n)

a(n)
> y − 2ε


(44), (47)

≤ P

|N (0, 1)| > x


+ P


X > y − 2ε


.
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Letting now x → ∞ and then ε ↓ 0 gives

lim sup
n→∞

P


L(τn)− b(n)

a(n)
> y


≤ P


X > y


.

Arguing similarly we infer

lim sup
n→∞

P


L

n + x

√
n

− L(τn)

a(n)
> 2ε


≤ P


|N (0, 1)| > x


(48)

and then

lim inf
n→∞

P


L(τn)− b(n)

a(n)
> y


≥ lim

n→∞
P


L

n + x

√
n

− b(n)

a(n)
> y + 2ε



− lim sup
n→∞

P


L

n + x

√
n

− L(τn)

a(n)
> 2ε


(44), (48)

≥ P


X > y + 2ε


− P

|N (0, 1)| > x


.

Letting x → ∞ and then ε ↓ 0 we arrive at

lim inf
n→∞

P


L(τn)− b(n)

a(n)
> y


≥ P


X > y


.

The proof of Theorem 1.2 is complete.

Remark 3.7. Here we discuss what is known in cases (b3) and (c3) introduced in Remark 1.4.
Case (b3): By Lemmas 3.3 and 3.6,

L(t)− C(log t)
µ−1k(log t)

d
−→ X1 and

C(log t)− µ−1k(log t)

µ−3/2c(log t)ψ(t)
d
−→ X2, t → ∞, (49)

respectively, where X1 and X2 are random variables with the standard normal distribution.
According to (36), ϕ(t) ∼ d(ℓ∗(t))−2, t → ∞. Therefore, as t → ∞, k(t) ∼ dt (ℓ∗(t))−2

(use Proposition 1.5.8 in [4]) and c(t)ϕ(t) ∼ dt1/2(ℓ∗(t))−1. Consequently, (49) is equivalent to

ℓ∗(log t)

log1/2 t


L(t)− C(log t)

 d
−→ (d/µ)1/2 X1 and

ℓ∗(log t)

log1/2 t


C(log t)− µ−1k(log t)

 d
−→ dµ−3/2 X2, t → ∞.

However, we do not know whether the joint convergence of these ratios takes place, nor do we
know how dependent the random variables X1 and X2 are. The same remark concerns formula
(51) given below.
Case (c3): By Lemmas 3.3 and 3.6,

L(t)− C(log t)
µ−1k(log t)

d
−→ X1 and

C(log t)− µ−1k(log t)

µ−1−1/αc(log t)ψ(t)
d
−→ X2, t → ∞, (50)

respectively, where X1
d
= N (0, 1) and X2

d
=

[0,1]

v1−2/α dZ(v). According to (36), ϕ(t) ∼

dt1−2/α(ℓ∗(t))−2, t → ∞. Therefore, as t → ∞, k(t) ∼ d(2 − 2/α)−1t2−2/α(ℓ∗(t))−2 by
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Proposition 1.5.8 in [4], and c(t)ϕ(t) ∼ dt1−1/α(ℓ∗(t))−1. Consequently, (50) is equivalent to

ℓ∗(log t)

log1−1/α t


L(t)− C(log t)

 d
−→ (2µ(1 − 1/α)/d)−1/2 X1,

ℓ∗(log t)

log1−1/α t


C(log t)− µ−1k(log t)

 d
−→ dµ−1−1/αX2.

(51)

It seems that in order to settle the weak convergence issue in these cases one has to investigate
the weak convergence of L∗(t) =


k≥1 exp(−te−Sk−1(1−Wk))1{Sk−1≤log t} directly, i.e. without

using the decomposition L∗(t) =

L∗(t)− C(log t)


+ C(log t).

4. Answering a question asked in [18]

Let

ξk, ηk


k∈N be independent copies of a random vector (ξ, η) with ξ > 0 and η ≥ 0

a.s. An arbitrary dependence between ξ and η is allowed. In what follows, we also assume that
m := Eξ < ∞, Eη = ∞, and that the law of ξ is non-lattice. Set

V (t) :=


k≥1

1
{Sk−1≤t<Sk−1+ηk }

, t ≥ 0,

whereS0 := 0, Sk := ξ1 + · · · + ξk, k ∈ N.

