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n recent years, the study of flow and heat transfer of non-
ewtonian fluids has received considerable attention because of 

ts wide use of these fluids in food engineering, petroleum pro-
uction, power engineering and in many industries such as poly- 
er melt and polymer solutions used in the plastic processing 

ndustries. Over recent years, applications of non-Newtonian 

uids in many industrial processes have been interesting. Many 
articulate slurries, multiphase mixers, phar maceutical for mu- 

ation, cosmetics and toiletries, paints, biological fluids, and 

ood items are examples of non-Newtonian fluids. Many of 
duction and hosting by Elsevier B.V. This is an open access article 
nc-nd/4.0/ ). 
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Nomenclature 

C Nanoparticle volume fraction 

C f x Skin friction coefficient 
D B Brownian diffusion 

D T Thermophoretic diffusion coefficient 
f Dimensionless stream function 

g Acceleration due to gravity 
k Thermal conductivity 
K Consistency coefficient of the fluid 

Le Generalized Lewis number 
M Magnetic parameter 
N Concentration to thermal buoyancy ratio 

n Power-law rheological index 
Nb Generalized Brownian motion parameter 
Nt Generalized thermophoresis parameter 
Nu x Local Nusselt number 
Pr x Generalized Prandtl number 
R d Radiation parameter 
Re Reynolds number 
Re x Local Reynolds number 
Sh x Local Sherwood number 
T Fluid temperature 
u, v Velocity components 
x , y Cartesian coordinates 
αm 

Thermal diffusivity 
� dimensionless mixed convection parameter 
υ Kinematic viscosity of the fluid 

ρf Fluid density 
ρp Nanoparticle mass density 
τ Ratio between the effective heat capacity of the 

nanoparticle material and heat capacity of the 
fluid 

θ Dimensionless temperature 
φ Dimensionless nanoparticle volume fraction 

ψ Stream function 

η Similarity independent variable 
w Conditions at the wall 
∞ Ambient condition 

′ Prime denotes the derivative with respect to η

the non-Newtonian fluids encountered in chemical engineering
processes are known to follow the empirical Ostwaldde Waele
power-law model. The concept of boundary layer was applied
to power-law fluids by Schowalter [1] . Acrivos [2] investigated
the boundary-layer flows for such fluids in 1960, since then a
large number of related studies have been conducted because
of their importance and presence of such fluids in chemicals,
polymers, molten plastics and others. Most of the previous
studies of natural convection associated with clear fluid media
have considered Newtonian fluids, which received a great atten-
tion among the thermofluid community. Few theoretical studies
have investigated the shear rate effect of non-Newtonian fluids
on convective flow patterns and heat transfer rate, despite their
importance and presence in many industrial applications such
as paper making, oil drilling, slurry transporting, food process-
ing, and polymer engineering. 

The theory of non-Newtonian fluids offers mathematicians,
engineers and numerical specialists varied challenges in devel-
oping analytical and numerical solutions for the highly non-
linear governing equations. However, due to the practical sig-
nificance of these non-Newtonian fluids, many authors have
presented various non-Newtonian fluid models like El-
bashbeshy et al. [3] , Nadeem et al. [4] , Nadeem et al. [5] ,
Nadeem et al. [6] , Nadeem and Akbar [7] , Nadeem and Ali
[8] , Buongiorno [9] , Lukaszewics [10] . Many interesting appli-
cations of non-Newtonian power-law fluids were presented by
Shenoy [11] . Details of the behavior of non-Newtonian fluids
for both steady and unsteady flow situations, along with math-
ematical models are studied by Astarita and Marrucci [12] ,
Bhome [13] , Kishan [14] and Kavitha [15] . 

Nanotechnology has immense applications in industry since
materials with sizes of nanometers exhibit unique physical and
chemical properties. Fluids with nano-scaledparticles interac-
tion are called as nanofluid. It represents the most relevant tech-
nological cutting edge currently being explored. Nanofluid heat
transfer is an innovative technology which can be used to en-
hance heat transfer. Nanofluid is a suspension of solid nanopar-
ticles (1–100 nm diameters) in conventional liquids like water,
oil and ethylene glycol. Depending on shape, size, and ther-
mal properties of the solid nanoparticles, the thermal conduc-
tivity can be increased by about 40% with low concentration
(1–5% by volume) of solid nanoparticles in the mixture. The
nano particles used in nanofluid are normally composed of met-
als, oxides, carbides or carbon nanotubes. Water, ethylene gly-
col and oil are common examples of base fluids. Nanofluid have
their major applications in heat transfer, including microelec-
tronics, fuel cells, pharmaceutical processes and hybrid-powered
engines, domestic refrigerator, chiller, nuclear reactor coolant,
grinding, space technology and in boiler flue gas temperature
reduction. They demonstrate enhanced thermal conductivity
and convective heat transfer coefficient counterbalanced to the
base fluid. Nanofluid has been the core of attention of many re-
searchers for new production of heat transfer fluids in heat ex-
changers, plants and automotive cooling significations, due to
their enormous thermal characteristics Nadeem et al. [16] . 

