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a b s t r a c t

Sturmian sequences appear in the work of Markoff on approximations of real numbers
and minima of quadratic functions. In particular, Christoffel words, or equivalently pairs
of relatively prime nonnegative integers, parametrize the Markoff numbers. It was asked
by Frobenius if this parametrization is injective. We answer this conjecture for a particular
subclass of these numbers, and show that a special Sturmian sequence of irrational slope
determines the order of the Markoff numbers in this subclass.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Sturmian sequences have been intensively studied in combinatorics on words these last years. For an exposition of this
theory, see [10]. They are intimately related to continued fractions and discretization of straight lines: indeed, the continued
fraction of the slope of the line gives a way to compute the Sturmian sequence that discretizes the given line. But there is a
more subtle relation to continued fractions, discovered by Markoff.
Indeed, in his theory of minima of indefinite binary quadratic forms and Diophantine approximations of real numbers,

Markoff [11] introduced his famous integers, now calledMarkoff numbers. They are parametrized by pairs (p, q) of relatively
prime natural numbers (equivalently by nonnegative rational numbers, together with∞). The uniqueness conjecture for
Markoff numbers, first stated as an open problemby Frobenius ([8, p. 614]), is the claim that this parametrization is injective.
If the conjecture is true, then a natural question to ask is what total order on these pairs (p, q) is induced by the

natural order of the Markoff numbers. As far as we know, no result is known on this problem. Our main result answers the
conjecture and this problem in a particular case. It is the case of the Markoff numbers parametrized by the pairs (m, 1) and
(1, n), n,m ≥ 2.We show that these numbers are all distinct and that their order is determined (in a natural sense explained
below; see Fig. 1) by a special Sturmian sequence, whose slope is the irrational number log

(
1+
√
5

2

)/
log(1 +

√
2). It is a

striking fact that Sturmian sequences, which appear centrally in the definition of Markoff numbers (compare [5, p. 28–30],
[13], [10, Th. 2.1.5][15, Th. 3.1]), appear again here.
Our particular case for the conjecture differs from the cases considered before: we take a certain subset of all Markoff

numbers based on the parametrization, and prove that the values are distinct. In the literature, the emphasis has beenmore
on proving uniqueness based on the property of the Markoff number itself (as opposed to its parametrization): if it is prime,
a prime power, twice a prime power, etc. See [2,19] and the references therein.
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Fig. 1. Ordering the Markoff numbersM(m, 1) andM(1, n),m, n ≥ 2, through the Sturmian sequences associated with a certain irrational half-line.

In order to prove that the Markoff numbers parametrized by the pairs (m, 1) and (1, n) are distinct, we note, after
Frobenius, that they lie in two binary recurring sequences (um)m≥0 and (vn)n≥0. The first sequence is the sequence of odd-
indexed Fibonacci numbers Fn, and the second of odd-indexed Pell numbers Pn; precisely, normalize these two classical
sequences so that F0 = P0 = 1, F1 = P1 = 1, with the recursions Fn+2 = Fn+1 + Fn and Pn+2 = 2Pn+1 + Pn (cf. the Sloane
On-Line Encyclopedia of Integer Sequences [16]); then um = F2m+3 and vn = P2n+5. We have

(um)m≥1 = 13, 34, 89, 233, 610, 1597, 4181, 10946, 28657, 75025, 196418, . . .

Furthermore

(vn)n≥1 = 29, 169, 985, 5741, 33461, 195025, . . .

We show that the only common value to these two sequences is u0 = v0 = 5; for this, we use Baker’s theory of linear
forms in the logarithms of algebraic numbers, and more precisely a powerful refinement of his theory due to Matveev [12].
We then reduce the astronomical bounds obtained to something more manageable, using a form of the Baker–Davenport
lemma.
We thank the two referees for many suggestions, which helped us to improve the present article.

