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Genetic analyses have shaped much of our understanding of cancer. However, it is becoming increasingly
clear that cancer cells display features of normal tissue organization, where cancer stem cells (CSCs) can
drive tumor growth. Although often considered as mutually exclusive models to describe tumor heterogene-
ity, we propose that the genetic and CSC models of cancer can be harmonized by considering the role of
genetic diversity and nongenetic influences in contributing to tumor heterogeneity. We offer an approach
to integrating CSCs and cancer genetic data that will guide the field in interpreting past observations and
designing future studies.
Introduction
Despite advances in cancer treatment, many patients still fail

therapy, resulting in disease progression, recurrence, and

reduced overall survival. Historically, much focus has been on

the genetic and biochemical mechanisms that cause drug

resistance. However, cancer is widely understood to be a het-

erogeneous disease and there is increasing awareness that

intratumoral heterogeneity contributes to therapy failure and dis-

ease progression (Hanahan and Weinberg, 2011). A tumor is not

simply a ‘‘bag’’ of homogeneousmalignant cells. Rather, a tumor

is a complex ecosystem containing tumor cells, as well as

various infiltrating endothelial, hematopoietic, stromal, and other

cell types that can influence the function of the tumor as a whole.

These extraneous cell types can influence tumor cells directly

and can create metabolic changes such as a hypoxic environ-

ment and nutrient fluctuations, which contribute to heterogeneity

in the function of malignant cells. By functioning as a complex

ecosystem, overall tumor fitness may be enhanced, ultimately

impacting therapy failure (Junttila and de Sauvage, 2013). Aside

from these non-cell-autonomous effects, even individual malig-

nant cells within a tumor can possess variation in growth,

apoptosis, metabolism, and other ‘‘hallmarks of cancer.’’ How-

ever, the mechanisms driving intratumoral variation in cellular

function have, until recently, been uncertain.

Three avenues of cancer research are coming together to pro-

vide increasing clarity to the underlying mechanisms of tumor

heterogeneity and uncovering how these are linked to therapy

resistance, tumor progression, and recurrence. Advanced

genome sequencing has demonstrated that cancer within a sin-

gle patient is a heterogeneousmixture of genetically distinct sub-

clones that arise through branching evolution (Burrell et al., 2013;

Greaves and Maley, 2012). The unique driver mutations within

each subclone can impact the cancer hallmarks differently,

thereby contributing to functional heterogeneity. In parallel,

strong evidence is emerging that nongenetic determinants,

largely related to developmental pathways and epigenetic mod-

ifications (DNA methylation, histone modification, chromatin

openness, microRNA [miRNA], and other noncoding RNA)

contribute to functional heterogeneity (Dick, 2008; Meacham

and Morrison, 2013; Nguyen et al., 2012). These determinants

are generally ascribed to the maintenance of normal tissue
stem cell hierarchies. Similarly, nongenetic determinants create

hierarchically organized tumor tissues where a subpopulation

of self-renewing cancer stem cells (CSCs) sustains the long-

term clonal maintenance of the neoplasm. Although consider-

able controversy remains as to which tumor types are

hierarchically organized and how best to define CSCs, this

developmental and/or hierarchical model has generated consid-

erable interest because CSCs appear to possess properties that

make them clinically relevant. Evidence from both experimental

models and clinical studies indicate that CSCs survive many

commonly employed cancer therapeutics. Moreover, the prop-

erties and transcriptional signatures specific to CSC are highly

predictive of overall patient survival pointing to their clinical rele-

vance. Although this area will not be discussed in our review, an

additional promising avenue is the recognition that there are

many nontumor cell elements associated with tumors, referred

to collectively as the tumor microenvironment (TME) (Hanahan

and Coussens, 2012). The juxtaposition of a tumor cell with the

TME influences the function of that cell, resulting in significant

variation in cellular function. The complexity imposed by the

TME is amplified due to crosstalk between tumor cells and the

TME. The TME plays a role in adaptive drug resistance, as cells

of the same genetic make-up can be sensitive or resistant to

drugs depending on the context they are in. Recent studies

also point to the potential for the TME to initiate stem cell-like

programs in cancer cells (Charles et al., 2010; Vermeulen et al.,

2010). Collectively, all three mechanisms are strongly linked to

therapy failure and tumor recurrence and all are important deter-

minants of tumor fitness (Figure 1).

We will focus our Review on the genetic and developmental

mechanisms that generate tumor heterogeneity, and we will

emphasize human studies. Although often considered as mutu-

ally exclusive models to describe tumor heterogeneity, we pro-

pose that the genetic and developmental and/or hierarchical

models of cancer can be harmonized. Indeed, recent findings

in leukemia and solid tumors indicate that gene-expression sig-

natures specific to CSC and normal stem cells are highly prog-

nostic for outcome across a wide spectrum of patients with

diverse driver mutations (Bartholdy et al., 2014; Eppert et al.,

2011; Gentles et al., 2010; Merlos-Suárez et al., 2011), suggest-

ing that stemness is a central biological property or process
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Figure 1. Stemness as a Guiding Principle that Governs Therapeutic
Response
Three fields in biology—cancer genetics, epigenetics, and microenviron-
ment—are coming together to provide increasing clarity to the processes that
determine stemness and in turn influence clinical outcome. These three factors
can influence stemness simultaneously, but they can also act independently
over time. Through evolutionary time, different forces can impact a cell’s
stemness properties and thereby shape tumor progression and therapeutic
response.
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upon which many driver mutations coalesce. Thus, our central

hypothesis is that three facets—genetic diversity, epigenetics,

and the TME—contribute to tumor heterogeneity, and the clinical

relevance of each is related to the extent to which it impinges on

stemness and thereby influences patient survival (Figure 1).

Defining Stemness
Themodern era of stem cell research began in 1961 with the pio-

neering studies of Till and McCulloch who developed a clonal

in vivo repopulation assay and used it to show that a single he-

matopoietic cell had multilineage differentiation potential while

still retaining the property of self-renewal. Although multilineage

differentiation potential is often considered a stem cell property,

studies in the hematopoietic system have clearly identified

distinct cells capable of both repopulation and multilineage

potential but lacking self-renewal potential. Thus, the cardinal

property of a stem cell is self-renewal, whether normal or malig-

nant. Self-renewal is the key biological process where, upon cell

division, a stem cell produces one (asymmetric division) or two

(symmetric division) daughters that retain the capacity for self-

renewal, ensuring that the stem cell population is maintained

or expanded for long-term clonal growth. Operationally, the

gold standard measure of a stem cell is maintenance of long-

term clonal growth in functional repopulation assays, involving

either transplantation into serial recipients or in situ tracking.

Indeed the lack of adherence to this principle has generated

much confusion in the CSC field. Many studies employ surrogate

in vitro assays such as serial replating of tumorspheres or report

on serial passage of bulk tumor cells. However, only clonal serial

in vivo repopulation assays can formally test self-renewal of stem

cells. The molecular programs that underlie the stem cell state
276 Cell Stem Cell 14, March 6, 2014 ª2014 Elsevier Inc.
are only just emerging as studies are defining critical epigenetic

states and the transcription factors and epigenetic modifiers

(e.g., Polycomb complexes and miRNA) that are responsible

for endowing self-renewal to a cell. The term ‘‘stemness’’ is

increasingly being used in the literature to refer collectively to

the integrated functioning of molecular programs that govern

and maintain the stem cell state. We will adopt the term ‘‘stem-

ness’’ throughout this review to denote this meaning.

Cancer Stem Cells and Tumor-Initiating Cells
By definition, both CSCs and normal tissue stem cells possess

self-renewal capacity; however, self-renewal is typically deregu-

lated in CSCs. Formany cancers, CSCs represent a distinct pop-

ulation that can be prospectively isolated from the remainder of

the tumor cells and can be shown to have clonal long-term repo-

pulation and self-renewal capacity—the defining features of a

CSC (Clarke et al., 2006; Nguyen et al., 2012). However, in

some cancer types it has not been possible to distinguish

CSCs from non-CSCs because most cells have CSC function.

Such tumors seem to be homogeneous or possess a very

shallow hierarchy. As well, some evidence is emerging that

certain cancer cells exhibit plasticity by reversibly transitioning

between a stem and non-stem-cell state (although this is a

controversial and intensely debated topic). Thus, even though

some tumors may not be organized into a rigid hierarchy, the

stemness state contributes a variety of functions that enable

cells to survive therapy. A key proposition of our review is that

the determinants of stemness are the core contributors that

affect therapy failure, regardless of whether these determinants

are present within a transitory state or in well-defined CSC pop-

ulations. Like CSCs, transitory cells also possess clonal tumor-

initiation capacity; however, prospective isolation is difficult.