Assuming that ξ and η are independent and that Ḡ(x) := P{η > x} is regularly varying at ∞

with index −β, β ∈ [0, 1), Proposition 3.2 in [18] proves3 that

V (t)−

k≥1

Ḡ(t −Sk−1)1{Sk−1≤t}
m−1


[0, t] Ḡ(y) dy

d
−→ N (0, 1), t → ∞. (52)

In Problem 1 of Section 5.2 in [18], the authors ask “when can the random centering be replaced
by a non-random centering?” Relying on the results developed in Section 3, we can answer this
question in an extended setting where ξ and η are not necessarily independent. In particular, the
replacement is possible, i.e.,

V (t)− m−1

[0, t] Ḡ(y) dy

m−1

[0, t] Ḡ(y) dy

d
−→ N (0, 1), t → ∞,

if either of the following three conditions holds:

• Eξ2 < ∞

• Eξ2
= ∞,


[0, x]

y2P{ξ ∈ dy} ∼ ℓ(x), x → ∞, where ℓ is slowly varying at ∞, and

limx→∞ Ḡ(x)c2(x)x−1
= 0, where c(x) is any positive function which satisfies limx→∞

xℓ(c(x))
c2(x)

= 1

3 Actually the cited result treats the finite-dimensional convergence.
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• P{ξ > x} ∼ x−αℓ(x), x → ∞ for some α ∈ (1, 2) and some ℓ slowly varying at
∞ and limx→∞ Ḡ(x)c2(x)x−1

= 0, where c(x) is any positive function which satisfies

limx→∞
xℓ(c(x))

cα(x) = 1

The replacement is not possible if either of the following two conditions holds:

• Eξ2
= ∞,


[0, x]

y2P{ξ ∈ dy} ∼ ℓ(x), x → ∞, where ℓ is slowly varying at ∞;

Ḡ(x) ∼ ℓ(x), x → ∞, where ℓ is slowly varying at ∞, and limx→∞ Ḡ(x)c2(x)x−1
= ∞,

where c(x) is any positive function which satisfies limx→∞
xℓ(c(x))

c2(x)
= 1

• P{ξ > x} ∼ x−αℓ(x), x → ∞, for some α ∈ (1, 2) and some ℓ slowly varying at ∞;
Ḡ(x) ∼ x−βℓ(x), x → ∞, for some β ∈ [0, 2/α − 1] and some ℓ slowly varying at ∞;
limx→∞ Ḡ(x)c2(x)x−1

= ∞ if β = 2/α − 1, where c(x) is any positive function which

satisfies limx→∞
xℓ(c(x))

cα(x) = 1

In these cases

V (t)− m−1

[0, t] Ḡ(y) dy

m−1−1/αc(t)Ḡ(t)

d
−→ X, t → ∞,

where in the first case α = 2 and X
d
= N (0, 1), and in the second case X

d
=

[0,1]

v−β dZ(v),
where (Z(v))v∈[0,1] is an α-stable Lévy process with characteristic function (10).

To justify these statements, we first note that mimicking the proof of Lemma 3.3 we can
check that relation (52) holds under the standing assumptions of this section. Let E be a random
variable with the standard exponential distribution which is independent of everything else. We
claim that

−


[1,∞)

N (log x)e−x dx
d
≤ R(t) :=


k≥0


Ḡ(t −Sk)−ϕ(t −Sk)


1
{Sk≤t}

d
≤


[0, 1]

N (| log x |)e−x dx, (53)

whereN (t) := inf{k ∈ N0 : Sk > t} and ϕ(t) := E exp(−et−η), t ≥ 0.

Using the subadditivity of t → t+, t ∈ R and the distributional subadditivity of N (t) (see (19))
we obtain

[0, t]


1{η>t−y} − 1{log E+η>t−y}


dN (y) = N(t − η − log E)+)− N ((t − η)+


≤ N(t − η)+ + (log E)−)− N ((t − η)+


d
≤ N(log E)−


.

Hence

R(t) = Eη,E


[0, t]


1{η>t−y} − 1{log E+η>t−y}


dN (y)

d
≤ Eη,E N(log E)−


=


[0, 1]

N (| log x |)e−x dx .