2. The conjecture and another problem

Markoff numbers M(i, j) are natural integers which are parametrized by two relatively prime natural integers i, j. See
[4–6,8,11,18]. One way to define Markoff numbers is as follows: they are the positive integer solutions to the equation
x2+y2+ z2 = 3xyz. The parametrization by pairs (i, j) of relatively prime integers was introduced by Frobenius [8], see e.g.,
[5, p. 24]. This parametrization coincides with the parametrization of the Markoff tree (see [5, p. 19]), which is an infinite
binary tree, when this tree is identified with the Stern–Brocot tree (see [9, p. 117]); recall that the latter, which is obtained
by a process generalizing Farey sequences, contains in its nodes exactly once each positive rational number. The uniqueness
conjecture forMarkoff numbers states that the function (i, j) 7→ M(i, j) is injective. If this conjecture is true, a natural question
is to determine the total order on the pairs (i, j) induced by theM(i, j). Equivalently, what is the order on the positive rational
numbers ji , including∞, induced by the Markoff numbers?
We answer these questions for the special case where (i, j) = (m + 1, 1) or (1, n + 1), m, n ≥ 0. For this let

um = M(m+ 1, 1) and vn = M(1, n+ 1) and consider the set E = {um | m ≥ 1} ∪ {vn | n ≥ 1}.
Let E = {e0 < e1 < e2 < · · · } and define the sequence (ak)k≥0 of 0 and 1’s as follows: ak = 0 if ek is among the

numbers um, m ≥ 1, and ak = 1 if ek is among the numbers vn, n ≥ 1. Of course, the sequence (an) is well defined only
if the sequences um, m ≥ 1 and vn, n ≥ 1 have no common value; equivalently if the Markoff numbers M(m + 1, 1) and
M(1, n+ 1) are distinct for n, m ≥ 1. Note that the sequences (un) and (vm) are strictly increasing, so that the knowledge
of the sequence (an) completely determines the order of the set E. We have

E = {13, 29, 34, 89, 169, 233, 610, 985, 1597, 4181, 5741, 10946, 28657, 33461, 75025, 196025, 196418, . . .},

where the elements of the sequence (um) are in bold, and therefore

(an)n≥0 = 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, . . .

Our main result is the following. For definitions and properties of Sturmian sequences, see [10].
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Theorem 1. (a) The Markoff numbers M(m+ 1, 1) and M(1, n+ 1) are distinct for n, m ≥ 1.
(b) The sequence (ak)k≥0 is a Sturmian sequence.

The proof will show that (ak)k≥0 is the lower Christoffel sequence (see [3]) associated with the half-line y = Ax+ B, with
A = logφ1

logφ2
≈ 0.5459 . . . and B = log(δ1φ1/δ2φ2)

logφ2
≈ −0.4557 . . . , see Fig. 1; here, δ1, δ2, φ1, φ2 are the quadratic numbers

defined in Section 3.3. It is a consequence of Baker’s theory (see e.g., [17, p. 3]) that the slope A is transcendental. With the
notation of [10, p. 53], the sequence (ak)k≥0 is equivalently equal to themechanical word sα,ρ , with α = A

A+1 , ρ =
A+B+1
A+1 .

3. Proof of the main theorem, part 1

In this section we prove the first part of the Theorem. Before we do this we need some tools from Diophantine
approximation.

3.1. The Baker–Davenport lemma

To begin, we need a certain version of the celebrated Baker–Davenport Lemma [1]. The one we give here is adapted from
[7]. We let ‖x‖ denote the distance from the real number x to the nearest integer.

Theorem 2. Let M be a positive integer and κ ,µ, A, B be real numbers satisfying κ > 0, A > 0, B > 1. Let p, q be positive integers
satisfying

|qκ − p| ≤ α, (1)
‖µq‖ > Mα, (2)

for some real α > 0. Write ε = ‖µq‖ −Mα. Then the inequality

0 < mκ − n+ µ < AB−m (3)

has no solution in integers m, n with log(Aq/ε)
log B ≤ m ≤ M.

Proof. Suppose that (3) holds with 0 ≤ m ≤ M . Multiplying by q and rearranging a little we obtain

0 < [(mp− nq)+ µq] +m(qκ − p) < qAB−m.

