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DNA methylation is one of the key mechanisms underlying the epigenetic regulation of gene expression.
During DNA replication, the methylation pattern of the parent strand is maintained on the replicated strand
through the action of Dnmt1 (DNAMethyltransferase 1). In mammals, Dnmt1 is recruited to hemimethylated
replication foci by Uhrf1 (Ubiquitin-like, Containing PHD and RING Finger Domains 1). Here we show that
Uhrf1 is required for DNA methylation in vivo during zebrafish embryogenesis. Due in part to the early
embryonic lethality of Dnmt1 and Uhrf1 knockout mice, roles for these proteins during lens development have
yet to be reported. We show that zebrafish mutants in uhrf1 and dnmt1 have defects in lens development and
maintenance. uhrf1 and dnmt1 are expressed in the lens epithelium, and in the absence of Uhrf1 or of
catalytically active Dnmt1, lens epithelial cells have altered gene expression and reduced proliferation in both
mutant backgrounds. This is correlated with a wave of apoptosis in the epithelial layer, which is followed by
apoptosis and unraveling of secondary lens fibers. Despite these disruptions in the lens fiber region, lens fibers
express appropriate differentiation markers. The results of lens transplant experiments demonstrate that
Uhrf1 and Dnmt1 functions are required lens-autonomously, but perhaps not cell-autonomously, during lens
development in zebrafish. These data provide the first evidence that Uhrf1 and Dnmt1 function is required for
vertebrate lens development and maintenance.
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Introduction

In mammals and other vertebrates, the majority of CpG sequences
in the genome are methylated at cytosine residues (Suzuki and Bird,
2008). The exception to this is CpG islands (CGIs), which are stretches
of typically unmethylated CpG sequences which often correspond to
gene transcription start sites (Illingworth and Bird, 2009). After
replication, the DNA daughter strand must be methylated in
accordance with the parent strand to maintain CpG methylation
information in the daughter cell. Among the proteins required for
“maintenancemethylation” inmammals are DNAMethyltransferase 1
(Dnmt1), which catalyzes the methylation reaction (Bestor, 2000;
Yoder et al., 1997), and Ubiquitin-like, Containing PHD and RING
Finger Domains 1 (Uhrf1), which recruits Dnmt1 to hemimethylated
replication foci (Bostick et al., 2007; Sharif et al., 2007). Hypermethy-
lation of promoter CGIs (or of flanking regions known as “shores”)
correlates with reduced gene transcription, and a subset of these
regions are differentially methylated according to tissue and cell type
(Bird, 2002; Illingworth and Bird, 2009; Irizarry et al., 2009).

Studies identifying tissue-specific roles for DNA maintenance
methylation during vertebrate embryonic development and organo-
genesis, such as in the eye, have been limited, owing largely to the
early lethality of Uhrf1 and Dnmt1 knockout mice (Lei et al., 1996; Li
et al., 1992; Muto et al., 2002; Sharif et al., 2007). Mouse conditional
knockout studies have revealed an essential requirement for Dnmt1 in
hematopoiesis (Broske et al., 2009; Trowbridge et al., 2009) and in
neuronal differentiation and function (Fan et al., 2001; Feng et al.,
2010; Golshani et al., 2005; Hutnick et al., 2009). Mouse Dnmt1−/−

embryonic stem (ES) cells tolerate DNA hypomethylation until they
are induced to differentiate (Lei et al., 1996; Li et al., 1992), andmouse
Dnmt1−/− embryonic fibroblasts express inappropriate genes, includ-
ing some specific for placental and germline lineages, before
undergoing apoptosis (Jackson-Grusby et al., 2001). In Xenopus,
reduction of Dnmt1 results in ectopic gene expression, and in p53-
mediated apoptosis of ectodermal cells attempting to differentiate
into mesodermal or neural tissues (Stancheva et al., 2001; Stancheva
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and Meehan, 2000); interestingly, a portion of the repressor function
of Dnmt1 in this context was found to be independent of its role as a
methyltransferase (Dunican et al., 2008). Morpholino knock-down of
zebrafish dnmt1 results in ~40% embryonic lethality; in surviving
embryos, defective terminal differentiation was observed in the
retina, exocrine pancreas, and intestine (Rai et al., 2006). A recent
study of mutant zebrafish with catalytically inactive Dnmt1 demon-
strated that Dnmt1 is required for survival of pancreatic acinar cells,
and that it may play a role in pancreas cell fate decisions during
regeneration (Anderson et al., 2009). Knockdown experiments in a
human epidermal system have demonstrated that Dnmt1 and Uhrf1
are necessary to maintain proliferation of epidermal progenitors and
to prevent premature differentiation (Sen et al., 2010). Uhrf1 has also
been shown to function during liver development and regeneration
(Sadler et al., 2005; Sadler et al., 2007).

Collectively, these studies suggest that DNA methylation is
important for the development, differentiation, and survival of
specific vertebrate organs and tissues, but much remains to be
learned. With an interest in this process, and specifically the require-
ment for DNA methylation during lens development, we took
advantage of zebrafish mutations in uhrf1 (Amsterdam et al., 2004)
and dnmt1 (Anderson et al., 2009) to determine what role Uhrf1 and
Dnmt1 play in DNA methylation during zebrafish embryogenesis and
during lens development. Our results demonstrate that Uhrf1
facilitates DNA methylation in vivo during zebrafish embryonic
development and that Uhrf1 and Dnmt1 are required for lens
development and maintenance.

Materials and methods

Zebrafish maintenance

Zebrafish (Danio rerio) were maintained at 28.5 °C on a 14 h light/
10 h dark cycle. Animals were treated in accordance with University
of Texas at Austin provisions governing animal use and care. Mutant
alleles used in this study were uhrf1hi3020, dnmt1s872, and dnmt1s904.
Unless otherwise stated, all experiments involving dnmt1 mutants
utilize the dnmt1s872 allele. Transgenic Tg(beta actin2:mCherry-CAAX)
zebrafish were constructed as described (Kwan et al., 2007) using a
construct generously provided by Kristen Kwan and Chi-Bin Chien,
University of Utah, Salt Lake City.

RT-PCR

10–20 embryos were homogenized in Trizol Reagent (Invitrogen)
using a 25-gauge needle and syringe. Total RNA was purified by
chloroform extraction and isopropanol precipitation. Using 500 ng of
total RNA, cDNA was synthesized with an iScript cDNA synthesis kit
(BioRad). PCR was performed using 1.25 μL of the resulting cDNA.
Primer sequences are available upon request.

Antibody generation

Two rabbits were immunized with a KLH-conjugated peptide
derived from amino acids 222–240 of zebrafish Uhrf1 (DDPKERGY-
WYDAEIQRKRE; Open Biosystems). Rabbits were immunized with
0.25 mg of peptide emulsified with Freund's complete adjuvant and
boosted at Days 14, 42, 56 and 113 with 0.10 mg peptide emulsified
with Freund's incomplete. Animals were euthanized, bled and serum
isolated. Anti-Uhrf1 was purified from serum using repeat affinity
purification.