Thus, in terms of nomenclature they pose a problem and formally

they should not be termed CSCs, a term restricted to cases

where self-renewing CSC can be prospectively purified. We

and others refer to such cells on the basis of the functional

tumor-initiating cell (T-IC) or leukemia-initiating cell (L-IC) assays

that identify them. T-IC or L-IC are defined by their ability to: (1)

generate a xenograft that is representative of the parent tumor,

(2) self-renew as demonstrated by serial passage in a xenograft

assay at clonal cell doses, and (3) give rise to daughter cells that

may possess proliferative capacity but are unable to establish or

maintain the tumor clone upon serial passage (Clarke et al.,

2006). The T-IC/L-IC terms can also be applied in situations

where a bona-fide CSC exists, but the proper combination of

cell surface markers required for their prospective isolation has

not been found. For ease of reading, we have adopted the

term T-IC/L-IC throughout our review to refer to all cells with

clonal long-term tumor initiating function and not just to those

where prospective isolation has been possible.

Historical Perspectives on Tumor Heterogeneity
Heterogeneity in the cellular morphology of tumors was noted by

the great experimental pathologists of the 1800s. Aside from

cellular morphology and tumor histology (Heppner, 1984),

improved technology has uncovered additional features of het-

erogeneity between tumors, including variation in cell surface

markers (Dexter et al., 1978; Pertschuk et al., 1978; Poste

et al., 1980; Raz et al., 1980), genetic abnormalities (Mitelman
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et al., 1972; Shapiro et al., 1981), growth rates (Danielson et al.,

1980; Dexter et al., 1978; Gray and Pierce, 1964), and response

to therapy (Barranco et al., 1972; Heppner et al., 1978). Early

evidence pointed to the existence of multiple tumor cell subpop-

ulations within single cancers, including melanoma (Gray and

Pierce, 1964), sarcoma (Mitelman, 1971; Prehn, 1970), mam-

mary tumors (Dexter et al., 1978; Henderson and Rous, 1962;

Heppner et al., 1978), colon cancer (Dexter et al., 1979), and

other solid tumors (Klein and Klein, 1956). Along the same lines,

when single cells were cloned from a metastatic mouse mela-

noma cell line and injected into syngeneic hosts, the degree of

metastasis varied extensively, indicating that diversity existed

within the parental tumor cells enabling only some clones to

metastasize (Fidler and Kripke, 1977). Important evidence for

diversification of tumor cell characteristics came from studies

in malignant glioma (Shapiro et al., 1981), where primary human

tumor cells were isolated and mitoses analyzed by karyotyping.

The established karyotypic heterogeneity in the primary tumor

was used as a marker for clonal subpopulations derived from

primary cells through limiting dilution plating. Cloned subpopula-

tions differed with respect to their sensitivity to chemotherapeu-

tics (Yung et al., 1982) and genetic stability (Shapiro et al., 1981).

Evidence that functional tumor cell heterogeneity exists in vivo

came directly from human acute myeloid and lymphoblastic leu-

kemia patients, where in vivo 3H-TdR radiolabeling showed

marked differences in the proliferation kinetics of individual

leukemic cells that could be distinguished on the basis of

morphology (Clarkson et al., 1970; Gavosto et al., 1967; Killmann

et al., 1963). Thus, this era yieldedmany observations describing

variation in functional parameters and established that growth

properties of individual cells within a tumor were far from

homogeneous.

Of particular importance from this earlier era of cancer

research was quantitative evidence from syngeneic mouse tu-

mor grafting experiments showing that the capacity to initiate a

new tumor and sustain disease was variable, with not every

cell able to function as a T-IC (Bruce and Van Der Gaag, 1963;

Hewitt, 1958). The same observations were made in studies

that were carried out in human patients, where tumors were au-

totransplanted subcutaneously into the same patient (Southam

et al., 1962). These studies not only illustrated that tumor reinitia-

tion was variable, but that even in syngeneic recipients T-ICwere

rare. Collectively, these clonal studies established that tumors

are not a collection of homogeneous cells with equal capacity

for proliferation. Instead, analogous to an intricate ecosystem,

tumors are complex networks where individual cells display a

diverse set of characteristics and function together to support

the growth and maintenance of the tumor as a whole.

Since the original conception of evolutionary reasoning (Dar-

win, 1859), it has become evident that genetic diversity within

a species’ gene pool enhances its ability to survive and adapt

to changing environments over time. Likewise, the stability and

robustness of ecosystems depends on the degree of biodiversity

(Loreau et al., 2001; Tilman et al., 2006). In developmental

biology, different specialized cell types need to exist for the

effective functioning of organs. For example, for the proper func-

tioning of the blood system, hematopoietic stem cells (HSCs)

need to produce a heterogeneous pool of specialized cell types

that differ in structure and function. Heterogeneity even within
the HSC pool has been described (Cheung et al., 2013; Yama-

moto et al., 2013). Without this diversity, the function of the blood

system would be compromised. While the evolution of species

and biodiversity in ecology are consequences of changes at

the genetic level, diversity in cell function and tissue develop-

ment within an organism are the result of nongenetic, develop-

mental programs.

Genetic Mechanisms as the Source of Tumor
Heterogeneity
A guiding principle in cancer research is that tumor initiation and

progression result from the sequential acquisition of genetic mu-

tations that contribute to subsequent clonal expansions (Nowell,

1976). This view is strongly supported by early studies where ge-

netic mutations were analyzed across different stages of colo-

rectal cancer (Vogelstein et al., 1988). These studies established

that genetic changes cause phenotypic manifestations, a finding

that added significant weight to the idea that cancer develop-

ment follows the rules of Darwinian evolution (Cairns, 1975;

Nowell, 1976). The basic premise of this long-standing idea is

that a cell that is endowed with an advantageous heritable muta-

tion generates progeny that has a survival advantage over other

cells that lack this mutation. Consequently, the progeny of the

cell with increased fitness will flourish and produce a clonal pop-

ulation that dominates the site where it originated. Over time,

additional advantageous mutations can arise, endowing a

further growth advantage to another cell within the clone. As

unique subclones arise, different outcomes are possible: less

fit subclones can be completely lost with the most fit subclone

dominating, or many minor subclones can persist alongside

the dominant clone, forming reservoirs from which evolution

can continue. Overall, models where subclones persist and/or

contribute to independent phylogenetic lineage trees within

single tumors are highly reminiscent of the branching evolution

that Darwin described as leading to increased fitness and overall

robustness of a species (Figure 2).

Technological advances have made high-throughput se-

quencing of tumor genomes possible. The last 6 years have

seen a flood of whole exome sequencing (WES) and whole

genome sequencing (WGS) of thousands of tumors, enabling

complex analyses of the mutations that are present within a

single tumor and across multiple tumors (Garraway and Lander,

2013). Several principles are emerging from this work, including

that fact that the mutational burden is highly variable across

tumor types (Lawrence et al., 2013). For example, leukemias

tend to have the lowest number of mutations per tumor

compared to adult solid tumors. Even within the same tumor

type, there is considerable variation in driver mutations and the

same driver mutations can occur in different tumor types, sug-

gesting that the same pathways can be active in different tumors

(Alexandrov et al., 2013; Kandoth et al., 2013). The high intertu-

mor and intratumor heterogeneity makes it difficult to establish

without functional testing whether a particular somatic polymor-

phism is a driver mutation or a passenger variant. WGS shows

that tumors contain thousands of variants, making resolution of

the passenger and driver issue a substantial challenge. The

origin of passenger mutations was recently elegantly docu-

mented in acute myeloid leukemia (AML) genetic studies. Of

the many hundreds of mutations that are found in AML blasts,
Cell Stem Cell 14, March 6, 2014 ª2014 Elsevier Inc. 277



Figure 2. Unified Model of Clonal Evolution and Cancer Stem Cells
Top panel shows that acquisition of favorable mutations can result in clonal
expansion of the founder cell. In parallel, another cell may gain a different
mutation that allows it to form a new subclone. Over time, genetic mutations
accumulate and subclones evolve in parallel. Bottom panel shows that it may
be that CSCs are not static entities but can evolve over the lifetime of a cancer
as genetic changes can influence CSC frequency. Some subclones may
contain a steep developmental hierarchy (left), where only few self-renewing
CSCs exist among a large number of non-CSCs.Other subclones (middle) may
contain an intermediate hierarchy, where the number of CSCs is relatively high
but a hierarchy still exists. Some subclones may have the genetic alterations
that confer high self-renewal potential, where most cells are tumorigenic. In
this scenario, applying the CSC concept to such homogeneous subclones is
not warranted because most cells can self-renew and few non-CSC progeny
are generated.
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many were actually present in the founder HSC that was the cell

of origin for the AML subclone; these mutations arose every time

the normal HSC divided and remained functionally neutral and

thus can be considered passengers (Jan et al., 2012; Welch

et al., 2012). The acquisition of the oncogenic driver within one

such HSC ‘‘trapped’’ the preexisting spectrum of mutations

within the AML subclone that expanded and progressed from

this initiating cell. After development of leukemia, very few

additional mutations are needed to drive the last population

expansion, although hits continue to be acquired as the disease

progresses (Jan et al., 2012; Welch et al., 2012). Thus, the driver

and cooperating mutations that the AML subclone acquires dur-

ing leukemic progression need to be filtered out from the large

spectrum of passengers that preexisted and will continue to

arise as AML cells proliferate. Similar approaches have been

taken in breast cancer and other solid tumors to distinguish

drivers from passengers (Nik-Zainal et al., 2012; Stephens

et al., 2012). While these approaches clearly document how

the mutational landscape of individual patients can influence

the heterogeneous properties between patients, more sophisti-

cated approaches are needed to determine how genetic mech-

anisms contribute to heterogeneity within tumors.