Hence

qAB−m > |(mp− nq)+ µq| −m|qκ − p|
≥ ‖µq‖ −mα
≥ ‖µq‖ −Mα = ε > 0.

Thus log(qA)−m log B > log ε, which impliesm < log(qA/ε)/ log(B). �

Now let K1, K2 be real quadratic fields (identified with fixed embeddings into R). Let φ1, φ2 be respectively fundamental
units of K1, K2, both chosen to be greater than 1. Let δi ∈ Ki, δi > 0 and let

um = δ1φm1 + δ̄1φ̄
m
1 , vn = δ2φ

n
2 + δ̄2φ̄

n
2 ,

where ·̄means conjugation within Ki. We shall use the shorthand

δ = min(δ1, δ2), δ′ = |δ̄1| + |δ̄2|

and

φ = min(φ1, φ2).

Our objective is to solve the equation

um = vn, m, n ≥ 0,

and we assume that this equality holds throughout. We thus have

|δ1φ
m
1 − δ2φ

n
2 | = |δ̄1φ̄

m
1 − δ̄2φ̄

n
2 |

≤ |δ̄1| + |δ̄2|,

since |φ̄1|, |φ̄2| < 1, because±1 = Norm(φi) = φiφ̄i. Hence

|δ1φ
m
1 − δ2φ

n
2 | ≤ δ

′. (4)

Lemma 3.1. If δ1φm1 ≥
3
2δ2φ

n
2 (resp. δ2φ

n
2 ≥

3
2δ1φ

m
1 ), then m (resp. n) is≤

log(3δ′/δ)
logφ .
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Proof. Suppose that δ1φm1 ≥
3
2δ2φ

n
2 . Then (4) implies δ1φ

m
1 ≤ δ2φ

n
2+δ

′; thus 32δ2φ
n
2 ≤ δ2φ

n
2+δ

′, which implies 12δ2φ
n
2 ≤ δ

′.
Moreover δ1φm1 = δ2φ

n
2 + (δ1φ

m
1 − δ2φ

n
2) ≤ 3δ

′. We conclude thatm logφ1+ log δ1 ≤ log(3δ′) and the bound onm follows,
since φ1 ≥ φ > 1 and δ1 ≥ δ. The other inequality is proved similarly. �

Lemma 3.2. Suppose

δ2φ
n
2 < δ1φ

m
1 <

3
2
δ2φ

n
2 . (5)

Then m, n satisfy the inequality (3) with

κ =
logφ1
logφ2

, µ =
log(δ1/δ2)
logφ2

, A =
3δ′

2δ1 logφ2
, B = φ1.

Proof. From (5) we deduce

0 <
δ1φ

m
1

δ2φ
n
2
− 1.

Then from (4), we deduce

0 <
δ1φ

m
1

δ2φ
n
2
− 1 ≤

δ′

δ2φ
n
2
.

Now, log(1+ x) < x for x > 0; thus

0 < log
(
δ1φ

m
1

δ2φ
n
2

)
= log

(
1+

δ1φ
m
1

δ2φ
n
2
− 1

)
<
δ1φ

m
1

δ2φ
n
2
− 1 ≤

δ′

δ2φ
n
2
<

3δ′

2δ1φm1
,

where the last inequality follows from the hypothesis. We obtain now

0 < m logφ1 − n logφ2 + log(δ1/δ2) <
3
2

δ′

δ1φ
m
1
.

Dividing by logφ2, we obtain

0 < mκ − n+ µ < AB−m,

which was to be proved. �

3.2. The bounds of Matveev

Let L be a number field of degree D, let α1, . . . , αk be non-zero elements of L and b1, . . . , bk be rational integers. Set

B = max{|b1|, . . . , |bk|},

and

Λ = α
b1
1 · · ·α

bk
k − 1.

For an algebraic integer α whose minimal polynomial over Z is of the form P(X) = a
∏d
i=1(X − α

(i)), we write h(α) for its
logarithmic height, that is,

h(α) =
1
d

(
log|a| +

d∑
i=1

log(max{1, |α(i)|})

)
.