Western blots

Ten embryos were collected at 5 days-post-fertilization (dpf) and
homogenized in 0.1% Triton X100 and protease inhibitors (Roche) in
PBS. Samples were mixed with NuPAGE Sample Reducing Agent and
NuPAGE LDS sample buffer (Invitrogen), heated at 70 °C for 10 min,
and then centrifuged at 13,000 rpm for 10 min. Samples were
separated on a NuPAGE 7% Tris–Acetate Gel with Tris–Acetate SDS
Running Buffer (Invitrogen). Proteins were transferred to nitrocellu-
lose and the membrane was blocked with 5% milk/0.2% Tween-20 in
TBS for 3 h at RT. Blots were probed overnight at 4 °C with anti-Uhrf1
(1:100) and anti-Hdac1 (1:4000; Abcam). The membrane was
washed 4× for 30 min in TBS/0.1% Tween-20 (TBST) and exposed to
anti-rabbit-HRP secondary antibody (1:10,000; Jackson ImmunoR-
esearch) for 1–2 h at RT, washed in TBST and developed using an ECL
Detection/Blocking Agent (Amersham Biosciences), and CL-XPosure
Film (Thermo Science — Pierce).
Riboprobes and in situ hybridization

Hybridizations using digoxigenin labeled antisense RNA probes
were performed essentially as described (Jowett and Lettice, 1994),
except that embryos over 2 dpf were pre-incubated with 1 mg/mL
Collagenase type 1A (Sigma, C9891) to allow probe entry though the
lens capsule. A cDNA clone encoding dnmt1 (clone # cb983) was
purchased from ZIRC (Eugene, OR), uhrf1 was cloned from 24 hpf
cDNA and ligated into pGEM-T Easy, and tgfB3 was cloned from cDNA
derived from 1 to 4 dpf embryos and ligated into pCS2+ (cloning
details available upon request).
Histology and transmission electron microscopy (TEM)

Histology and TEM were performed as described in Lee and Gross
(2007) and Nuckels and Gross (2007).
Immunohistochemistry

Immunohistochemistry was performed as described in Uribe and
Gross (2007) except for anti-Lengsin staining, where Harding et al.
(2008) was followed, and anti-Crystallin AlphaA staining, where Shi
et al. (2006) was followed. The following antibodies and dilutions
were used: red/green cones (zpr1; 1:200), rods (zpr3; 1:200),
ganglion cells (zn8; 1:100), amacrine cells (5e11; 1:100, kindly
provided by Jim Fadool), Lengsin (1:500; (Harding et al., 2008), kindly
provided by David Hyde), Crystallin AlphaA (1:500; (Shi et al., 2006),
provided by David Hyde), aquaporin 0 (1:500; Chemicon ab3071),
phosphohistone H3 (1:200; Millipore), Goat anti-mouse and anti-
rabbit Cy3 secondary (1:200; Jackson ImmunoResearch) and nuclei
were counterstained with Sytox Green (1:10,000; Molecular Probes).
mCherry was visualized using anti-dsRed (Clontech (632496) 1:150).
Alexa Fluor-555 Phalloidin (1:50, Molecular Probes) was used to
visualize F-actin. Imaging was performed on a Zeiss LSM Pascal laser
scanning confocal microscope. 3–5 1 μm optical sections were
collected and projected using Zeiss software.
BrdU assays

BrdU incorporation assays were performed as in (Nuckels et al.,
2009). Anti-BrdU antibody (Abcam) was used to detect BrdU+ nuclei
on cryosections.
TUNEL assays

TUNEL assays were performed on cryosections using a TMR-Red
labeled in situ cell death detection kit (Roche) per manufacturer's
instructions and were imaged by confocal microscopy.
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Methylation assays

The SouthWestern Blot was based on MacKay et al. (2007). 5 dpf
embryos were homogenized in extraction buffer (10 mM Tris pH 8,
100 mM EDTA pH 8, 0.5% SDS) and sheared with a 25-gauge needle.
200 μg/mL proteinase K was then added and the homogenate was
incubated at 55 °C overnight. This was followed by Phenol-Chloroform
extraction, ethanol precipitation, incubation with RNAse at 5 μg/mL, a
second phenol-chloroform extraction, ethanol precipitation and final
resuspension in ddH2O. DNA concentrations were measured by
Nanodrop and equal quantities of DNA were loaded onto nylon
membranes (Amersham Hybond N+, GE Healthcare) by a slot blotter.
DNA was crosslinked to the membrane using a UV stratalinker 1800
(Stratagene). Themembranewas blockedwith 3%milk/TBST (Block) and
incubatedwithmouse anti-5-methylcytosine (Calbiochem) at 2 μg/ml in
3%milk/PBST overnight at 4 °C. Themembranewaswashed four times in
Block and incubated with a horseradish peroxidase-conjugated anti
mouse antibody (Jackson ImmunoResearch) diluted 1:3333 in Block for
1.5 h at RT. Themembrane was washed 4× in Block, rinsed in TBST, then
overlaidwith chemiluminescence reagent and exposed toX-rayfilm. The
filmwas developed, and analysis of the blot was performed using Adobe
Photoshop. Banddensitometry values relative towild-type are compared
in Fig. 1D using the two-tailed t-test function of Microsoft Excel.

For enzymatic analysis of DNA methylation, genomic DNA was
isolated using a Genomic DNA Extraction Kit (Zymo Research). 750 ng
of genomic DNA was digested with either HpaII, MspI (New England
Biolabs), or a buffer-only control overnight, separated on a 1% agarose
gel containing ethidium bromide and imaged.

Mosaic lens analyses

Shield stage transplants were performed as described (Eberhart
et al., 2006). Donor embryos were injected with Alexa Fluor 488
Fig. 1. uhrf1 mutants possess hypomethylated genomic DNA. Genomic DNA methylation a
(HpaII), a methylation-insensitive enzyme (MspI), or a mock digestion with no enzyme pr
embryos demonstrates the efficacy of the assay. Genomic DNA is digested by themethylation
(B) Genomic DNA isolated from Wild-type AB, uhrf1 siblings or uhrf1 mutant embryos; uhr
sibling or wild-type DNA. (C) SouthWestern assay to quantify 5-methylcytosine levels on g
loaded onto a membrane and probed with anti-5-methylcytosine antibody. (D) Quantificat
dextran (10 kDa) (Molecular Probes) in 0.2 M KCL. At 6 hpf cells were
removed from one donor embryo and placed into each of three host
embryos, targeting the lens-fated region immediately adjacent to the
oral ectoderm precursors. At 34 hpf, the percent contribution was
determined in each host as the estimated amount of fluorescent cells
present by volume in the lens. At 5 dpf, donor and host embryos were
phenotyped and imaged before being prepped for histology. Other
shield stage transplants were performedwith Tg(beta actin2:mCherry-
CAAX) as donors and uhrf1 mutants and siblings as hosts, and
immunohistochemistry was performed at 4 dpf with an anti-dsRed
antibody to detect beta actin2:mCherry-expressing donor cells in the
host lens.

Larval lens transplants

Lens transplants were performed at 37 hpf essentially as described
in (Yamamoto and Jeffery, 2002).

Results

The uhrf1hi3020 allele is either null or severely hypomorphic

The uhrf1hi3020 mutant was identified in an insertional mutagen-
esis screen for morphological defects in eye formation (Amsterdam
et al., 2004; Gross et al., 2005). The proviral insert in uhrf1hi3020

mutants is located upstream of exon 2, the first coding exon of uhrf1
(Fig. S1A). To determine the effect of the proviral insertion on
expression of uhrf1, RT-PCR was performed on RNA extracted from
wild-type, uhrf1 mutants, and phenotypically wild-type sibling
embryos (Fig. S1B). No transcripts were detected in uhrf1 mutants
when assayed by several different primer sets. To analyze Uhrf1
levels, a rabbit polyclonal antibodywas raised against zebrafish Uhrf1.
Anti-Uhrf1 antibodies recognized a single band of expectedmolecular
ssay in which 750 ng of genomic DNA is digested by a methylation-sensitive enzyme
esent. (A) Genomic DNA isolated from Wild-type AB, dnmt1 siblings or dnmt1 mutant
-sensitive HpaII to a greater extent in themutant embryos than in siblings or wild-types.
f1 mutant DNA is digested by the methylation sensitive HpaII to a greater extent than
enomic DNA. 2 μg of genomic DNA is extracted from the indicated group of embryos,
ion of 5-methylcytosine levels (n=8 trials; *** pb0.00002). Error bars represent s.e.m.
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mass (~85 kDa) by Western blot in wild-type samples, and this band
was absent in uhrf1 mutants (Fig. S1C). From these data we consider
the uhrf1hi3020 allele to be either null or severely hypomorphic.