Intratumoral Genetic Diversity
A key proposition of the multistep tumorigenesis model put forth

by Cairns and Nowell is that there are sequential sweeps of

clonal dominance that are variably detected depending on

when a tumor is sampled. However, they also conceived that

the tumor might contain multiple branches or subclones that

are evolving independently (Figure 2). Indeed, with deeper

sequencing and improved bioinformatic methods, it is becoming
278 Cell Stem Cell 14, March 6, 2014 ª2014 Elsevier Inc.
clear that tumors are often composed of a dominant genetic

clone plus one or more genetically distinct subclones. For

example, topological sampling of tumors has shown that

different regions possess distinct mutations that are reflective

of genetic subclones seeding different parts of a single tumor

(Gerlinger et al., 2012). In the case of metastatic renal cancer,

70% of somatic variants were not found in all biopsies of the

same tumor; only a VHL mutation and loss of a region on 3p

were ubiquitous. Even gene-expression signatures of good

and poor prognosis were detected in different regions of the

same tumor. Intratumoral diversity with respect to metastatic

progression was shown in pancreatic cancer. By sequencing

the genomes ofmetastases and different regions ofmatched pri-

mary tumors obtained through rapid autopsies from seven indi-

viduals with end stage pancreatic cancer, the primary tumor was

found to harbor geographically and genetically distinct sub-

clones that gave rise to lung, liver, or peritoneal metastases

within the same patient (Yachida et al., 2010). Importantly,

despite the presence of founder mutations within the parental

clones, the cells giving rise to metastatic lesions had a large

number of additional mutations, indicating that further clonal

evolution had taken place during metastasis. Others have also

reported genetic heterogeneity between metastasis-initiating

cells in pancreatic cancer (Campbell et al., 2010). These studies

highlight the complexity in predicting which subclones will prog-

ress to metastasis, even after the genomic architecture of the

primary tumor is established.

With the ability to detect genetic subclones within tumors, it is

now possible to create lineage maps that provide insight into the

subclonal evolution. Such advancements have made it possible

to reconstruct the life histories of breast cancers (Nik-Zainal

et al., 2012). By sequencing 20 breast cancers to an average

30–403 coverage and one cancer to 1883 depth and applying

a new bioinformatics algorithm (Greenman et al., 2012) to recon-

struct the genomic history, the authors showed that breast can-

cer evolves through acquisition of driver mutations that produce

clonal expansions. Interestingly, the drivermutations occur infre-

quently in long-lived lineages that passively accumulate muta-

tions without expansions. The most recent common ancestor

appeared surprisingly early, indicating that much of the time is

spent driving subclonal diversification and evolution among the

nascent cancer cells (Nik-Zainal et al., 2012). These studies do

not just give a snapshot of the tumor, but narrate the steps it

has taken before it was diagnosed, providing promising avenues

for earlier screening. One caveat of these studies is that interpa-

tient tumor genetic variability is likely extensive and it may thus

be challenging to delineate a common set of steps that are char-

acteristic of different breast cancer subtypes. The key question

that the discovery of subclonal diversity raises is which clones

will survive therapy and progress to cause recurrence and/or

metastasis.

Studies in leukemia have been particularly instructive in

revealing the presence of subclones and their role in tumor pro-

gression. Analysis of chromosomal translocation breakpoints

and DNA copy-number alteration (CNA) profiling in twins with

ETV6-RUNX1 positive acute lymphoblastic leukemia (ALL)

showed that a preleukemic clone is initiated in utero that ex-

pands, seeds both twins, but then evolves with different kinetics

and CNA acquisition in each twin (Bateman et al., 2010; Hong
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et al., 2008; Li et al., 2003; Zuna et al., 2004). Genome-wide CNA

profiling of paired diagnostic and relapse samples of ALL has

been informative (Inaba et al., 2013; Mullighan et al., 2008). In

approximately 40% of cases, the leukemic subclone present at

relapse was identical to the subclone present at diagnosis or it

was a direct evolutionary product. However in 50% of cases,

the relapse subclone shared only limited genetic identity with

the diagnostic subclone and did not evolve from it. Similar find-

ings came from WGS studies of paired diagnosis and relapse

AML samples: the major population at relapse shared only

limited genetic identity with the major population at diagnosis

and did not evolve from it. These findings from B-ALL and AML

predicted the presence of genetically distinct subclones at diag-

nosis and the existence of ancestral, prediagnostic subclones.

These results indicate that tumor evolution may occur through

a more complex branching model that gives rise to genetically

distinct subclones at diagnosis that vary in aggressiveness and

response to therapy (Greaves, 2009, 2010). Moreover, these

data establish that there is subclonal variation in both the

response to therapy and the probability that a subclone will sur-

vive and regenerate a new tumor.

However, these are still in silico depictions of intratumoral di-

versity and they are inferred from bulk tumor tissue. This limita-

tion makes it difficult to determine how and when population

expansions occurred to generate subclones and there are ques-

tions of whether the sequencing was deep enough to reveal the

entire population substructure. Like population studies of human

evolution or in ecology, lineage trees that describe evolutionary

history are best undertaken with single cells. If large numbers

of single cells are analyzed, their relationship to one another

can be mapped and phylogenetic lineage trees can be created

(Melchor et al., 2014; Navin et al., 2011; Potter et al., 2013;

Shlush et al., 2012). Early studies of this type have now been re-

ported for some leukemias and lymphomas, and they reveal a

high degree of complexity within single tumors. Shlush et al.

tracked polymorphic somatic mutations in large numbers of sin-

gle leukemia cells taken at diagnosis and relapse and recon-

structed cell lineage trees based on their divisional history. The

reconstructed lineage trees from cells at relapse were shallow

(indicating that they divide rarely) compared to cells at diagnosis,

which showedmanymore subpopulations. Interestingly, relapse

cells were closely related to the L-IC enriched subpopulation

from the diagnostic sample, which is known to be relatively

quiescent. This result implies that in these instances, relapse

might have originated from rarely dividing L-IC. Given the impor-

tance of L-ICs to tumor growth, it will be important to broaden

this type of single cell analysis tomore samples and to determine

the extent to which L-IC are involved in establishing a genetically

diverse relapse.

Collectively, the identification of genetically diverse subclones

within single tumors provides strong evidence that intratumoral

heterogeneity can be driven by the unique mutation spectrum

present within each subclone (Figure 1). However, key questions

remain that sequencing studies alone cannot resolve. One major

challenge is determining which mutations are able to drive tumor

growth and how to link these drivers to the clonal propagation

potential of subclones. Does genetic diversity exist in tumor cells

that are responsible for long-term tumor propagation? Which

subclones will evolve further? Will all cells within a subclone be
equally sensitive to therapy? Which clones will recur or metasta-

size? Studies to answer these questions require functional

assays.