The nanofluid is stable, it introduce very little pressure drop,
and it can pass through nanochannels (for more instance see
Zhou [17] ). The word nanofluid was coined by Choi [18] . Xuan
and Li [19] pointed out that at higher nanoparticle volume
fractions, the viscosity increases sharply, which suppresses heat
transfer enhancement in the nanofluid. Therefore, it is impor-
tant to carefully select the proper nanoparticle volume fraction
to achieve heat transfer enhancement. Buongiorno [9] noted
that the nanoparticles absolute velocity can be viewed as the
sum of the base fluid velocity and a relative velocity (that he
called the slip velocity). He considered in turn seven slip mech-
anisms: inertia, Brownian diffusion, thermophoresis, diffusio-
phoresis, Magnus effect, fluid drainage, and gravity settling. 

Forced convective heat transfer can be enhanced effectively
by using nanofluids, a type of fluid adding different suspending
nanoparticles into the conventional base liquid (Pak and Cho
[20] , Wen and Ding [21] , Ding et al. [22] ). However, the charac-
teristics of nanofluids and the mechanism of the enhancement
of the forced convective heat transfer of nanofluids are still not
clear. Recently nanofluids have attracted much attention since
anomalously large enhancements in effective thermal conduc-
tivities were reported over a decade ago (Choi [18] , Masuda [23] ,
Keblinski et al. [24] ). Subsequent studies by various groups have
reported that nanofluids also have other desirable properties
and behaviors such as enhanced wetting and spreading (Wasan
et al. [25] , Chengara et al. [26] ), as well as increased critical heat
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uxes under boiling condition (You et al. [27] ). Sheikholeslami 
t.al [28] studied the effects of heat transfer in flow of nanofluids
ver a permeable stretching wall in a porous medium. 

Boundary layer flow and heat transfer over a continuously 
tretched surface has received considerable attention in recent 
ears. This is because of the various possible engineering and 

etallurgical applications such as hot rolling, metal and plas- 
ic extrusion, wire drawing, glass fiber production, continuous 
asting, crystal growing, and paper production. Crane [29] was 
he first to investigate the boundary layer flow caused by a 
tretching sheet moving with linearly varying velocity from a 
xed point whilst the heat transfer aspect of the problem was 

nvestigated by Carragher and Crane [30] under the conditions 
hat the temperature difference between the surface and the am- 
ient fluid was proportional to the power of the distance from a
xed point. 

A recent development in fluid mechanics has been the study 
f nanofluids which possess superior thermal conductivity 
roperties and enhance heat transfer in fluids. Thus the behav- 

or of non-Newtonian nanofluids could be useful in evaluating 
he possibility of heat transfer enhancement in various processes 
f these industries. Several investigators have studied non- 
ewtonian nanofluid transport in various geometries under 

arious boundary conditions in porous or non-porous media. 
llahi et al. [31] have elaborated that non-Newtonian nanofluids 
ave potential roles in physiological transport as biological so- 

utions and also in polymer melts, paints, etc. Non-Newtonian 

anofluid is important in many industrial and technological ap- 
lications such as biological solutions, melts of polymers, paint, 
ars and glues (Ellahi et al. [31–33] ). Because of this, research
orks on non-Newtonian fluids have recently become very im- 
ortant. Transport phenomena associated with magnetohydro- 
ynamics arise in physics, geophysics, astrophysics and many 
ranches of chemical engineering which includes crystal mag- 
etic damping control, hydromagnetic chromatography; con- 
ucting flow in trickle-bed reactors and enhanced magnetic fil- 
ration control (Prasad et al. [34] ). 

The objective of the present study is to investigate the ef- 
ects of MHD and thermal radiation on heat and mass trans- 
er by mixed convection boundary layer stagnation point flow 

f non-Newtonian power law fluid towards a stretching surface 
ith a nanofluid. The effect of Brownian motion, thermophore- 

is are included for the nanofluid. Numerical solutions of the 
oundary layer equations are obtained and a discussion is pro- 
ided for several values of the nanofluid parameters governing 
he problem. The dimensionless profiles of velocity, temperature 
nd nano particle volume fraction as well as the skin friction 

oefficient, local Nusselt number and Sherwood number for the 
ifferent flow parameters have been discussed. 