DNA methylation in zebrafish requires uhrf1

Uhrf1 recruits Dnmt1 to hemimethylated DNA (Bostick et al.,
2007; Sharif et al., 2007), which facilitates maintenance methylation
of cytosine residues after DNA replication. The absence of either Uhrf1
or Dnmt1 in mouse embryos or embryonic stem cells results in
severely hypomethylated genomic DNA (Bostick et al., 2007; Jackson
et al., 2004; Lei et al., 1996; Li et al., 1992; Sharif et al., 2007). Similarly,
the zebrafish mutant dnmt1s872 (in which Dnmt1 contains a point
mutation expected to render the methyltransferase domain catalyt-
ically inactive) has reduced global methylation of genomic DNA
(Anderson et al., 2009; Goll et al., 2009). To determine whether Uhrf1
is also required for DNA methylation in zebrafish embryos, two
genomic DNA methylation assays were performed. In the first assay,
genomic DNA from 5 dpf embryos was digested by either the
methylation-sensitive restriction enzyme HpaII or its methylation-
insensitive isochizomer MspI. While the methylation-insensitive
restriction enzyme MspI digested DNA of all genotypes to an equal
degree, methylation-sensitive HpaII digested dnmt1 and uhrf1mutant
genomic DNA to a greater degree than wild-type genomic DNA
(Figs. 1A,B). To quantify differences in methylated cytosine levels, a
Fig. 2. uhrf1 mutants possess abnormal lenses and cataracts. (A,C) Wild-type sibling and (B,D)
Pupils are smaller (inset in C,D) and lenses are malformed. (E–M) Transverse histology fro
5 dpf, and (G,J,M) 7 dpf. (H–J)Mild phenotypes include smaller lenses, anterior opacifications a
phenotypes include substantial opacifications throughout the lens, lensdysplasias, peripheralfib
(N) and mild uhrf1 mutant (O) cryosections stained for F-actin. The uhrf1 anterior lenses con
monolayer. (P,Q) TEM analyses of the lens sub-equatorial region in 7 dpf wild-type embryos (P
the lens capsule (red arrow). Inuhrf1mutants (Q) the lens capsule is absent, and apoptotic lensfi
are observed. Scale bars are 80 μm.
second assay was performed in which genomic DNA from 5 dpf
embryos was loaded onto a membrane using a slot blotter and probed
with an antibody against 5-methylcytosine (SouthWestern assay;
(MacKay et al., 2007)) (Fig. 1C). Methylation levels in phenotypically
wild-type dnmt1 and uhrf1 sibling groups were not significantly
different fromwild-type levels (Fig. 1D). However, genomic DNA from
dnmt1 or uhrf1 mutants was hypomethylated, with levels of 5-
methylcytosine at 29% (±15% s.d.) and 21% (±13% s.d.) of wild-type,
respectively (Fig. 1D). These data demonstrate that Uhrf1 function is
required in zebrafish for DNAmethylation, indicating that Uhrf1's role
in DNA methylation is likely conserved throughout vertebrates.
Moreover, the fact that relative methylation of DNA between dnmt1
and uhrf1 mutants is not significantly different is consistent with a
functional interaction between Uhrf1 and Dnmt1 during zebrafish
development.

Lens morphology is abnormal in uhrf1 mutants

The vertebrate lens is a transparent sphere of tightly packed lens
fibers which acts to focus light onto the retina. Through the life of the
organism, proliferating epithelial cells at the anterior periphery of the
lens undergo terminal differentiation to become lens fibers (Lovicu
and Robinson, 2004). In this process, epithelial cells exit the cell cycle
(Griep, 2006), elongate, express genes required for lens fiber
differentiation, and finally degrade their light-scattering organelles
uhrf1 mutant embryos at 5 dpf. Mutants possess defects in lens formation and cataracts.
m wild-type, (H–J) “mild” and (K–M) “severe” uhrf1 mutants at (E,H,K) 4 dpf, (F,I,L)
nd some unraveling of lens fibers at the anterior and/or posterior of the lens. (K–M) Severe
er unraveling from the core of differentiatedfibers and lensdegeneration. (N,O)Wild-type
tain disorganized, nucleated cells often in excess of the normal wild-type lens epithelial
) reveal early differentiating fibers (which still contain nuclei, white arrow) surrounded by
ber nuclei (white arrow) and intracellular gapsor tears in themutantfibers (yellowarrow)

image of Fig.�2
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(Bassnett and Beebe, 2004). Eye development appears normal in uhrf1
mutants until 4–5 dpf, at which point they develop morphologically
abnormal lenses and cataracts (Figs. 2A–D,N,O). At 3 dpf, uhrf1mutant
eyes are phenotypically indistinguishable from wild-type embryos
(Figs. S2A, B). The uhrf1 lens phenotype is homozygous recessive and
the mutation is embryonic lethal by 10 dpf. Heterozygotes have no
ocular phenotype.

The uhrf1 mutation is fully penetrant, but the severity of the lens
phenotype is variable.Mildly affected uhrf1mutant lenses (~50%) show
anterior lens opacifications (Figs. 2H–J). When 5 dpf mild mutant
lenses are stained for F-actin, the anterior lens contains disorganized,
nucleated cells often in excess of the normal lens epithelial monolayer
(Figs. 2N,O). In more severely affected mutants (~50%) the lens often
ruptures through the lens capsule and becomes ectopically localized
within the retina (Figs. 2L,M), or it ruptures through the cornea and
remains tethered to the anterior of the eye (data not shown). In these
severe mutant lenses, secondary fibers appear to unravel from the
primary core of the lens, and the fiber cells are often disorganized and
vacuolated (Figs. 2K–M). TEM analyses of the lens sub-equatorial
region in 7 dpf wild-type embryos reveal early differentiating fibers
(which still contain nuclei) surrounded by the lens capsule (Fig. 2P). In
uhrf1 mutants, severe ultrastructural defects are observed in which
fiber morphologies are abnormal, apoptotic nuclei are present in the
region of differentiating fibers, and the lens capsule is absent (Fig. 2Q).
Differentiating fibers of all uhrf1 mutant lenses examined also
possessed intracellular gaps or tears (Fig. 2Q and data not shown).