Nongenetic Mechanisms as the Source of
Heterogeneity—the Cancer Stem Cell Model
Although the idea that cancer retains features of embryological

development has a long history (Cohnheim, 1875), the modern

idea that developmental programs underlying normal tissue

organization may still function to some extent in cancer began

with seminal studies of teratocarcinoma (Pierce et al., 1960),

small cell lung carcinoma (Baylin et al., 1978), andmammary car-

cinoma (Bennett et al., 1978; Hager et al., 1981). They suggested

that many tumor cells were differentiated and that these ‘‘differ-

entiated’’ cells were generated by tumor ‘‘stem’’ cells, similar to

normal tissue stem cells producing normally differentiated tis-

sues. Thus, tumors can be considered as caricatures of embryo-

genesis or normal tissue renewal (Pierce and Cox, 1978; Pierce

and Speers, 1988). Early studies in the hematopoietic system

were also instructive. There was clear evidence from cytokinetic

labeling studies that themajority of leukemia blasts were postmi-

totic and needed to be replenished from a small population of

highly proliferative cells (Clarkson et al., 1967; Clarkson et al.,

1965; Clarkson, 1969). Presciently, these studies also predicted

the existence of a rare leukemic population that cycled very

slowly and showed resistance to antiproliferative therapies and

therefore was thought be the source of recurrence. Since similar

cytokinetics were observed for normal hematopoietic stem cells,

it was proposed that the slow-cycling leukemia cells were

responsible for the continued generation of the proliferative frac-

tion, representing a leukemic ‘‘stem cell’’ population (Clarkson,

1974). These early studies, together with efforts to identify clono-

genic AML progenitors (Buick et al., 1977; McCulloch, 1983;

Metcalf et al., 1969; Moore et al., 1973), sparked an interest in

thinking about leukemia in terms of hierarchical organization,

as was being established for normal hematopoiesis at that time.

In order to demonstrate that a tumor is organized in a hierar-

chical manner, it is crucial to establish that it consists of function-

ally distinct cell types that can be prospectively purified and

assayed. With the development of fluorescence-activated cell

sorting techniques (Bonner et al., 1972), coupled with refine-

ments in xenografting techniques in immune-deficient mice, it

was possible to engraft normal human hematopoietic cells

(Kamel-Reid and Dick, 1988; Lapidot et al., 1992) and leukemic

cells in mice (Dick et al., 1991; Kamel-Reid et al., 1991; Kamel-

Reid et al., 1989). These tools, along with quantitative assays,

set the stage for the first purification of T-IC, the operational

term for human CSCs (Clarke et al., 2006).

Flow sorting using cell surface markers CD34 and CD38 was

used to prospectively isolate human T-IC in AML, termed leuke-

mia-initiating cells (L-IC) (Lapidot et al., 1994). The leukemia

initiation potential was in the CD34+CD38� fraction and no

engraftment was detected from the CD34+CD38+ or CD34� frac-

tions. By injecting different numbers of cells per mouse and

establishing a linear correlation with engraftment, it was calcu-

lated that 1 in 2.53 105 cells could initiate a leukemic graft (Lap-

idot et al., 1994). Analysis of additional AML samples in a more

sensitive immune-deficient mouse model (using non-obese dia-

betic/severe combined immunodeficiency [NOD/SCID] mice)
Cell Stem Cell 14, March 6, 2014 ª2014 Elsevier Inc. 279
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followed this initial study (Bonnet and Dick, 1997), further estab-

lishing that AML is organized as a hierarchy with CD34+CD38�

L-IC at the apex. These studies provided proof for the

hypotheses from the 1960s and established that not every

AML cell was equal and only rare cells were L-IC.

The initial studies in AML laid the foundation for the generation

of CSC studies in solid tumors that followed. The first identifica-

tion of CSCs in a solid tumor was achieved over ten years ago in

human breast cancer (Al-Hajj et al., 2003). A subset of breast

cancer cells (CD44+CD24�) was prospectively isolated and

shown to be solely responsible for sustaining the disease in

immune-deficient mice. The CSC subset could be serially

passaged and the xenografts generated were histologically het-

erogeneous, resembling the parent tumor from which they were

derived. These results demonstrated that the same CSC princi-

ples that had previously been shown to apply in an AML model

could also be translated to a solid tumor. Since the initial publi-

cation in breast cancer, a plethora of papers have been pub-

lished identifying CSCs in numerous cancers including brain

(Singh et al., 2004), head and neck (Prince et al., 2007), pancreas

(Hermann et al., 2007; Li et al., 2007), lung (Eramo et al., 2008),

prostate (Collins et al., 2005; Patrawala et al., 2006), colon

(O’Brien et al., 2007; Ricci-Vitiani et al., 2007), and sarcoma

(Wu et al., 2007). In all cases, non-T-ICs were generated in the

xenografts providing evidence for hierarchical organization.

However, in most cases where patient-derived cancer samples

were used, no genetic analysis was undertaken to compare

the xenografts to the primary tumor to determine whether there

was selective outgrowth of one or more subclones. Nonetheless,

CSCs appeared to be a common feature across different cancer

subtypes and tumors from different tissues. Collectively, the

studies illustrated that the ability to initiate and propagate tumor

growth varies between different cells within a cancer and that

this variation is due to a hierarchical relationship between tumor-

igenic and nontumorigenic cells. This relationship is comparable

to developmental hierarchies seen in normal tissues where stem

cells reside at the apex and are responsible for generating

progeny that in turn exhibit increasing commitment and lineage

restriction.

Xenografting and CSC Detection
Because tumor initiation is one of the defining features of CSCs,

xenografting is central to the CSC model. A limitation of xeno-

graft studies is that even orthotopic transplantation may not

faithfully reproduce the TME or the growth factor milieu found

within a patient’s tumor. Some murine growth factors are not

cross-species reactive (e.g., TNF) (Bossen et al., 2006; Rong-

vaux et al., 2013). These environmental differences can impart

selective forces on tumor cells. As a result, some cells that

would possess T-IC activity in humans might not display growth

as xenografts. Moreover, the experimental techniques neces-

sary to obtain single cells to test for T-IC activity are harsh.

Digestion of a solid tumor into single cells causes a loss of

stromal components and cellular architecture. Cells are under

atmospheric oxygen levels and are subjected to abrupt changes

in nutrients and pH. Furthermore, cells are stained with anti-

bodies to cell-surface molecules and passed through a sorting

machine to separate putative CSCs from non-CSCs. After hours

of preparation under conditions that are drastically different
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from the native environment of the tumor, cells are then finally

injected back into a xenogeneic environment and assayed for

growth potential. Given these harsh experimental procedures,

testing for the presence of CSCs effectively tests for the most

robust cell that can grow. In addition, key aspects of the TME

are altered in the transplantation process. All of these changes

may affect a cancer cell’s growth properties in the xenograft

assay.

Over the past two decades, there have been steady improve-

ments to the xenograft assay, including development of more

immune-deficient recipient mice, better methods for transplan-

tation, and humanizing recipients with human TME and/or

growth factors (Rongvaux et al., 2013). Accordingly, some

aspects of the initial CSC model have needed to be refined.

For example, L-ICs were thought to reside solely in the

CD34+CD38� fraction of AML (Bonnet and Dick, 1997; Lapidot

et al., 1994). However, by using more immune-deficient

NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice, L-IC can now

be detected in other fractions (Taussig et al., 2008). Careful ex-

amination of larger sample numbers using NSG mice together

with intrafemoral transplantation to improve the sensitivity for

L-IC detection has confirmed the essential conclusion of the

original studies: in virtually all samples, L-IC reside in the

CD34+CD38� fraction. Still, in at least half of the samples

(>100 samples tested, data not shown), L-ICs are also found in

at least one other fraction (usually CD34+CD38+). In addition to

analyzing the phenotypic fractions that contain L-ICs, the size

of the population and the L-IC frequency therein need to be taken

into account. Nevertheless, in the vast majority of cases evi-

dence of a hierarchy is still seen since fractions devoid of L-IC

are found (Eppert et al., 2011). In those samples where cell

surface marker analysis using CD34 and CD38 cannot identify

a cell fraction that is devoid of L-IC activity, we have found that

sorting cells on the basis of miRNA expression levels can be

used to prospectively separate L-IC and non-L-IC fractions

(Gentner et al., 2010; Lechman et al., 2012). Thus, even in those

samples we cannot conclude a priori that the tumor does not

follow the CSC model. Rather, we suggest that the cell surface

markers are uninformative and not valid to make a determination

of hierarchical organization in those cases. The use of sorting

based on differential expression of miRNA represents a poten-

tially powerful method that has already shown utility for sorting

human HSC. This method needs to be explored further as a

means to fractionate cells when cell surface markers are not

available (as for many solid tumor types) or where they are unin-

formative (Amendola et al., 2013). In addition to miRNA, the use

of reporter assays that measure cellular signaling pathway activ-

ity, such as the Wnt reporter (Vermeulen et al., 2010), can be

used as alternative means of measuring distinct cellular fractions

that may segregate T-IC and non-T-IC. The tools for analyses of

other important pathways in human cells is only beginning to

emerge and it will be interesting to see how intracellular signaling

markers will impact the identification of T-ICs. At least in AML,

the strongest independent piece of evidence supporting the

utility of the xenograft assay to detect bona fide L-IC is that

only gene signatures from functionally validated L-IC popula-

tions are strongly prognostic for patient survival (Eppert et al.,

2011). This and other evidence is presented in the Linking Stem-

ness, Prognosis, and Therapy section.
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In the context of solid tumors, there have been many more