. Mathematical formulation 

onsider steady, laminar, heat and mass transfer by mixed con- 
ection, boundary layer stagnation-point flow of an electrically- 
onducting, optically dense and non-Newtonian power-law 

uid obeying the Ostwald-de Waele model (see, Metzner (1965)) 
ast a heated or cooled stretching vertical surface in the pres- 
nce of thermal radiation. It is assumed that the stretching ve- 
ocity is given by u w (x ) = cx, and the velocity distribution in
rictionless potential flow in the neighborhood of the stagnation 

oint at x = y = 0 is given by U (x ) = ax . We assumed that the
niform wall temperature T w and nanoparticles volume fraction 
 w are higher than that of their full stream values T ∞ 

, C ∞ 

. A
niform magnetic field is applied in the y -direction normal to
he flow direction. The magnetic Reynolds number is assumed 

o be small so that the induced magnetic field is neglected. In
ddition, the Hall effect and the electric field are assumed negli-
ible. The small magnetic Reynolds number assumption uncou- 
les the Navier–Stokes equations from Maxwells equations. All 
hysical properties are assumed constant except the density in 

he buoyancy force term. By invoking all of the boundary layer,
oussineq and Rosseland diffusion approximations, the govern- 

ng equations for this investigation can be written as; 

∂u 
∂x 

+ 

∂v 
∂y 

= 0 , (1) 

 

∂u 
∂x 

+ v 
∂u 
∂y 

= U 

dU 

dx 

+ 

1 
ρ

∂τxy 

∂y 
+ gβ(T − T ∞ 

) + gβ∗(C − C ∞ 

) 

− σB 

2 
0 

ρ
(u − U ) , (2) 

 

∂T 

∂x 

+ v 
∂T 

∂y 
= αm 

∂ 2 T 

∂y 2 
+ τ

[ 

D B 
∂C 

∂y 
∂T 

∂y 
+ 

D T 

T ∞ 

(
∂T 

∂y 

)2 
] 

− 1 
ρC p 

∂q r 
∂y 

, (3) 

 

∂C 

∂x 

+ v 
∂C 

∂y 
= D B 

∂ 2 C 

∂y 2 
+ 

D T 

T ∞ 

∂ 2 T 

∂y 2 
. (4) 

he associated boundary conditions are 

 = u w (x ) = cx, v = 0 , T = T w , C = C w at y = 0 , (5a) 

 = U (x ) = ax, v = −ay, T = T ∞ 

, C = C ∞ 

at y → ∞ . 

(5b) 

u , v, T and C are the x − and y components of velocity, tem-
erature and nanoparticle volume fraction, respectively. g , ρ, 
m 

, D B , D T , B 0 , β and β∗ are the gravitational acceleration,
uid density, thermal diffusivity, Brownian diffusion coefficient, 
hermophoretic diffusion coefficient, magnetic field, coefficient 
f thermal expansion, and coefficient of concentration of ex- 
ansion, respectively. we have ∂u 

∂y > 0 when a / c > 1 (the ratio
f free stream velocity and stretching velocity) which gives the 
hear stress as: 

xy = K 

∂ 

∂y 

(
∂u 
∂y 

)n 

. (6) 

Where K is the consistency coefficient and n is the power-
aw index. It needs to be mentioned that for the non-Newtonian
ower law model, the case of n < 1 is associated with shear-
hinning fluids (pseudoplastic fluids), n = 1 corresponds to 

ewtonian fluids and n > 1 applies to the case of shear-
hickening (dilatant). 

Using the Rosseland approximation for radiation, the radia- 
ive heat flux is simplified as: 

 r = −4 σ1 

3 χ
∂T 

4 

∂y 
, (7) 

here σ 1 and χ are the Stefan–Boltzmann constant and the 
ean absorption coefficient, respectively. We assume that the 
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temperature differences within the flow, such as the term T 

4 ,
may be expressed as a linear function of temperature. Hence,
expanding T 

4 in a Taylor series about a free stream temperature
T ∞ 

and neglecting higher-order terms, we get: 

T 

4 = 4 T 

4 
∞ 

T − 3 T 

4 
∞ 

. (8)

Using (7) and (8) in the last term of Eq. (3) , we obtain 

∂q r 
∂y 

= −16 σ1 T 

3 
∞ 

3 χ
∂ 2 T 

∂y 2 
. (9)

In order to reduce the governing equations into a system
of ordinary differential equations, the following dimensionless
parameters are introduced 