The uhrf1 lens phenotype is phenocopied by mutations in dnmt1

Uhrf1 recruits Dnmt1 to hemimethylated DNA (Bostick et al.,
2007; Sharif et al., 2007), and this facilitates CpG maintenance
methylation after DNA replication. Therefore, if defective DNA
Fig. 3. dnmt1 mutants also possess abnormal lenses and cataracts. (A) Wild-type and (B) d
severely affected embryos lens dysplasias are observed (arrow in B). F-actin staining of wild
mutant lenses containmany disorganized nucleated cells that do not resemble the cuboida
(C,E) wild-type and (D,F) dnmt1mutant embryos at (C,D) 5 dpf and (E,F) 7 dpf. Mutants di
and lens degeneration. Scale bars are 80 μm.
methylation leads to the lens defects observed in uhrf1 mutants, one
would expect similar lens defects in dnmt1mutants. Indeed, this is the
case; dnmt1 mutants also possess abnormal lenses and cataracts
(Fig. 3B). As in uhrf1 mutants, the anterior region of mild 5 dpf dnmt1
mutant lenses contains many disorganized nucleated cells, which do
not resemble the cuboidal structure of the wild-type lens epithelial
monolayer (Figs. 3A′,B′). Histological examination reveals unraveled
and disorganized fibers similar to those observed in uhrf1 mutants
(Figs. 3D,F). As in uhrf1 mutants, the lenses of dnmt1 mutants also
often rupture through the lens capsule and are found either within the
retina or emerging from the cornea (Fig. 3D). Also like the uhrf1
mutants, the dnmt1 lens phenotype, though fully penetrant, varies in
severity between mild and severe. There is no observable phenotype
in dnmt1 mutants before 4 dpf (Fig. S2C).

To further explore the role of Dnmt1 in zebrafish lens formation,
a second dnmt1 allele was examined: dnmt1s904, in which a frame-
shift mutation leads to predicted protein truncation and total loss of
the C-terminal CXXC, BAH1, BAH2 and DNA methyltransferase
domains (Anderson et al., 2009). dnmt1s904 also phenocopied the
uhrf1 disrupted lens phenotype (Fig. S3). All further experiments were
carried out in the dnmt1s872 allele.

Given the similarity in lens phenotype between uhrf1 and dnmt1
mutants, and the fact that the proteins functionally interact in
mammalian systems (Achour et al., 2008; Bostick et al., 2007; Sharif
et al., 2007), uhrf1−/−; dnmt1−/− double mutants were generated and
analyzed for lens defects to genetically test whether uhrf1 and dnmt1
also interact during zebrafish lens development (Fig. 4). There is no
overt eye phenotype in uhrf1+/−; dnmt1+/− compound heterozygous
embryos (Fig. 4B). Body morphology in ~50% of uhrf1−/−; dnmt1−/−

double mutants was much more severe than in single mutants. These
embryos were edemic with morphological abnormalities in axial
development (data not shown), suggesting that Uhrf1 and Dnmt1
nmt1 mutant embryos at 5 dpf. Mutants display obvious lens defects and in the more
-type (A′) and mild dnmt1 (B′) eye cryosections show that the anterior region of dnmt1
l structure of the wild-type lens epithelial monolayer. (C–F) Transverse histology from
splay lens dysplasias, peripheral fiber unraveling from the core of differentiated fibers

image of Fig.�3


Fig. 4. Genetic interaction between uhrf1 and dnmt1 during lens development. (A) 5 dpf
histology from uhrf1+/+; dnmt1+/+, (B) uhrf1+/−; dnmt1+/−, and (C–E) uhrf1−/−;
dnmt1−/− embryos. No compound heterozygous eye phenotype is observed (B). Lens
defects in uhrf1−/−; dnmt1−/− double mutants are no more severe than those in either
of the single mutants, and range from mild (C) to severe (D). uhrf1−/−; dnmt1−/−

double mutants with severe body morphology (E) do not have more severe lens
phenotypes. Scale bars are 80 μm.
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may have separate roles outside of the lens. However, consistent with
a functional interaction between Uhrf1 and Dnmt1 during lens
development, all uhrf1−/−; dnmt1−/− double mutants have similar
lens phenotypes to uhrf1 and dnmt1 single mutants, and are not more
severely affected (Figs. 4C–E). As in the single mutants, the severity of
uhrf1−/−; dnmt1−/− lens defects between embryos varies from mild
(Fig. 4C) to severe (Figs. 4D,E). These data provide genetic support for
a model in which Uhrf1 and Dnmt1 interact during lens development
in zebrafish.

Differentiated retinal cell types are present in uhrf1 and dnmt1 mutants

While Dnmt1- and Uhrf1-deficient mouse embryos are embryonic
lethal before later aspects of eye formation can be studied (Lei et al.,
1996; Li et al., 1992; Muto et al., 2002; Sharif et al., 2007),
morpholino-mediated knock-down of dnmt1 in zebrafish results in
retinal defects (Rai et al., 2006). Specifically, the authors observed
defective lamination of the retina as well as loss of dorsal retinal
pigmented epithelium (RPE) and no expression of anmRNAmarker of
photoreceptor and RPE terminal differentiation. However, no lens
phenotype was reported at 4 dpf. At 5 dpf, the present study shows
that uhrf1 and dnmt1mutants aremicrophthalmic and possess defects
in lens formation, but the laminar organization of their retinas
appears largely normal, and the RPE remains intact (Figs. 2 and 3).
Given these differences between mutant and morpholino-induced
ocular phenotypes, immunohistochemical analyses were performed
to better assess retinal neuron differentiation and laminar organiza-
tion of the retina in uhrf1 and dnmt1 mutants.

At 5 dpf, differentiated retinal ganglion cells, amacrine cells, red/
green cones, and rods were all present and in appropriate laminar
positions in uhrf1 and dnmt1 mutant retinas (Fig. S4). Despite correct
localization, both red/green cones and rods have a distorted
morphology in uhrf1 and dnmt1 mutant retinas (Figs. S4H′,I′,K′,L′),
the severity of which correlated with the severity of lens phenotype.
Therefore, it appears that zygotic mutations in uhrf1 and dnmt1 are
less disruptive to retinal neuron differentiation than injection of a
translation-blocking morpholino targeting dnmt1, at least through
5 dpf.

This difference in retinal phenotype may be explained by the
expected time at which Dnmt1 function is lost in the two systems.
Maternally provided Dnmt1 transcript or protein is believed to
account for Dnmt1 activity in dnmt1 mutant embryos which remains
through the end of 1 dpf (Goll et al., 2009), while a translation-
blocking morpholino would be expected to knock down expression of
both maternal and zygotic Dnmt1 much earlier in development.
Similarly, the fact that no lens phenotypewas observed in 4 dpf dnmt1
morphant embryosmay be explained by the steady increase in Dnmt1
expression that would be expected as the morpholino is titrated out
over time.

uhrf1 and dnmt1 are expressed in proliferative regions of the lens and
retina

uhrf1 and dnmt1 have previously been shown to be expressed in
the zebrafish eye (Rai et al., 2006; Sadler et al., 2007; Thisse et al.,
2001; Thisse and Thisse, 2004), but precise expression domains
therein have not been reported. In situ hybridizations of uhrf1 and
dnmt1 in wild-type embryos demonstrate that both genes are
expressed in the lens and retina during the time of mutant phenotype
onset (4 and 5 dpf) (Figs. 5 and S5). Both genes are also expressed in
the lens and retina earlier in development (data not shown).

At 4 and 5 dpf, uhrf1 and dnmt1 are expressed in the continually
proliferative ciliary marginal zones (CMZs) of the retina, as well as in a
ring of cells in the lens epithelium consistent with the proliferative
germinative zone (Greiling et al., 2010) (Figs. 5B–D,F–H and S5B,C,E,F).
This expression pattern is also consistent with a likely role of Uhrf1 and
Dnmt1 in maintenance methylation, which occurs in conjunction with
DNA replication, aswell aswith their established expression domains in
proliferating cells (including adult somatic stem and progenitor cells) in
other systems (Hopfner et al., 2000; Suetake et al., 2001; Trowbridge
and Orkin, 2010). Consistent with our genetic interaction data, the
distribution of dnmt1 transcript is also remarkably similar to that of
uhrf1. These results indicate that both uhrf1 and dnmt1 are normally
expressed in the lens during the time of the disrupted lens phenotype in
uhrf1 and dnmt1 mutants.