discordant findings regarding the phenotype and properties of

T-IC depending on experimental conditions and the type of

xenograft assays employed. Through the use of recipients with

increased immune-deficiency, the assayed frequency of T-IC

in melanoma changed by many orders of magnitude such that

the most permissive recipient read out a T-IC frequency of virtu-

ally 1 in 1 (Quintana et al., 2010). As most tumor cells were T-IC,

such tumors appear to be homogeneous and not following a

hierarchical model of tumor organization, although some have

argued that there may be methodological explanations (Boiko

et al., 2010). Nevertheless, use of more immune-deficient mouse

models does not necessarily change the evidence documenting

the existence of CSC and formany tumors a hierarchy containing

T-IC and non-T-IC was seen (Ishizawa et al., 2010; O’Brien et al.,

2012). In others cases such as breast cancer, the implantation of

human stromal elements appears to mitigate many problems

and enables reliable detection of T-IC (Kuperwasser et al.,

2004). Overall, future use of recipients that express components

of the human immune system, as well as cross-species reactive

growth factors, should be valuable modifications to the xeno-

graft assay and enable more reliable evaluation of hierarchical

organization in tumors.

Given the central importance of the xenograft assay to mea-

sure functional cancer cell properties and its heavy use in CSC

research and experimental drug studies, it is important to fully

describe the characteristics, including the genetic make-up, of

cancers that grow as xenografts. A major limitation of CSC

studies to date is that there has been a lack of integration of

genomic and functional properties of T-ICs as we describe later

in this Review. Notably, it remains to be determined which

genetic clones can generate grafts in mice and how this

influences the corresponding CSC measurements.

Clonal Dynamics, Dormancy, and Therapy Failure
Although the studies described above indicate that not all tumor

cells possess T-IC function, anothermajor question is whether all

T-IC are equal in their tumor propagation ability. If there is varia-

tion, it will be important to establish whether the variation exists

within cells of a single genetic clone. The answer to this question

holds major importance to the design of future cancer therapeu-

tics. Addressing this question requires genetic analyses com-

bined with functional assays that measure tumor propagation

at the resolution of individual clones. We have recently charac-

terized colon cancer xenografts and shown that single genetic

subclones from the patient tumor can be separated and stably

propagated over multiple passages in mice. Being able to prop-

agate a genetic clone allowed us to track the behavior of cells

within unigenetic lineages. By using lentivirus-mediated cell

marking, we mapped the growth dynamics of 150 marked cells

from ten primary human colon cancer samples in serial trans-

plants that spanned 387 days of tumor growth on average (Kreso

et al., 2013). In every genetic clone that we analyzed, we de-

tected significant variation of cellular behaviors: some marked

cells were proliferative and persisted at every transplant,

whereas others were less robust and could not be detected at

later points during transplantation. Thus, these results directly

identify functional diversity among cells that are part of a single

genetic clone in a solid tumor.
In addition, approximately 20% of marked cells were initially

undetectable, but following serial transplantation such cells

became activated and continued to function (Kreso et al.,

2013). This provided formal evidence for the existence of

dormant cell populations that drive tumor growth in primary

human colon cancer. Moreover, by treating xenografts with con-

ventional chemotherapy, we discovered that while some long-

term persisting cells were eradicated, the dormant cells survived

treatment and contributed to tumor regrowth. These changes

were not accompanied by selection of distinct genetic sub-

clones, as the control and treated tumors displayed close ge-

netic identity. Tumor cell dormancy has been observed in other

systems, including breast cancer, melanoma, and leukemia

(Pece et al., 2010; Roesch et al., 2010; Saito et al., 2010).

Because most conventional chemotherapies are largely cyto-

toxic to dividing cells, dormancy may provide cells with a means

of escape or survival (Figure 3), although other mechanisms,

such as acquisition of new mutations or selection of cells with

preexisting genetic mutations, could also be at work to ensure

survival following therapy. Collectively, these studies provide

evidence that even within a single genetic clone, cancer cells

are heterogeneous in their ability to survive chemotherapeutic

insults. This added layer of functional diversity adds a new tier

of complexity within tumors.

Plasticity and CSC Detection
In vitro studies have often been used as surrogate means of

studying T-IC. A number of reports using cell lines that have

been cultured in vitro have shown that the T-IC state is not static.

Sorted T-IC enriched populations generated non-T-IC, but some

studies found that sorted non-T-IC populations could generate

T-IC (Gupta et al., 2011; Magee et al., 2012; Sharma et al.,

2010). Studies of JARID1B, a histone demethylase, have been

informative and highlight the complexity of the T-IC state in mel-

anomas. JARID1B was shown to mark slowly cycling melanoma

cells that are essential for continuous tumor growth of estab-

lished melanomas and metastatic progression, but are not

required for tumor initiation (Roesch et al., 2010). JARID1B

expression was limited to a small subpopulation of melanoma

cells, but the maintenance of this subpopulation was dynamic:

while purified JARID1B-positive cells generated JARID1B-nega-

tive cells, as expected by the CSCmodel, single JARID1B-nega-

tive cells also gave rise to heterogeneous progeny, including

JARID1B-positive cells. This study indicates that some cells

that are essential for tumor maintenance may not be static

entities, but rather can acquire tumor maintenance capabilities

depending on the context.

The finding that normal stem cells can reenter the stem cell

state (Mani et al., 2008) gave way to the idea that it may be

possible to generate T-IC from non-T-IC under some conditions.

Indeed, EMT factors have been used to generate T-IC from non-

T-IC in breast cancer (Chaffer et al., 2013). The environment in

which tumor cells reside can also induce stem-like states in can-

cer cells. For example, myofibroblast-secreted factors, including

hepatocyte growth factor, can induce Wnt signaling in colon

cancer cells and consequently induce a T-IC-like state in more

differentiated tumor cells in vivo (Vermeulen et al., 2010). In

mouse models of intestinal tumor initiation, epithelial nonstem

cells can reexpress stem cell markers upon Wnt activation and
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Figure 3. Functional Diversity between Cells within Subclones
Impacts Response to Therapy
Each clone (depicted by the different colors) contains a mixture of cells that
vary with respect to their stemness and/or proliferative ability, including rela-
tively dormant cells. Together these factors represent the functional diversity
present within single genetic subclones. Chemotherapy can reduce tumor
burden by eliminating the highly proliferative cells within subclones, while
sparing the relatively dormant cells; following therapy, these cells can seed a
new cancer. Thereby, subclonal diversity can be altered with chemotherapy
and can allow for the selection of cells with additional genetic mutations that
confer a survival advantage. Not depicted in the diagram is the concept that
chemotherapy-resistant cells can exist before treatment and can be selected
following chemotherapy. Thus, chemotherapy can introduce newmutations to
confer treatment resistance, but it can also select preexisting cells that
accumulated mutations, which confer chemotherapy resistance during the
long evolution of the tumor before it was diagnosed.
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can ‘‘dedifferentiate’’ to T-ICs (Schwitalla et al., 2013). Likewise,

perivascular nitric oxide that is released by endothelial cells can

activate Notch signaling and induce a stem-like state in PDGF-

induced gliomas (Charles et al., 2010). These studies highlight

the dynamic nature of cancer cells and show the importance of

the stem cell state in tumor generation.

Given the importance of these concepts, it will be important to

show whether other cancers possess such properties. As well, it

will be critical to determine to what extent plasticity exists in pri-

mary tumor tissue, as opposed to cell lines, and whether it is
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induced in vivo. Although provocative, some studies reporting

plasticity were not done clonally and this is essential to under-

stand the homogeneity of cells in each state and the frequency

of cells that are able to change states. Is every non-T-IC able

to generate a new T-IC, or are only some non-T-ICs responsible

for the generation of new T-IC? If only some, does this reflect

heterogeneity of the non-T-IC population? Clearly tumors with

a high probability of interconversion between T-IC and non-

T-IC states render hierarchical cellular organization less mean-

ingful than if such interconversions are rare. Normal tissue

stem cells can also ‘‘dedifferentiate’’ into a more primitive state

when normal tissue homeostasis is perturbed, for example dur-

ing transplantation procedures or following stem cell ablation

(Rinkevich et al., 2011; Tata et al., 2013; Van Keymeulen et al.,

2011). Thus, it will be important to determine the probability of

being in one state versus another and the factors that influence

such interconversions (Gupta et al., 2009). However, even in

tumors where the interconversion rate is high, the available

data indicates that when a cancer cell possesses stemness

properties it is more likely to progress, metastasize, resist ther-

apy, and self-renew, compared towhen it is in the opposite state.