The lower bound in (53) can be proved similarly.
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With (53) at hand, we conclude that Lemmas 3.4 and 3.6 are still valid if ϕ(t) is replaced
by Ḡ(t) and C(t) is replaced by


k≥1 Ḡ(t − Sk−1)1{Sk−1≤t}. It remains to combine these

generalizations of Lemmas 3.4 and 3.6 and our extended version of (52).
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Appendix

Lemma A.1, which is our main technical tool for proving Theorem 2.1, is a rather particular
case of a Toeplitz–Schur theorem (see Lemma 8.1 in [11]). On the other hand, this result follows
immediately by an application of the Lebesgue bounded convergence theorem.

Lemma A.1. Let (sn)n∈N be a sequence of real numbers such that limn→∞ sn = s ∈ (0,∞) and
(cn,m)n∈N,m∈N an array of nonnegative numbers which satisfy (A) limn→∞ cn,m = 0, for each
m ∈ N, and (B)

n
m=1 cn,m = 1. Then limn→∞

n
m=1 cn,msm = s.

Lemma A.2. Let ξ and η be positive random variables. The relation

lim
x↓0

P{ξ ≤ x}

P{η ≤ x}
= c ∈ [0,∞]

entails

lim
y→∞

Ee−yξ

Ee−yη = c.

Proof. By symmetry, it suffices to consider the case c ∈ [0,∞). For any ε > 0 there exists
x0 > 0 such that P{ξ ≤ x}/P{η ≤ x} ≤ c + ε for all x ∈ (0, x0]. With this x0 we have

Ee−yξ

Ee−yη ≤

 x0
0 e−yxP{ξ ≤ x} dx +


∞

x0
e−yxP{ξ ≤ x} dx x0

0 e−yxP{η ≤ x} dx

≤
(c + ε)

 x0
0 e−yxP{η ≤ x} dx + y−1e−yx0 x0

0 e−yxP{η ≤ x} dx

≤ (c + ε)+
y−1e−yx0 x0

x0/2
e−yxP{η ≤ x} dx

≤ (c + ε)+
1

P{η ≤ x0/2}(eyx0/2 − 1)
.

Sending y → ∞ and then ε → 0 proves

lim sup
y→∞

Ee−yξ

Ee−yη ≤ c.

The lower limit (when c > 0) can be treated similarly. �
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Before stating the next result we recall notation: ϕ(t) = E exp(−et (1 − W )), k(t) =
[0,t] ϕ(y) dy. The functions g(t) were defined in the paragraph preceding Lemma 3.4.

Lemma A.3. Assume that ν = ∞ and that either conditions (4) and (5) or (7) and (8) hold, or
σ 2 < ∞. Then

lim
t→∞

g(t)ϕ(t)
√

k(t)
= 0 and lim

t→∞


[0,t] g(y) d(−ϕ(y))

√
k(t)

= 0. (54)

Proof. Case σ 2 < ∞. The first relation in (54) is immediate:

g2(t)ϕ2(t)

k(t)
= const

tϕ2(t)

k(t)
≤ constϕ(t) → 0, t → ∞.

Condition ν = ∞ is equivalent to limt→∞ k(t) = ∞. Therefore if the integral

[0,∞)

y1/2

d(−ϕ(y)) converges the second relation in (54) holds trivially. Assume that limt→∞


[0,t] y1/2

d(−ϕ(y)) = ∞. Integrating by parts, we have

1
√

k(t)


[0, t]

y1/2 d(−ϕ(y)) ∼
1

2
√

k(t)


[0, t]

ϕ(y)y−1/2 dy, t → ∞.

By l’Hôpital rule,

1
√

k(t)


[1, t]

ϕ(y)y−1/2 dy ∼ 2


k(t)/t → 0, t → ∞,

which proves the second relation in (54).

Case when conditions (4) and (5) hold. Let η be a random variable with distribution such that

P{η ≤ x} ∼
1

(ℓ∗(− log x))2
, x ↓ 0.

Then (5) is equivalent to

lim
x↓0

P{1 − W ≤ x}

P{η ≤ x}
= 0.

By Lemma A.2,

lim
t→∞

ψ(t)

Ee−tη = 0.

Since, by Theorem 1.7.1’ in [4], Ee−tη
∼ (ℓ∗(log t))−2, t → ∞, we conclude that

lim
t→∞

ϕ(t)(ℓ∗(t))2 = 0.

Hence

g2(t)ϕ2(t)

k(t)
∼ const

t (ℓ∗(t))2ϕ2(t)

k(t)
≤ constϕ(t)(ℓ∗(t))2 → 0, t → ∞.