The lens epithelium is affected in urhf1 and dnmt1 mutants

The lens is made up of two cell types: lens epithelial cells and lens
fibers (Lovicu and Robinson, 2004). Because uhrf1 and dnmt1 are
normally expressed in a subset of lens epithelial cells at the time of

image of Fig.�4


Fig. 5. uhrf1 and dnmt1 are expressed in proliferative regions of the lens and retina at the time of phenotype onset. In situ hybridization of uhrf1 sense (A) and antisense (B–D) and
dnmt1 sense (E) and antisense (F–H) riboprobe onwild-type embryos at 4 dpf. No expression was detected in sense controls (A,E). Dorsal (B,F) and lateral (C,G) wholemount images
demonstrate that uhrf1 and dnmt1 transcripts are expressed in both the ciliary marginal zone of the retina and in the proliferative germinative zone of the lens epithelium (which
resembles a ring around the anterior lens when viewed in whole mount, arrows in C and G). Sectioned images of the lens (D, H) confirm the restriction of uhrf1 and dnmt1 expression
to distinct regions of the epithelium (anterior is right, dorsal is up). Scale bars in A–C and E–G are 100 μm, and scale bars in D and H are 20 μm.
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phenotypic onset in mutant embryos (Figs. 5 and S5), we sought to
determine whether epithelial marker gene expression was affected.
Members of the TGF-β family are expressed in the lens (Gordon-
Thomson et al., 1998), and tgfB3 serves as a lens epithelial marker in
zebrafish (Cheah et al., 2005)(Fig. 6A). Compared to wild-type
siblings, staining was essentially absent in approximately 50% of
uhrf1 and dnmt1 mutant embryos (defined as ‘weak’; Fig. 6B–D), and
it was much reduced in intensity in the remainder of mutant embryos
(defined as ‘moderate’ Fig. 6D–F).

Although in situ hybridization is not a quantitive assay, the
essential loss of lens staining in approximately half the mutant
embryos, and the reduction in staining in the remainder suggests that
expression of tgfb3 is reduced in uhrf1 and dnmt1 mutant lenses.

The bulk of the vertebrate lens is made up of lens fibers, which
continue to accumulate throughout the life of the organism due to the
proliferation of lens epithelial cells (Lovicu and Robinson, 2004),
which exit the cell cycle and differentiate (Griep, 2006). Uhrf1 and
Dnmt1 have been implicated in cell cycle regulation in other contexts
(Arima et al., 2004; Chen et al., 2007; Jeanblanc et al., 2005), and thus,
cell cycle defects are a potential mechanism underlying the lens
phenotype in uhrf1 and dnmt1 mutants. To explore this possibility,
immunohistochemistry with an antibody against Proliferating Cell
Nuclear Antigen (PCNA) was performed on 4 dpf lens cryosections, at
which time the disrupted lens phenotype is relatively mild and the
Fig. 6. Lens epithelium gene expression, cell proliferation, and apoptosis is altered in uhrf1 a
tgfB3 antisense in situ hybridizations on wild-type (A), uhrf1 (B,E) and dnmt1 (C,F) mutant em
mutant lenses was classified as either weak (B,C) or moderate (E,F) (summarized in the tab
positive cells are present in the lens epithelium of phenotypically wild-type (G) embryos as w
the dorsal and ventral proliferative zones within the lens epithelium, as defined by PCNA sta
(L) lenses stained for incorporation of BrdU (applied between 96 and 98 hpf). White arrow
labeled in the uhrf1 and dnmt1mutant lenses than in wild-type sibling lenses, and mutant ce
in the wild-type lens. (M–O) Phosphohistone H3 (pH3) immunostaining of 4 dpf (M) pheno
panel M show two cells in the wild-type lens epithelium stained positively for pH3. (N,O) N
indicates a pH3 positive cell in the cornea. Some sections have diffuse background staining in
(P–R) and 5 dpf (S–U) phenotypically wild-type (P,S), uhrf1 (Q,T) and dnmt1 (R,U) mutant cr
but numerous TUNEL-positive cells are observed in the still-nucleated epithelial and early fib
positive cells are rare in the wild-type eye (S), however, uhrf1 and dnmt1mutant lenses cont
In all 4 dpf panels, mild mutants were selected for analysis. Sections in panels A–C and J–O a
bars are 100 μm in A–C and E–F, 70 μm in G–R, and 80 μm in S–O.
lens epithelial layer is still intact in uhrf1 and dnmt1 mutants. In the
wild-type lens, PCNA-positive cells were positioned in the lateral
epithelium (likely in the ‘germinative zone’ of the lens epithelium
(Greiling et al., 2010)) (Fig. 6G). Cells in similar regions of the mutant
epithelial layer also stained positively for PCNA (Figs. 6H,I), suggesting
that cells within the epithelial region of mutant lenses maintain their
proliferative capacity. Although PCNA expression in wild-type lens
corresponded to the proliferative ‘germinative zone’ (Fig. 6G), PCNA is
also involved in the process of DNA repair (Kelman, 1997). Because
DNA damage is associated with reduction of Uhrf1 or Dnmt1 (Chen
et al., 2007; Muto et al., 2002), quantification of epithelial cell
proliferation was performed using BrdU incorporation assays and
phosphohistone H3 (pH3) immunostaining (Figs. 6J–O).

Fewer BrdU-incorporating cells were observed in the uhrf1 (Fig. 6K,
mean=2.9±1.6 s.d. per section) and dnmt1 (Fig. 6L, mean=2.6±
1.5 s.d.) lenses than in wild-type lenses (Fig. 6J, mean=6.2±1.3)
(pb0.005). Additionally, the position of BrdU-incorporating cells within
the uhrf1 and dnmt1 lens epithelium was not restricted to the lateral
epithelium, as is the case in wild-type zebrafish ((Greiling et al., 2010),
Fig. 6G). These data demonstrate that fewer epithelial cells in mutant
lenses are in S-phase. Similarly, pH3 immunostaining revealed that an
average of 1.8 (±1.0 s.d.) cells per lens section were pH3-positive in
wild-type lenses (Fig. 6M), while there were zero pH3-positive cells
observed in lenses of uhrf1 (Fig. 6N, n=8) and dnmt1 (Fig. 6O, n=5)
nd dnmt1mutant lenses. (A–C,E,F) Whole mount dorsal images of the retina and lens of
bryos at 4 dpf. (A) Wild-type lenses showed strong staining for tgfB3, while staining in

le (D)). (G–I) Cryosections from 4 dpf embryos immunostained for PCNA (red). PCNA-
ell as uhrf1 (H) and dnmt1 (I) mutants. In each panel, arrows of the same color indicate

ining. (J–L) Cryosections through 4 dpf phenotypically wild-type (J), uhrf1 (K), or dnmt1
s point to lens cells which have incorporated BrdU. Fewer BrdU-incorporating cells are
lls labeled with BrdU are not positioned exclusively in the lateral epithelium as they are
typically wild-type, (N) uhrf1 mutant and (O) dnmt1 mutant embryos. White arrows in
o pH3 positive cells are observed in mutant lens epithelium. The yellow arrow in (N)
the cornea which is not localized to nuclei. (P–U) TUNEL immunostaining (red) of 4 dpf
yosections. No apoptotic cells are observed in the lens of wild-type embryos at 4 dpf (P),
er regions of the uhrf1 and dnmt1mutant lenses (white arrows in Q, R). At 5 dpf, TUNEL-
ain numerous TUNEL-positive cells in the lens, and some in the cornea and retina (T,U).
re counter-stained with Sytox-Green (green). Anterior is to the right in all panels. Scale
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mutant embryos at 4 dpf. Therefore, a reduced number of lens epithelial
cells are in either S or M phase in mutant lenses.