Thus, even for tumors that do not strictly follow the CSC model,

the concept that stemness is an important aspect of the biology

of that cell remains strong. As such, novel approaches will be

needed to eradicate cells that display determinants of stemness.

Epigenetics and Stemness
The primary, nonmutational mechanism that governs develop-

mental hierarchies is epigenetic regulation of the genome. Epige-

netic modifications of DNA, histones, and nucleosomes as well

as noncoding RNAs, including miRNA, allow for modification of

gene expression (Baylin and Jones, 2011; Iorio and Croce,

2012). Alterations in the epigenome dictate cell fate specification

and have been used as means of reprogramming noncancerous

cells. Although epigenetic modifications are not as stable as

mutational changes and can be reversed, some types of modifi-

cation are a stable, heritable means by which distinct cellular

states and functions can be generated. The importance of epige-

netic regulation in generating diversity apart from genetic muta-

tion has been shown in several systems. For example, a small

proportion of slowly cycling melanoma cells that are essential

for tumor growth can be purified based on the expression of

JARID1B, amember of the jumonji/ARID1 histone 3 K4 demethy-

lases (Roesch et al., 2010). Other epigenetic factors including

members of the Polycomb group of transcriptional repressors

(BMI-1 and EZH2) that are linked to normal stem cell self-renewal

have been shown to exhibit variation in expression levels within

tumors and play a role in tumor progression (Sparmann and van

Lohuizen, 2006). Further support for the role of stemness in can-

cer biology is emerging from cancer genome-sequencing efforts

showing that genetic disruption of epigenetic regulators of

normal stem cell function is critical for cancer pathogenesis.

Mutation in DNMT3A, which is highly recurrent in AML, causes

major dysregulation of gene expression leading to upregulation

of stemness genes and increased repopulation and self-renewal

of normal HSC (Ley et al., 2010; Shah and Licht, 2011).

Other highly recurrent mutations in genes such as IDH1/IDH2

and TET2 affect epigenetic programs that underlie stemness

for many cancers, including AML (Abdel-Wahab and Levine,



Cell Stem Cell

Review
2010). Thus, epigenetic factors, classically ascribed to govern

normal cell diversification, are becoming increasingly relevant

for the maintenance of different cancer cell states.

Epigenetic mechanisms can also be important for the ob-

served variability in response to therapy (Glasspool et al.,

2006). A small population of cells that remain drug-tolerant

following treatment has been reported across several cell lines,

including cells derived from melanoma, lung, gastric, colon,

and breast cancers (Sharma et al., 2010). Following treatment

of these drug-sensitive cell lines with anticancer agents, the

authors observed a small proportion of cells that persist, remain-

ing viable while the majority of cells are killed by the therapy.

This drug-tolerant phenotype was related to changes at the

level of global chromatin, with high expression of the histone

demethylase JARID1A and IGF-1R signaling in drug tolerant

cells (Sharma et al., 2010). Importantly, heterogeneity in drug

response can be generated even when cultures are initiated

from single cancer cells, indicating a nongenetic mechanism.

Others have found that escape of cells from anticancer drug

treatment involves a survival advantage conferred by cell-to-

cell variability in the dynamics of specific proteins (Cohen

et al., 2008). Substantial variation between daughter cells in

response to antimitotic drugs has also been reported that is

not the result of genetic differences, but rather due to competing

intracellular networks involving caspase activation and cyclin B1

levels (Gascoigne and Taylor, 2008). Overall, these studies high-

light the importance of nongenetic mechanisms governing both

cellular fates and drug response. It will be important to discern

how these in vitro studies translate to in vivo growth properties

of cancer cells following drug administration.

Gene-expression analysis is another important means by

which different cellular states can be identified. By using single

cell multiplex PCR analysis in combination with fluorescence-

activated cell sorting, it has been shown that colon tumors

contain subpopulations of cells whose transcriptional states

mirror those of the lineages found in the normal colon epithe-

lium (Dalerba et al., 2011). Importantly, these authors show

that a tumor derived from a single cell can exhibit the morpho-

logical diversity and transcriptional variability reflective of

multilineage differentiation seen in normal colon tissue. These

gene-expression programs are also important indicators of

patient survival (Dalerba et al., 2011), formally proving that

epigenetic heterogeneity due to multilineage differentiation

processes can establish phenotypic and functional diversity in

tumor clones. As such, it is evident that tumor heterogeneity

can arise due to transcriptional programs that are reminiscent

of normal tissue differentiation, which are independent of

genetic diversity.

Noisy Gene Expression and Heterogeneity
Studies in lower organisms have found that stochastic nonge-

netic processes involving protein production or degradation

can account for numerous phenotypic effects (Losick and Des-

plan, 2008; Süel et al., 2007; Wernet et al., 2006). In mammalian

cells, survival of apparently homogeneous cells can be dictated

by natural differences in protein levels, which regulate receptor-

mediated apoptosis between cells and illustrate the dramatic

effects that noise in gene expression can have (Spencer et al.,

2009). The variability in levels of proteins within cells, albeit
transiently heritable, quickly changes in daughter cells due to

different growth rates and noise in gene expression. As such,

it is inherently different from epigenetic regulation discussed

above. Nonetheless, the variability between cells with respect

to noise in gene expression and variability in signal transduction

components has implications for tumor biology and therapeu-

tics. Traditionally, the failure of a therapy to eradicate all cells

has been ascribed to genetic differences, proliferative status,

or the microenvironment, but it is possible that the variability of

cells to respond can also be governed by natural differences in

protein levels.

At the level of cell populations, evidence is emerging to sup-

port stochastic processes governing cell state equilibriums.

For example, breast cancer cell lines, separated into different

phenotypic fractions or ‘‘states’’ based on cell surface marker

expression, return to equilibrium proportions over time in vitro.

This progression toward equilibrium proportions was the result

of interconversion between different phenotypic states, which

can be modeled as stochastic processes that occur with each

cell division using the Markov process, where interconversion

rates depend only on the cell’s current state (Gupta et al.,

2011). This study provided a theoretical framework for explaining

phenotypic equilibriums in breast cancer cell lines. It will be

important to see these principles established in primary cancers

where T-IC can be highly resolved by sorting and tested in robust

clonal serial T-IC assays.

Collectively, these studies indicate that in apparently homoge-

neous environments, cells of the same genotype can exist in

different states that influence their behavior. The implications

of such variability to biology and medicine are important. The

implicit assumption most experimental studies take is that a uni-

form cell population reacts in a uniform manner. However, given

the biological noise between individual cells, the effects of treat-

ments on populations are likely underestimated, as averaging

data across many cells can have the net effect of masking

heterogeneity at the single cell level. With new technological

advances, an increasing number of single-cell studies are being

reported that demonstrate considerable cell-to-cell variability in

apparently homogeneous populations. For example, quantita-

tive PCR gene-expression analysis of 280 geneswas undertaken

for 1,500 single cells that span a variety of highly purified mouse

HSC and progenitor populations. This study uncovered a large

degree of heterogeneity within cell types that were classically

thought to represent a uniform collection of cells (Guo et al.,

2013). It will be important to establish whether such variation is

the result of technical variability in the assays used, or whether

it represents true differences in biological function. In the context

of the CSC model, extensive cellular variability within what is

thought to be a uniform CSC population has implications for

therapeutic targeting. Therapy directed against a molecular

target might not be effective if intrinsic variability in the cellular

context renders subsets of cells within the population unequally

responsive to drug targeting.

Limitations of Genetic and Nongenetic Models
As we have argued throughout this Review, both genetic and

nongenetic determinants influence tumor heterogeneity and

often these two views have been presented as mutually exclu-

sive models, stimulating intense debate (Clevers, 2011; Marusyk
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Figure 4. Failure to Separate Genetic
Subclones May Confound Conclusions
Regarding Source of Cancer Heterogeneity
Left panel shows that if cancer cells are not
separated into distinct genetic subclones before
they are tested for the presence of a hierarchical
organization, then T-IC measurement may not
reflect the complexity of the parental cancer. Right
panel shows that cells from the purple clone have a
high number of engrafting cells irrespective of a
marker that is used to prospectively purify T-ICs.
On the contrary, T-ICs can be prospectively puri-
fied from the green clone. Of note, the clones de-
picted in yellow and blue contain T-IC but in this
example they are not positive for the marker of
choice. This highlights that multiple markers may
be required to identify T-ICs from distinct genetic
subclones.
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et al., 2012; Shackleton et al., 2009). However, each view in

isolation is insufficient to explain fully the diversity seen within

cancers. The genetic model focuses on genetic heterogeneity

without considering that individual cells within a genetically

homogeneous subclone might still exhibit variation in function

due to any of the nongenetic determinants described above.