Let A1, . . . , Ak be real numbers with

Aj ≥ max{D h(αj), |logαj|, 0.16}

for j = 1, . . . , k.
Baker’s theory of linear forms in logarithms gives a lower bound for |Λ|, provided thatΛ 6= 0. We shall use the following

recent result of Matveev [12].

Theorem 3 (Matveev). IfΛ is non-zero and L a real field, then

log|Λ| > −1.4 · 30k+3k4.5D2A1 · · · Ak(1+ logD)(1+ log B).
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3.3. Proof of the main theorem, part (a)

With the tools above we are now ready to prove the first part of our main theorem.

Proof. We take

φ1 =
3+
√
5

2
=

(
1+
√
5

2

)2
, φ2 = 3+ 2

√
2 = (1+

√
2)2, δ1 =

25+ 11
√
5

10
, δ2 =

10+ 7
√
2

4
. (6)

Then one has, by Frobenius [8, p. 616–617]:

um = δ1φm1 + δ̄1φ̄
m
1 , vn = δ2φ

n
2 + δ̄2φ̄

n
2 . (7)

LetΛ := (δ2/δ1)φn2φ
−m
1 − 1. Assume that um = vn and assume also that (m, n) 6= (0, 0). We have

δ2φ
n
2/δ1φ

m
1 − 1 = (δ̄1φ̄

m
1 − δ̄2φ̄

n
2)/δ1φ

m
1 ;

now, δ̄1, φ̄1, δ̄2, φ̄2 are all positive and smaller than 1, and δi is> 2. Thus we get |Λ| ≤ φ−m1 , that is log|Λ| ≤ −m logφ1.
We now apply Theorem 3 to bound |Λ| from below: we take k = 3, L = Q[

√
2,
√
5], D = 4, α1 = δ2/δ1, α2 = φ2,

α3 = φ1, b1 = 1, b2 = n, b3 = −m. Note that by what has been shown above, we have δ2φn2/δ1φ
m
1 < 2. Then a

numerical computation, using the fact that φ2 is greater than φ1, implies that n ≤ m. Thus, with the choices made, we
have B = max{|b1|, |b2|, |b3|} = m.
Hence Theorem 3 implies that

log|Λ| > −1.4 · 306 · 34.5 · 16 A1A2A3(1+ log 4)(1+ logm),

with A1 = log(320δ22) ≤ 9, A2 = 2 logφ2 ≤ 3.6 and A3 = 2 logφ1 ≤ 2. Using the upper bound for log|Λ| obtained above,
we get

−0.96m > −3.55 · 1014(1+ logm),

an inequality that is not satisfied whenm is greater than 1020. Thus, we have proved thanks to Baker’s theory thatm ≤ 1020.
We now take K1 = Q[

√
5], K2 = Q[

√
2]. Then φ1, φ2 are respectively units in K1, K2. If one of the two alternative

hypotheses of Lemma 3.1 holds, then we must havem or n ≤ log(3δ′/δ)
logφ .

Numerical computation shows that this latter number is≤ −3, which is impossible. Thus we must have δ1φm1 <
3
2δ2φ

n
2

and δ2φn2 <
3
2δ1φ

m
1 .

Note that we cannot have δ1φm1 = δ2φ
n
2 : indeed, it is easy to see that this equality would imply an equality of the form

a + b
√
5 = c + d

√
2, with a, b, c, d positive rational numbers, which is impossible. Thus we have either δ2φn2 < δ1φ

m
1 or

δ1φ
m
1 < δ2φ

n
2 .

Suppose that δ2φn2 < δ1φ
m
1 . Then Lemma 3.2 implies that (3) in Theorem 2 is satisfied. We may take M = 10

20 and we
would like to choose values for p, q and α so that the remaining hypotheses of Theorem 2 are satisfied. This requires some
computations for which we use gp [14]. Here κ = logφ1/ logφ2. Working to 1000 decimal places, we write down a floating
point approximation κ0 to κ . Thus certainly

|κ − κ0| ≤ 10−900.