Apoptosis is elevated in uhrf1 and dnmt1 mutant lenses

Apoptosis is elevated in proliferating somatic cells and differen-
tiated cells in the absence of Dnmt1 (Jackson-Grusby et al., 2001;
Latham et al., 2008; Li et al., 1992; Stancheva et al., 2001), suggesting
that apoptosis could be elevated in uhrf1 and dnmt1mutant lenses. To
test this possibility, TUNEL immunostaining was performed to
positively identify apoptotic cells in the mutant lenses. At 4 dpf,
numerous TUNEL-positive cells are observed in the still-nucleated
epithelial and early fiber regions of uhrf1 and dnmt1 mutant lenses,
although no apoptotic nuclei are observed in wild-type lenses
(Figs. 6P–R). Apoptosis of epithelial cells may therefore partially
explain why fewer mutant epithelial cells expressed S and M phase
cell cycle markers at 4 dpf (Figs. 6K,L,N,O). At 5 dpf, there are rare
TUNEL-positive cells in the wild-type lens (Fig. 6S), however, uhrf1
and dnmt1mutant lenses contain numerous TUNEL-positive cells, and
moreover, isolated TUNEL-positive cells are also present in the cornea
and retina of mutant eyes (Figs. 6T,U).

Lens fibers express markers of terminal differentiation in uhrf1 and
dnmt1 mutants

Methylation of gene promoters is associated with reduced
transcriptional activity (Bird, 2002), and methylation may be a
mechanism to regulate cell type-specific gene expression patterns
during development and differentiation (Illingworth and Bird, 2009).
At 5 dpf, uhrf1 and dnmt1 mutant lenses are characterized by the
presence of disorganized peripheral fibers, suggesting that terminal
differentiation may be disrupted in these cells. To analyze this
possibility, the expression of lens fiber differentiation markers was
compared between wild-type and uhrf1 and dnmt1 mutant embryos.
Crystallins are upregulated during fiber cell differentiation (Bassnett
and Beebe, 2004), and in wild-type zebrafish Crystallin AlphaA is
expressed in cortical fibers at 5 dpf (Fig. 7A; (Shi et al., 2006)). In uhrf1
and dnmt1 mutants, Crystallin AlphaA expression is still observed in
the disorganized fibers, indicating that these cells have initiated
differentiation (Figs. 7B,C). Furthermore, Lengsin is expressed in the
subpopulation of early differentiating fiber cells which are not yet
denucleated (Fig. 7D; (Harding et al., 2008; Wyatt et al., 2008)). In
uhrf1 and dnmt1 mutants, Lengsin is expressed in the disorganized
cells that make up the mutant lens periphery (Figs. 7E,F). Finally,
Aquaporin 0 is expressed in fibers of the lens (Shiels and Bassnett,
1996; Shiels et al., 2001) (Fig. 7G). This marker is also observed in
disorganized fibers of the uhrf1 and dnmt1mutant lenses (Figs. 7H, I).
Therefore, these disorganized cells express markers appropriate for
early differentiating lens fibers.

Uhrf1 and Dnmt1 are required lens-autonomously for lens maintenance

Lens development requires a precise interplay between the retina
and the lens (Lang and McAvoy, 2004). Indeed, lens fiber differenti-
ation requires proteins synthesized within the lens as well as
signaling molecules released from the retina (Bassnett and Beebe,
2004). The strong expression of uhrf1 and dnmt1 in the retina (Figs. 5,
S5), and the role of DNA methylation in silencing genes (Bird, 2002),
raised the possibility that lens defects in uhrf1 and dnmt1 mutants
resulted from a non-autonomous, retina-dependent process.

To address this possibility, mosaic embryos were generated in
which gene function could be limited to entire tissues, or groups of
cells (Carmany-Rampey and Moens, 2006; Yamamoto and Jeffery,
2002). In the first set of experiments, shield-stage transplants were
utilized to generate lenses that were mosaic for wild-type andmutant
cells (Eberhart et al., 2006). Transplanted cells were dextran-labeled
and percent contribution in the mosaic lens was quantified at 34 hpf
as either low (≤30% of the lens was donor-derived), medium (30–
70%), or high (≥70%) (Fig. S6). Rare host embryos with any donor cell
contamination in the retina were discarded. At 5 dpf, lens phenotypes
were assayed in whole mount to identify the genotype of the donor
and host embryos, and only transplants with severe uhrf1 or dnmt1
mutant donors or hosts were used for subsequent analyses. Mosaic
embryos were scored by whole-mount imaging, and a subset of these
was verified through histology. Summary results from all mosaic lens
combinations are presented in Table 1, and Fig. 8 shows representa-
tive whole mount and histological sections for each mosaic combi-
nation. Control transplants are presented in Fig. S7 and data from all
mosaics that were verified by histology are presented in Figs. S8–S11.

Wild-type cells transplanted into either uhrf1 (Figs. 8A–C) or
dnmt1 (Figs. 8G–I) mutants rescued the mutant lens, even at low
contributions. Slightly imperfect lenses (classified as mild in Table 1)
were observed in some mosaics, but in all cases the phenotype of the
mosaic lens was drastically improved from that of the mutant donor.
These data indicate that mutant retinas do not induce a mutant lens
phenotype when the lens contains some wild-type cells and suggest
that each gene is required lens-autonomously for lensmaintenance. In
reciprocal transplants, wild-type embryos receiving either uhrf1
(Figs. 8D–F) or dnmt1 (Figs. 8J–L) mutant cells also appeared normal,
even with high contributions of mutant cells. This result suggests
either that there is a cell non-autonomous function for Uhrf1 and
Dnmt1 within the lens, or that the wild-type retina is able to non-
autonomously support normal development of a lens, even when it is
composed of 70% or more mutant cells.

To ensure that wild-type cells are not simply out-competing
mutant cells in the lens epithelium (which might lead to an
epithelium made up entirely of wild-type cells by the time of mutant
phenotype onset), we performed an experiment to visualize the
donor and host contribution to lens cells at the time of phenotype
onset (Fig. S12). Because the dextran used to label donor cells was no
longer detectable at 4–5 dpf, transplants were performed in which all
donor cells were derived from transgenic zebrafish expressing
mCherry driven by the beta actin2 promoter. As in the previous
experiment, percent contribution was quantified at 34 hpf, and any
mosaic embryos with donor cell contamination in the retina were
discarded. Confocal microscopy of control (wild-type donors and
wild-type hosts; Figs. S12A,B) or experimental (wild-type donors and
uhrf1 mutant hosts; Figs. S12C,D) mosaic lenses was performed at
4 dpf. In both cases, the lens epithelium contained amixture of donor-
and host-derived cells, demonstrating that rescue of the mutant lens
phenotype, at least in the case of uhrf1, is not mediated by wild-type
cells simply replacing mutant cells in the lens epithelium.