Similarly, a major limitation of the CSC model or hierarchical

model is that it views the tumor as being genetically homoge-

neous and static, without accounting for the existence of

genetically distinct subclones or tumor evolution. For example,

a tumor might contain different subclones, some of which

are virtually homogeneous in terms of T-IC activity because

they are highly progressed and possess a high mutational

burden, whereas other subclones with fewer oncogenic muta-

tions might be almost devoid of T-IC. Such subclones could

also possess differences in the cell surface markers used for

sorting. Thus fractionation of the bulk tumor into T-IC and

non-T-IC populations could simply be the result of segre-

gating subclones with very low T-IC activity from those with

high T-IC activity (Figure 4). In this scenario, sorting has simply

segregated on the basis of genetic identity rather than

providing the essential test of the CSC model, which requires

testing the T-IC ability of genetically identical cells within a

single subclone (Figure 5), as described recently in our

study of the clonal dynamics of T-IC from human colon cancer

(Kreso et al., 2013). Clearly the recent findings on subclonal

diversity raise an important challenge to the validity of the

broad literature on T-IC. Despite these concerns, as we will

argue below, we propose that the genetic clonal evolution

and CSC models can be unified into a comprehensive view of

cancer heterogeneity.
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Unification of the CSC and Clonal
Evolution Models
From a conceptual standpoint it is clear

that therapy failure and recurrence are

not simply due to the acquisition of new

mutations. Rather, the surviving tumor

cells must also have regenerative poten-

tial in order to regrow the tumor; cells

contributing to recurrence must behave

like T-IC. Further, tumors are dynamic

entities: cells are dying, proliferating, or
entering dormancy. Thus, static genetic analysis of bulk tumor

tissue or single-cell topological sampling of different tumor sites

cannot formally prove that any particular genetically distinct cell

or subclone is functionally important. For instance, a laser-

captured cell used for genomic analysis might be on a trajectory

toward death just before it is sampled and therefore is not rele-

vant for tumor growth. Arguably, the only important cells in a

tumor are the ones that are responsible for long-term clonal

growth; any other cell ultimately leads to clonal exhaustion. As

such, clone-propagating cells represent the unit of selection

for the tumor (Greaves, 2013). As we argue above, the hallmark

of such a cell is the capacity to self-renew, as without self-

renewal clonal exhaustion is inevitable. Thus, a critical question

that arises from the many sequencing studies that have

described intra-tumoral subclonal diversity is whether diversity

exists in long term propagating cancer cells. The best way to

test this question is by combining cancer genetic analyses with

functional T-IC assays of primary human cancers.

Three independent studies in human B-ALL and T-ALL have

provided the essential evidence that subclonal genetic diversity

exists within functionally defined L-IC (Anderson et al., 2011;

Clappier et al., 2011; Notta et al., 2011). Elegant single cell

FISH studies established that the diagnostic tumor contained

genetic subclones and provided evidence for the evolutionary

relationship between them. In all three studies, diagnostic sam-

ples were transplanted into xenograft recipients and since only

L-IC are able to initiate leukemic propagation, the genetic

makeup of the xenografts reflected the genotype of the L-IC(s)

that were transplanted. Individual mice transplanted with cells

from the same sample were shown to contain genetically distinct

subclones, proving that genetic diversity exists among L-ICs.



Figure 5. Experimental Approach to
Investigate CSC Properties in the Context of
Genetic Subclones
Studying CSCs will require separation of distinct
genetic subclones, because CSCs cannot be
reliably identified in genetically heterogeneous
tumors. One method by which subclones can be
separated is by transplanting cancer cells at clonal
cell doses over multiple recipients. Following
engraftment of the human cancer cells, the hier-
archical composition of a particular subclone can
be studied using prospective purification of cells.
Sequential transplantations of cancer cells allows
for the tracking of further clonal evolution. For solid
tumors, sampling different geographical regions
from the primary tumor will be important for
capturing distinct subclones. Although not de-
picted, deep sequencing and analyzing different
metastatic sites can be used to analyze the genetic
lineage relationships of subclones within a cancer.
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Moreover, the different mutations that distinguished each sub-

clone resulted in variability in functional properties including

stemness, L-IC frequency, and aggressiveness of xenograft re-

population. Indeed, some subcloneswith less aggressive growth

properties could only be detected in clonal assays when they

were transplanted at limiting dilution, without competition from

more aggressive subclones. Characterization of subclonal ge-

netic diversity enabled reconstruction of the evolutionary

process reaching back to the ancestral subclone, and demon-

strated that functionally distinct subclones were related by

branching evolution (Notta et al., 2011). Importantly, these

studies showed that some xenografts were repopulated with a

minor diagnostic subclone that was related to a paired relapse

sample (Anderson et al., 2011; Clappier et al., 2011). Collectively,

these xenograft studies provided functional proof for the predic-

tion that some relapse cases arise from an undetected ancestral

clone rather than through ongoing mutation of the dominant

diagnostic clone (Inaba et al., 2013).

A key finding of these combined genetic and functional studies

was that genotype influences L-IC frequency. B-ALL samples

with CDKN2A/B mutation had an L-IC frequency that was on

average 1,000-fold higher than that of samples without these

mutations (Notta et al., 2011). Mouse models with defined ge-

netic lesions also support the conclusion that genotype can influ-

ence T-IC properties. For example, three differentmousemodels

of lung cancer showed variability with respect to the phenotype

of the T-IC (Curtis et al., 2010). In tumors initiated with activa-

tion of oncogenic K-rasG12D and p53 deficiency, cells expressing

Sca-1 could be prospectively purified as T-IC. However, in
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adenocarcinomas driven by K-rasG12D

alone, Sca-1 did not significantly enrich

for T-IC activity. Furthermore, for adeno-

carcinomas expressing a mutant human

EGFR transgene, only Sca-1-negative

cells harbored T-IC activity (Curtis et al.,

2010). This study predicts that the same

markers may not identify CSCs in all pa-

tient samples of a specific tumor type.

Importantly, while CSC markers varied

between the different genetic tumor
models, a hierarchical organization was present within each

model, supporting the notion that on top of genetic diversity,

nongenetic functional variability governs tumor growth. Thus,

thesemodels highlight the influence that the genetic background

of a cancer has on CSC properties.

Collectively, these data indicate that T-ICs are not static en-

tities but can evolve. When they evolve and acquire additional

mutations, the T-IC frequency can increase, indicating that the

increasing genetic burden can lead to increased self-renewal

as well as interfere with the malignant maturation process.

Thus, a dynamic model emerges where early in tumor progres-

sion the tumor is a close caricature of the developmental hierar-

chy of the tissue from which it arose, with a minority T-IC and a

high proportion of more differentiated non-T-IC (Figure 2). As

T-IC accumulate advantageous mutations, these perturb differ-

entiation processes further and increase self-renewal such that

the T-IC expand in the subclone, reading out as having increased

frequency in assays. As tumors progress, the mutational burden

becomes high resulting in impairment of the remaining matura-

tion programs and even higher capacity for self-renewal, and

further expansion of cells possessing T-IC properties. In this

model, as cancers progress, tumor hierarchies become shal-

lower within genetic subclones. In some cases, once the clone

has progressed to such an advanced state, the frequency of

T-IC may be so high that the tumor subclone essentially

becomes functionally homogeneous without evidence of a

hierarchy. If this model is accurate, it could contribute a plausible

explanation for why independent studies of the same tumor type

(for example, melanoma) might yield different results between
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labs with respect to T-IC phenotype, frequency, etc.; tumors

at different stages of progression might not be comparable

because their mutational burden differs.

Because mutations arise in both T-IC and non-T-IC popula-

tions, and because only T-IC contain long term propagating

and self-renewing cells, it is likely that most T-IC arise from the

genetic evolution of T-IC and not from the non-T-IC compart-

ment, which lacks self-renewal. However, it is also possible

that occasionally mutations will arise in non-T-IC that endow

them with self-renewal capacity and convert them into T-IC.

Therefore, during progression, the T-IC compartment might be

a composite of T-IC generated from evolving T-IC, as well as

some newly generated T-IC. Different tumors and mutations

might have higher rates of non-T-IC conversion to T-IC than

others. Computational simulations have shown that non-T-IC

may also be important for the overall robustness of T-ICs, while

T-ICs are the units of selection during the evolution of a cancer

(Greaves, 2013; Sprouffske et al., 2013). We propose this revised

model as a unification of the genetic evolution and develop-

mental/CSC hierarchy models. Indeed, the other nongenetic

determinants described above (noise, stochasticity, plasticity,

TME) can also be accommodated as mechanisms that can

convert non-T-IC into T-IC. Overall, this unified model provides

a framework for future studies to determine which tumor types

might follow these predictions.