ψ = 

(
K/ρ

c 1 −2 n 

) 1 
n +1 

x 

2 n 
n +1 f (η) , θ = 

T − T ∞ 

T w − T ∞ 

, φ = 

C − C ∞ 

C w − C ∞ 

, 

η = y 
(

c 2 −n 

K/ρ

) 1 
n +1 

x 

1 −n 
1+ n . (10)

It is worth mentioning that the continuity equation is identically
satisfied from our choice of the stream function with u = 

∂ψ 

∂y 

and v = − ∂ψ 

∂x . Substituting the dimensionless parameters into
Eqs. (2) –(4) gives 

n 
(

f ′′ 
)(n −1) f ′′′ + 

(
2 n 

n + 1 

)
f f ′′ − f ′ 2 − M f ′ 

+ M 

a 
c 

+ 

a 2 

c 2 
+ �(θ + Nφ) = 0 , (11)

1 
Pr 

(
1 + 

4 R d 

3 

)
θ ′′ + 

(
2 n 

n + 1 

)
f θ ′ + Nbθ ′ φ′ + Ntθ ′ 2 = 0 , (12)

φ′′ + 

(
2 n 

n + 1 

)
Le f φ′ + 

Nt 
Nb 

θ ′′ = 0 . (13)

The transformed boundary conditions are 

f (0) = 0 , f ′ (0) = 1 , θ (0) = 1 , φ(0) = 1 , (14a)

f ′ (∞ ) → a/c, θ (∞ ) → 0 , φ(∞ ) → 0 . (14b)

The eight parameters appearing in Eqs. (11) –(13) are defined
as follows 

M = 

σB 

2 
0 

ρc 
, � = 

gβ(T w − T ∞ 

) x 

3 /υ2 

u 2 w x 

2 /υ2 
, N = 

gβ∗(C w − C ∞ 

) 

gβ(T w − T ∞ 

) 
, 

Pr = 

υ

αm 

(
c 2 Re x 

) n −1 
n +1 , R d = 

4 σ1 T 

3 
∞ 

3 kχ
, 

Nb = 

τD B (C w − C ∞ 

) 

υ

(
c 2 Re x 

) 1 −n 
1+ n , 

Nt = 

τD T (T w − T ∞ 

) 

T ∞ 

υ

(
c 2 Re x 

) 1 −n 
1+ n , Le = 

υ

D B 

(
c 2 Re x 

) n −1 
n +1 . (15)

where Re x = 

u w x 
υ

is the local Reynolds number based on the
stretching velocity u w (x ) and k is the thermal conductivity. It
should be noted that � > 0 corresponds to an assisting flow
(heated plate), � < 0 corresponds to an opposing flow (cooled
plate) and � = 0 yields forced convection flow. 
The skin-friction coefficient C f x at the wall is given by: 

 f x = 2 
[

f ′′ (0) 
]n 

(
(cx ) 2 −n x 

n 

K/ρ

)−1 / (1+ n ) 
, (16)

the local Nusselt number Nu x is given by: 

Nu x = −K 

(
u 2 −n 

w 

K/ρ

)1 /n +1 (
1 + 

4 R d 

3 

)
θ ′ (0) , (17)

and the local Sherwood number Sh x is given by: 

Sh x = −D 

(
u 2 −n 

w 

K/ρ

)1 /n +1 

φ′ (0) . (18)

3. Method of solution 

3.1. Finite element method 

The finite element method is a powerful technique for solving
ordinary or partial differential equations. The basic concept of
FEM is that the whole domain is divided into smaller elements
of finite dimensions called Finite Elements. This method is the
most versatile numerical technique in engineering analysis and
has been employed to study diverse problems in heat transfer,
fluid mechanics, rigid body dynamics, solid mechanics, chemical
processing, electrical systems, acoustics and many other fields.
The steps involved in the finite element analysis are as follows: 

• Discretization of the domain into elements 
• Derivation of element equations 
• Assembly of Element Equations 
• Imposition of boundary conditions 
• Solution of assembled equations 

To solve the system of simultaneous nonlinear differential
equations (11) –(13) , with the boundary conditions ( 14a ) and
( 14b ), we assume 

f ′ = h, (19)

the system of equations (11) –(13) then reduced to 

n 
(
h ′ 

)(n −1) h ′′ + 

(
2 n 

n + 1 

)
f h ′ − h 2 − Mh + M 

a 
c 

+ 

a 2 

c 2 

+�(θ + Nφ) = 0 , (20)

1 
Pr 

(
1 + 

4 R d 

3 

)
θ ′′ + 

(
2 n 

n + 1 

)
f θ ′ + Nbθ ′ φ′ + Ntθ ′ 2 = 0 , (21)