Finally, to distinguish between the possibility that there is a cell
non-autonomous function for Uhrf1 and Dnmt1 within the lens, or
that the wild-type retina can non-autonomously support normal
development of a lens composed of greater than 70% mutant cells, we
transplanted entire lenses between wild-type and mutant embryos
(Yamamoto and Jeffery, 2002). Unilateral transplants were performed
at 37 hpf, a timewell prior to any visible lens phenotype in themutant
eye (Fig. S2). In all of these late-stage transplants the lens phenotype
was also lens-autonomous. Transplantation of either a dnmt1 or a
uhrf1 mutant lens into a wild-type sibling embryo resulted in a
mutant lens (Fig. 9B and data not shown) indicating that, at least post-
37 hpf, the wild-type retina is not able to rescue a mutant lens and
enable its normal development. In reciprocal transplants, wild-type
lenses transplanted into dnmt1 or uhrf1 mutant retinas resulted in a
wild-type lens (Fig. 9D and data not shown), indicating, as in the
mosaics above, that loss of Dnmt1 or Uhrf1 in the retina does not
underlie the lens defects in themutant eye. Combined, these early and
late-stage transplant data support a model in which Uhrf1 and Dnmt1
are required lens-autonomously, but perhaps not cell autonomously,
for lens development and maintenance.



Fig. 7. Lens fibers express markers of terminal differentiation in uhrf1 and dnmt1mutants. (A–I) Cryosections from 5 dpf embryos immunostained for the lens fibermarkers Crystallin
AlphaA (A–C, red), Lengsin (D–F, red), or Aquaporin 0 (G–I, red). In all sections, nuclei are counterstained with Sytox-Green (green). uhrf1 (B,E,H) and dnmt1 (C,F,I) fibers express
these markers, indicating that the disorganized secondary fibers in the mutant lenses still express markers of terminal differentiation. Yellow arrows in panels C, E, and F indicate
regions of the mutant cornea which ectopically express lens fiber genes. In all panels, mild mutants were selected for analysis. Anterior is to the right in all panels. Scale bars are
80 μm.
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Discussion

Uhrf1 interacts with Dnmt1 in mammalian cells (Achour et al.,
2008; Bostick et al., 2007; Sharif et al., 2007), and this interaction
facilitates maintenance methylation (Bostick et al., 2007; Sharif et al.,
2007). The present study demonstrates that Uhrf1 is required for DNA
methylation in zebrafish, and that DNA methylation is reduced to a
similar degree when either Uhrf1 or the catalytic function of Dnmt1 is
lost. Knockout of Dnmt1 or Uhrf1 in the mouse results in early
Table 1

Low contribution Medium

No phenotype Mild Severe No pheno

Whole embryos
WT to WT (uhrf1 siblings) 2 0 0 13
WT to uhrf1 1 2 0 4
uhrf1 to WT 4 0 0 8
uhrf1 to uhrf1 0 0 3 0
WT to WT (dnmt1 siblings) 0 0 0 1
WT to dnmt1 0 1 0 1
dnmt1 to WT 2 0 0 3
dnmt1 to dnmt1 0 0 0 0

Histological verification
WT to WT (uhrf1 siblings) 0 0 0 0
WT to uhrf1 0 2 0 2
uhrf1 to WT 0 0 0 7
uhrf1 to uhrf1 0 0 0 0
WT to WT (dnmt1 siblings) 0 0 0 1
WT to dnmt1 0 1 0 1
dnmt1 to WT 1 0 0 3
dnmt1 to dnmt1 0 0 0 0
embryonic lethality, which has precluded an analysis of their roles in
later aspects of organogenesis (Lei et al., 1996; Li et al., 1992; Muto
et al., 2002; Sharif et al., 2007). Mouse conditional knockout studies
have shown that Dnmt1 is required in hematopoiesis (Broske et al.,
2009; Trowbridge et al., 2009) as well as in neuronal differentiation
and function (Fan et al., 2001; Feng et al., 2010; Golshani et al., 2005;
Hutnick et al., 2009). The fact that zebrafish uhrf1 and dnmt1mutants
survive to late embryonic stages enabled us to identify, for the first
time, crucial roles for Uhrf1 and Dnmt1 in lens development and
contribution High contribution N

type Mild Severe No phenotype Mild Severe

0 0 15 0 0 30
0 0 3 0 0 10
0 0 5 4 0 21
0 2 0 0 1 6
0 0 4 0 0 5
2 0 0 0 0 4
0 0 1 0 0 6
0 0 0 0 0 0

0 0 1 0 0 1
0 0 1 0 0 5
0 0 1 2 0 10
0 1 0 0 1 2
0 0 2 0 0 3
2 0 0 0 0 4
0 0 1 0 0 5
0 0 0 0 0 0
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Fig. 8. Uhrf1 and Dnmt1 are required lens-autonomously for normal lens development. Shield-stage transplants were performed as described in Fig. S6. (A–F) Representative
transplants between wild-type embryos and uhrf1mutants and (G–L) wild-type embryos and dnmt1mutants. All images are from 5 dpf embryos and each pair of whole-mount and
histology images is derived from the same embryo and eye. For consistency, all data presented are taken from embryos with medium (30–70%) contribution of cells in the mosaic
host lens. (A,D,G,J) whole-mount and histology images of eyes formed from donor embryos, (B,E,H,K) whole-mount and histology images of eyes formed from the non-mosaic side of
host embryos and (C,F,I,L) whole-mount and histology images of eyes formed from the mosaic lens. Mutant to wild-type (A–C,G–I) transplants and wild-type to mutant transplants
(D–F,J–L) both yielded normal lens formation in the mosaic host lens indicating that Uhrf1 and Dnmt1 function is required lens autonomously for lens development. Scale bars are
80 μm.
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maintenance. Moreover, comparison of lens defects in single uhrf1
and dnmt1mutantswith those in uhrf1−/−; dnmt1−/− doublemutants
provides genetic support for a functional interaction between these
proteins in the lens.

We have shown that uhrf1 and dnmt1 are normally expressed in
proliferative cells of the zebrafish lens epithelium at the time of
Fig. 9.Wild-type retinas cannot rescue development of a mutant lens. Lens transplants perfo
wild-type retinas retain the mutant phenotype. (A–D) Representative 5 dpf whole-mount a
Each pair of whole-mount and histology images is derived from the same embryo and eye, an
(A,B) dnmt1 lenses transplanted to wild-type host eyes resulted in the mutant phenotype (n
lens formation (n=5). Similar results were obtained from corresponding transplants betw
mutant lens phenotype onset, and that the requirement for wild-type
uhrf1 and dnmt1 is lens-autonomous. In the absence of either Uhrf1 or
of Dnmt1 catalytic function, secondary lens fibers continue to express
differentiation markers. However, lens epithelial cells, which are
proliferative in thewild-type lens, show reduced expression of tgfB3, a
zebrafish epithelial marker, reduced BrdU incorporation, and reduced
rmed at 37 hpf (Yamamoto and Jeffery, 2002) demonstrate that mutant lenses placed in
nd histology data for lens transplants between wild-type embryos and dnmt1 mutants.
d transplants were unilateral so control and transplanted lenses are from the same fish.
=5). (C,D) Wild-type lenses transplanted to dnmt1mutant hosts resulted in wild-type
een uhrf1 mutant and wild-type embryos (data not shown). Scale bars are 80 μm.
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phospho-Histone H3 staining in both mutant backgrounds. This is
correlated with a wave of apoptosis in the epithelial layer, which is
followed by apoptosis and unraveling of secondary lens fibers. Many
distinct cellular roles forUhrf1 andDnmt1have beenpublished (Achour
et al., 2009; Chen et al., 2007; Dunican et al., 2008; Espada et al., 2004;
Karagianni et al., 2008; Papait et al., 2007; Rottach et al., 2010), including
a role for Uhrf1 in Dnmt1-independent gene silencing and methylation
in conjunctionwith the de novo (non-maintenance)methyltransferases
Dnmt3a and Dnmt3b (Meilinger et al., 2009). We have demonstrated
that a process which requires both Uhrf1 and the catalytic function of
Dnmt1 within cells of the lens is required for lens development and
maintenance. We propose that this function is likely to be DNA
maintenance methylation, which is known to require both genes
(Bestor, 2000; Bostick et al., 2007; Sharif et al., 2007; Yoder et al., 1997).
Wehave shown that overall levels of cytosinemethylation are disrupted
to the same degree in both mutant lines (Fig. 1); however, we cannot
exclude the possibility that another process which requires both
proteins is responsible for the lens phenotypes in mutant embryos.