Challenge with Studying Solid Tumors
Solid tumor studies pose a particular challenge to capture the

subclonal diversity present within the parent tumor. Several

studies have shown that genetic subclones are topographically

separate (Gerlinger et al., 2012; Yachida et al., 2010). As such,

biopsy specimens that are used for research may not be repre-

sentative of the entire parent tumor. For solid tumors, sampling

multiple, different geographical regions from the primary tumor

will be important for capturing distinct genetic subclones. This

may not be possible for all solid tumors, but it will be instrumental

in determining the extent of genetic subclonal variability and it

will aid in interpreting concurrent CSC studies. Even if one biopsy

is taken, it may represent several genetic subclones that will

require separation into individual clones before CSC studies

can be carried out on each subclone. While subclonal lineage

relationships can be reconstructed using deep sequencing,

another method by which subclones can be separated is by

transplanting cancer cells at clonal cell doses over multiple re-

cipients (Figure 5). Following engraftment of independent ge-

netic subclones, CSC-related questions can then be addressed

in each subclone. Thus, even if the entire tumor specimen is not

sampled for genetic analysis, CSC studies will be carried out at

least on some of the subclones present in the parent tumor.

Studying CSCs in the context of independent subclones is

important as all subclones and the corresponding CSCs need

to be eradicated for successful therapy.

Linking Stemness, Prognosis, and Therapy
If CSCs represent the unit of selection in tumors, as discussed

above, then clinically relevant parameters including survival

must be more closely related to the properties of CSCs than to

non-CSCs. Testing this concept requires understanding the

unique molecular circuitry of T-IC as compared to non-T-IC.
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Wehave recently reported initial identification of an L-IC-specific

transcriptional signature through gene-expression analysis of 16

AML samples that were each separated into four fractions and

the L-IC activity of each fraction tested in optimized xenograft

assays (Eppert et al., 2011). Functional L-IC testing was essential

because the cell fraction(s) that contained L-IC were variable for

each sample. The L-IC signature was prognostic for overall sur-

vival across a wide spectrum of AML patients, providing strong

validation of the CSC model and of the clinical relevance of

L-IC. In parallel, we carried out analysis of the transcriptional

landscape of the entire spectrum of normal human HSC and pro-

genitors. We found that HSC and L-IC gene-expression signa-

tures converged on a shared stemness signature that was also

highly prognostic (Eppert et al., 2011). We recently expanded

this study and have completed gene-expression profiling of

functionally defined L-IC and non-L-IC containing fractions

from an additional 84 AML patient samples. Gene-expression

analysis of this more representative data set generated a power-

ful signature that is highly prognostic when tested on approxi-

mately 1,000 AML patients in four independent cohorts. The

fact that a single signature has such high prognostic power

across a diverse spectrum of patients, each with distinct genetic

mutations, establishes that stemness is a central biological

property or process upon which many driver mutations coa-

lesce. Recently, stemness signatures have been developed

from normal stem cells in solid tissues including the intestine

and breast (Merlos-Suárez et al., 2011; Pece et al., 2010). Similar

to our leukemia results, the stem cell signatures were highly pre-

dictive of T-IC content and patient outcome. Overall, these early

studies support a link between genetics and stemness and high-

light the need to develop more stemness signatures from a wide

distribution of tumor types to test the generalizability of this

concept.

Strong evidence is emerging to support a link between

stemness and therapy resistance in glioblastoma, colon cancer,

breast cancer, and numerous other tumors, where studies show

that T-IC fractions are more resistant to therapy compared to

non-T-IC (Bao et al., 2006; Diehn et al., 2009; Ishikawa et al.,

2007; Saito et al., 2010; Viale et al., 2009; Zhang et al., 2010).

Indeed, T-IC possess as a number of biological properties that

distinguish them from the remainder of tumor cells; not only

resistance to treatment (Bao et al., 2006; Li et al., 2008; Tehran-

chi et al., 2010) but also evasion of cell death (Majeti et al., 2009;

Todaro et al., 2007) and dormancy (Kreso et al., 2013). While

many of these papers involve in vitro or xenograft assays, patient

data is also accumulating. In patients with 5q– myelodysplastic

syndrome (MDS), complete remission can be achieved with

lenalidomide treatment but patients invariably relapse. FISH

analysis of bone-marrow specimens obtained prior to therapy

showed that both progenitor (CD34+CD38+) and L-IC (CD34+

CD38�Thy1+) compartments harbored the 5q– deletion (Tehran-

chi et al., 2010). In most patients, the L-IC compartment was

resistant to lenalidomide treatment while progenitor cells were

eliminated. In one patient with clinically advanced disease,

both L-IC and progenitor cell compartments were resistant to

treatment, suggesting either that therapy selected for a genetic

subclone with an L-IC population that is not marked by the

CD34+CD38�Thy1+ surface markers or that with additional

mutations non-CSCs gained L-IC properties. Recent studies in
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multiple myeloma, a lymphoid malignancy, have also shown

that a newly identified L-IC population is resistant to protea-

some inhibitor treatment compared to the bulk tumor cells

(Leung-Hagesteijn et al., 2013). Collectively, these studies high-

light the interplay between genetics and CSC properties that

drive clinical parameters such as therapy response and ulti-

mately survival.

The emerging evidence linking stemness to prognosis and

therapy failure suggests that therapeutic targeting of determi-

nants of stemness might be an effective means to eradicate

T-IC and prevent recurrence. Although there is still considerable

uncertainty as to how stemness is regulated, several regulators

including Bmi-1 have been strongly linked to self-renewal and

have been implicated in the maintenance of stem cells in several

tissues (Lessard and Sauvageau, 2003; Molofsky et al., 2003;

Park et al., 2003). We have found that human colorectal T-IC

function is dependent on BMI-1. Downregulation of BMI-1 in-

hibits the ability of colorectal T-ICs to self-renew, resulting in

abrogation of their tumorigenic potential (Kreso et al., 2014).

Treatment of primary colorectal cancer xenografts with a small

molecule BMI-1 inhibitor resulted in colorectal T-IC reduction

with long-term and irreversible impairment of tumor growth.

These studies point to the need to attempt clinically feasible tar-

geting of this and other predicted components of the self-

renewal machinery. Because stemness-associated factors are

likely shared between normal stem cells and CSCs, successful

eradication of CSCs will require understanding to what extent

CSCs differ from normal stem cells to minimize the impact of

therapies on normal stem cell function.

The Road Ahead
Over the last several decades, there has been a revolution in our

understanding of cancer growth. Advances in sequencing tech-

nologies have paved the way to deciphering the tumor genome.

It is becoming increasingly clear that a tumor does not have one

single tumor genome, but instead comprises multiple genomes

that belong to distinct subclones. These subclones may evolve

in parallel over the lifetime of a cancer and contribute to intratu-

moral heterogeneity. However, even within single genetic sub-

clones, not all cells function equally: some cells retain capacity

for self-renewal and long-term clonal maintenance, some lay

dormant, some fuel tumor growth, and most tumor cells are

postmitotic and destined for clearance.

Despite the apparent complexity, there are unifying principles

rooted in developmental hierarchies that can guide our approach

to targeting cancer. The litmus test for defining a dangerous can-

cer clone is whether the clone contains cells that exhibit unlim-

ited growth potential. Unlimited growth potential is exhibited

by the most primitive cells, which possess stemness properties

such as self-renewal. Thus, by understanding stemness proper-

ties within tumors, we will be able to gain insight into the most

important cells that can drive sequential rounds of tumor growth.

Work in several tumor types has shown that cells with stem cell

properties are equipped with innate machinery that protects

them from radiation and chemotherapy. As well, stem cell

gene-expression programs correlate with patient outcome,

further supporting the relevance of stemness properties in can-

cer. By delineating genetic from nongenetic stemness influ-

ences, we will be able to tease apart the unique aspects of tumor
growth and ultimately gain a unified understanding of how

diverse genetic subclones, each with their own superimposed

developmental hierarchy, coordinate tumor maintenance.

In nature, evolution creates biodiversity and this in turn makes

an entire ecosystem robust. In cancer, diversity within tumor

cells at the genetic and functional level together with their coex-

istence with the microenvironment also increases tumor fitness,

allowing tumor cells to offset survival pressures imposed by ther-

apy. More effective therapies will require gaining insight into this

diversity.
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