Now let p/q be any convergent of the continued fraction expansion of κ0. We take

α =
1
q
+

q
10900

and note that (1) is satisfied since |κ0 − p/q| ≤ 1/q2. Finally, to apply Theorem 2, we need only choose p/q so that
ε = ‖µq‖ −Mα is positive. This turns out to be the case if we take p/q to be the 43rd convergent of the continued fraction
of κ0:

p = 387952129646429739199, q = 710561840528321688446.

We deduce from Theorem 2 that we must have m <
log(Aq/ε)
log B . This number is ≤48, by numerical computation. Thus,

m ≤ 47 and by (5), we must have n ≤ 25.
Suppose on the contrary that δ1φn1 < δ2φ

m
2 . Then, arguing similarly, we obtain n ≤ 26,m ≤ 48.

Thus we are reduced to solve um = vn for 0 ≤ m, n ≤ 50, which is done quickly using a computer. The only possibility
ism = n = 0, which was excluded. �
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Fig. 2. Discretizing vs. cutting.

4. Proof of the main theorem, part (b)

Consider two disjoint subsets U, V of R such that U ∪ V is isomorphic to N as ordered set. Then we may write
U ∪ V = {x0 < x1 < x2 < · · · }

and we define a sequence (an)n≥0 over {0, 1} by:

an =
{
0, if xn ∈ U;
1, if xn ∈ V .

This construction will be used several times below. The lemma which follows is well known; we give the proof for
completeness.
Lemma 4.1. Let U = aN + b, V = c N + d, with a, c > 0, and d − c < b < d. Then the sequence (an) defined above is a
Sturmian sequence, obtained by discretizing from below the half-line ax+ b = cy+ d, x ≥ 0.
Proof. We may replace U and V by AN + B and N, with A = a

c , B =
b−d
c . We then have the inequalities −1 < B < 0.

Consider the half-line y = Ax + B, x ≥ 0, and its intersection points with the lattice lines, that is, the lines x = k, y = l,
k, l ∈ Z. As in [10, p. 55], we define the cutting sequence (bn) of this half-line by labelling these points by 0 or 1, according
to whether the lattice line is of the form y = l or x = k. Then (an) = (bn): indeed, if we project these intersection points
onto the y-axis, we obtain the real numbers Al+ B or k, according to the two cases.
Now, there is a well-known correspondence between cutting sequences and discretization sequences. See Fig. 2. To

conclude, observe that y = Ax+ B is equivalent to ax+ b = cy+ d. �

Note that, by a change of variables, the sequence of the lemma is the mechanical sequence, in the sense of [10, p. 53],
corresponding to the half-line y = A

A+1x+
B
A+1 , x ≥ 0. The verification is left to the reader.

Corollary 4. Let U = {pmq | m ≥ 0} and V = {rns | n ≥ 0} with p, r > 1, q, s > 0 and r−1s < q < s. If U, V are disjoint, then
the sequence (an) obtained as above is a Sturmian sequence.
Proof. Taking logarithms, we define U ′ = (log p)N+ log q, V ′ = (log r)N+ log s. Then we apply Lemma 4.1. �

We now set U = {um | m ≥ 1} and V = {vn | n ≥ 1} and construct the sequence (an) as at the beginning of the section.
This makes sense since we know by part (a) of Theorem 1 that U ∩ V is empty.
Let u′m = δ1φ

m
1 and vn = δ2φ

n
2 . We apply the corollary to the sets {u

′
m | m ≥ 1} and {v

′
n | n ≥ 1} and obtain a Sturmian

sequence. By (7) follows easily that un − 1 < u′n ≤ un and vn − 1 < v′n ≤ vn. Hence the sets {um | m ≥ 1} and {vn | n ≥ 1}
define the same sequence (an), which is therefore Sturmian.
A closer look at the proof of the previous results shows that the half-line to consider is x(logφ1) + log(δ1φ1) =

y log(φ2)+ log(δ2φ2), since we disregard the values u′0, v
′

0. This implies the remarks following the theorem.
The previous proof raises the following natural problem: given two linearly recursive sequences (un), and (vn), what can

be said about the complexity of the sequence of 0’s and 1’s, constructed as before?
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