The onset of the disrupted lens phenotype in uhrf1 and dnmt1
mutants in this study is relatively late in zebrafish eye development: 4
to 5 dpf. For comparison, the zebrafish lens appropriately focuses light
onto the plane of retinal photoreceptors at 72 hpf, by which time
zebrafish embryos exhibit visual function (Easter and Nicola, 1996).
Goll and colleagues recently demonstrated (with the same dnmt1s872

allele utilized in the present study) that Dnmt1 activity, presumably
maternally provided, remained in the brain of dnmt1mutant embryos
through 1 dpf (Goll et al., 2009). Maternally provided Dnmt1 and
Uhrf1 (transcript or protein) may therefore explain the relatively late
onset of the disrupted lens phenotype in dnmt1 and uhrf1 mutants.
This maternal contribution would presumably titrate out with each
cell division, and the timing of complete loss of gene function in
mutant tissues should vary according to the number of cell divisions
in a particular tissue.

DNA methylation and lens development

The results of lens transplant experiments demonstrate that Uhrf1
and Dnmt1 functions are required lens-autonomously during lens
development in zebrafish. Additionally, the results of mosaic lens
experiments demonstrate that the downstream function of Uhrf1 and
Dnmt1 is cell non-autonomous within the lens, as even a low
concentration of wild-type lens cells can rescue the uhrf1 or dnmt1
mutant lens phenotype.

Because abundant mutant host cells are still present in the lens
epithelium at 4 dpf (Fig. S12), it is possible that a gene product
produced within wild-type lens cells could non-autonomously rescue
the mutant lens cells. Indeed, signaling molecules (such as FGFs),
which are involved in fiber cell differentiation, are expressed within
the lens (Lang and McAvoy, 2004). If these are deficient in mutant
lenses, they may potentially mediate a non-autonomous rescue of the
mutant phenotype when provided by wild-type cells. Furthermore,
mouse lens fibers form a “stratified syncytium”with other fibers of the
same age, thereby forming concentric shells of interconnected cells
and enabling the passage of macromolecules between cells; a similar
syncytium has been shown in the chicken lens (Shestopalov and
Bassnett, 2000, 2003; Shi et al., 2009). If early fibers in the zebrafish
lens are similarly connected, cytoplasmic and membrane proteins
would be expected to diffuse between wild-type and mutant fibers in
mosaics, and enable rescue of the mutant phenotype. In this case, the
result of our mosaic lens experiments would be more correctly
interpreted as either cell non-autonomous or as “syncytium-auton-
omous”. Althoughmuch further work is needed to determinewhether
the zebrafish lens forms a syncytium, the results of our beta actin2:
mCherry lens mosaics are consistent with this possibility (Fig. S12).
Specifically, in both wild-type to wild-type and wild-type to mutant
transplants, we observed only occasional beta actin2:mCherry-
expressing donor cells in the lens epithelium and transition zone,
while membranes of mature lens fibers appeared to be uniformly red.

Another possible cause of the disrupted lens phenotype in uhrf1
and dnmt1 mutants is ectopic epithelial–mesenchymal transition
(EMT), a process which results in cataracts in both mouse mutants
and in human patients, and which superficially resembles the early
stages of uhrf1 and dnmt1 lens defects (de Iongh et al., 2005).
However, we do not favor this as the mechanism underlying lens
defects in uhrf1 and dnmt1 mutant zebrafish because transcripts for
the EMT marker alpha-smooth muscle actin were not detected in
mutant lenses at either 4 or 5 dpf (RKT, unpublished observations).

Generally, hypermethylation of gene promoter CGIs is associated
with reduced gene transcription (Bird, 2002), and this is a potential
mechanism bywhich cell type-specific gene expression patterns are set
during differentiation (Illingworth and Bird, 2009). The vertebrate lens
consists of an anterior monolayer of proliferative epithelial cells which
give rise to terminally differentiated lens fibers (Lovicu and Robinson,
2004). Recent studies have shed light on the role of Dnmt1 in other
populations of self-renewing progenitors (Broske et al., 2009; Sen et al.,
2010; Trowbridge et al., 2009). In epidermis, depletion of dnmt1oruhrf1
leads to a reduction of self-renewal and to premature differentiation of
proliferative progenitors (Sen et al., 2010). Results by Sen et al. indicate
that Dnmt1 maintains methylation of transcriptionally repressed
differentiation genes in epidermal progenitors, and that these genes
are demethylated during terminal differentiation by an active process
which involves Gadd45. It is possible that a similar role for Dnmt1-
mediated methylation occurs in the proliferative epithelial cells of the
vertebrate lens. Although few specific roles for DNAmethylation during
lens development have yet been identified, it is known in rat lens that
transcription of the lens fiber-specific gene gamma D crystallin is
regulated in part by demethylation of its promoter (Dirks et al., 1996;
Klok et al., 1998; Peek et al., 1991). The gamma D crystallin gene
promoter is both heavily methylated and untranscribed in rat lens
epithelial cells, but during lensfiber differentiation, gammaDcrystallin is
demethylated by an active processwhich is necessary for its subsequent
transcription in lens fibers. Future genome-wide experiments to
examine changes in gene methylation and transcription during lens
development may shed additional light on gene regulation by DNA
methylation in the lens.

In summary, this study demonstrates that Uhrf1 is required for DNA
methylation in vivo during zebrafish embryogenesis. Due in part to the
early embryonic lethality of Dnmt1 and Uhrf1 knockout mice (Lei et al.,
1996; Li et al., 1992;Muto et al., 2002; Sharif et al., 2007), roles for these
proteins during lens development have yet to be reported. In the
absence of either Uhrf1, or of catalytically active Dnmt1, zebrafish
secondary lens fibers continue to express differentiation markers.
However, lens epithelial cells show reduced expression of a zebrafish
epithelial marker, tgfB3, reduced BrdU incorporation, and reduced
phospho-Histone H3 staining in both mutant backgrounds. This is
correlated with a wave of apoptosis in the epithelial layer, which is
followed by apoptosis and unraveling of secondary lens fibers. Uhrf1
and Dnmt1 functions are required lens-autonomously, but perhaps not
cell-autonomously, during lens development in zebrafish. Combined
with expression of these genes within lens epithelial cells and the fact
that lens defects in mutants begin in the epithelium, these data support
a model in which Uhrf1 and Dnmt1 function is required within cells of
the lens epithelium for lens development and maintenance.

Supplementarymaterials related to this article can be found online
at doi:10.1016/j.ydbio.2010.11.009.
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