If the integral

[0,∞)

g(y) d(−ϕ(y)) converges the second relation in (54) holds trivially.
Assume that limt→∞


[0,t] g(y) d(−ϕ(y)) = ∞. According to Theorem 1.8.3 in [4], we can
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assume, without loss of generality, that g is differentiable. Then, g′(t) ∼ const t−1/2ℓ∗(t),
t → ∞. Integrating by parts, we have

1
√

k(t)


[0,t]

g(y) d(−ϕ(y)) ∼
1

√
k(t)


[1,t]

ϕ(y)g′(y) dy, t → ∞.

By l’Hôpital rule,

1
√

k(t)


[1, t]

ϕ(y)g′(y) dy ∼ 2g′(t)


k(t) ∼ const
g(t)

t


k(t), t → ∞. (55)

If ϕ(t) ∼ (ℓ∗(t))−2, t → ∞ then, by Proposition 1.5.8 in [4], limt→∞
g(t)

√
k(t)

t = 1. Therefore,
the right-hand side of (55) goes to zero, as t → ∞, if condition (5) holds.

The case when conditions (7) and (8) hold can be treated similarly, and we omit details. �

Let (S∗

k )k∈N0 be a zero-delayed random walk with positive steps. Set

N∗(x) := inf{k ∈ N0 : S∗

k > x}, x ≥ 0.

Lemma A.4 is used in Section 3 for investigating the asymptotics of moments.

Lemma A.4. Suppose ES∗

1 < ∞, and the law of S∗

1 is non-lattice.

(a) Let r : [0,∞) → [0,∞) be a nonincreasing function such that

lim
t→∞


[0, t]

r(y) dy = ∞.

Then

E


[0, t]
r(t − z) dN∗(z) ∼ (ES∗

1 )
−1


[0, t]
r(z) dz, t → ∞.

(b) Let r1, r2 : [0,∞) → [0,∞) be nondecreasing functions such that r1(t) ≥ r2(t), t ≥ 0, and

lim
t→∞


[0, t]


r1(y)− r2(y)


dy = ∞ and lim

t→∞

r1(t)+ r2(t)
[0, t]


r1(y)− r2(y)


dy

= 0. (56)

Then

E


[0, t]


r1(t − z)− r2(t − z)


dN∗(z) ∼ (ES∗

1 )
−1


[0, t]


r1(z)− r2(z)


dz, t → ∞.

Remark A.5. The conclusion of Lemma A.4(b) is in force whenever r1 is a nondecreasing
function of subexponential growth satisfying


[0,∞)

r1(y) dy = ∞ and r2 ≡ 0.
Let us further note that the second condition in (56) cannot be omitted. Indeed, assuming

that r1(t) = et and r2 ≡ 0 we infer E

[0, t] r1(t − y) dN∗(y) ∼ (1 − Ee−S∗

1 )−1et , whereas

(ES∗

1 )
−1

[0, t] r1(y) dy ∼ (ES∗

1 )
−1et .

Part (a) of Lemma A.4 is a fragment of Theorem 4 in [20]. The proof of part (b) requires only
minor modifications and is thus omitted.

Lemma A.6. Let 0 ≤ a < b < ∞. Assume that X t (·) ⇒ X (·), as t → ∞, in D[a, b] in the
M1 topology. Assume also that, as t → ∞, µt converges weakly to µ on [a, b], where (µt ) is a
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family of Radon measures, and the limiting measure µ is absolutely continuous with respect to
the Lebesgue measure. Then

[a,b]

X t (·)µt (dy)
d
−→


[a,b]

X (·)µ(dy), t → ∞.

Proof. It suffices to prove that

lim
t→∞


[a,b]

ht (y)µt (dy) =


[a,b]

h(y)µ(dy), (57)

whenever limt→∞ ht (y) = h(y) in D[a, b] in the M1 topology, for the desired result then follows
by the continuous mapping theorem.
Since h ∈ D[a, b] the set Dh of its discontinuities is at most countable. By Lemma 12.5.1 in [22],
convergence in the M1 topology implies local uniform convergence at all continuity points of the
limit. Hence E := {x : there exists xt such that limt→∞ xt = x, but limt→∞ ht (xt ) ≠ h(x)} ⊆

Dh , and we conclude that µ(E) = 0. Now (57) follows from Lemma 2.1 in [5]. �
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