φ′′ + 

(
2 n 

n + 1 

)
Le f φ′ + 

Nt 
Nb 

θ ′′ = 0 , (22)

and the corresponding boundary conditions now become 

f (0) = 0 , h (0) = 1 , θ (0) = 1 , φ(0) = 1 , (23a)

h (∞ ) → a/c, θ (∞ ) → 0 , φ(∞ ) → 0 . (23b)

For computational purposes, the ∞ has been shifted to η =
12 , without any loss of generality. The domain is divided into a
set of 100 line elements, each element having two nodes. 
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Table 1 Comparison of f ′ ′ (0) for various values of M at n = 

1 , between analytical solutions obtained by homotopy analysis 
method and Finite Element Method in the present work in the 
absence of heat and mass transfer. 

M Mahapatra [35] Analytical results Present results 

0.0 2.0175 2.01753 
0.5 2.1363 2.136374 
1.0 2.2491 2.249134 
1.5 2.3567 2.356684 
2.0 2.4597 2.459658 
3.0 2.6540 2.65378 
5.0 3.0058 3.00392 

Table 2 Computations of the Nusselt number, skin friction co- 
efficient and the Sherwood number for various values of n and 
M . 

n M f ′ ′ (0) −(1 + 

4 R d 
3 ) θ ′ (0) −φ′ (0) 

0.6 0 3.6758 2.1486 2.5703 
2 3.4341 2.1039 2.5378 
5 3.3008 2.0674 2.5167 

1.0 0 2.4841 2.417 2.8058 
2 2.3783 2.3856 2.7928 
5 2.3458 2.3511 2.7822 

1.6 0 1.5779 2.5715 2.9596 
2 1.5685 2.5454 2.9584 
5 1.5042 2.5239 2.9573 

3

T
c∫

∫

∫

∫
w  

a

3

T
fi

w

Table 3 Computations of the Nusselt number, skin friction co- 
efficient and the Sherwood number for various values of n and 
Nt . 

n Nt f ′ ′ (0) −(1 + 

4 R d 
3 ) θ ′ (0) −φ′ (0) 

0.6 0.1 3.4350 2.1045 2.5381 
0.4 3.4652 2.0815 2.4863 
0.7 3.4933 2.0591 2.4399 

1.0 0.1 2.3783 2.3856 2.7928 
0.4 2.3957 2.3594 2.7357 
0.7 2.4142 2.3332 2.6843 

1.6 0.1 1.4992 2.5811 2.9845 
0.4 1.5387 2.5511 2.8973 
0.7 1.5408 2.5217 2.8453 

w  

m

ψ

g

⎡
⎢⎢⎣

w

K

K

K

K

K

K

K

K

a

b

b

 

.2. Variational formulation 

he variational form associated with Eqs. (19) –(22) over a typi- 
al linear element (ηe , ηe +1 ) is given by 
 ηe +1 

ηe 

w 1 
{

f ′ − h 
}

d η = 0 , (24) 

 ηe +1 

ηe 

w 2 

{
n 
(
h ′ 

)(n −1) h ′′ + 

(
2 n 

n + 1 

)
f h ′ − h 2 − Mh 

+ M 

a 
c 

+ 

a 2 

c 2 
+ �(θ + Nφ) 

}
d η = 0 , (25) 

 ηe +1 

ηe 

w 3 

{
1 

Pr 

(
1 + 

4 R d 

3 

)
θ ′′ + 

(
2 n 

n + 1 

)
f θ ′ 

+ N bθ ′ φ′ + N tθ ′ 2 
}

d η = 0 , (26) 

 ηe +1 

ηe 

w 4 

{
φ′′ + 

(
2 n 

n + 1 

)
Le f φ′ + 

Nt 
Nb 

θ ′′ 
}

d η = 0 , (27) 

here w 1 , w 2 , w 3 and w 4 are weight functions and may be viewed
s the variation in f , g , θ and φ respectively. 

.3. Finite element formulation 

he finite element model from Eqs. (24) –(27) by substituting 
nite element approximations of the form 

f = 

2 ∑ 

j=1 

f j ψ j , h = 

2 ∑ 

j=1 

h j ψ j , θ = 

2 ∑ 

j=1 

θ j ψ j , φ = 

2 ∑ 

j=1 

φ j ψ j , 

(28) 

ith w 1 = w 2 = w 3 = w 4 = ψ i , (i = 1 , 2) , 
here ψ i are the shape functions for a two-nodded linear ele-
ent (ηe , ηe +1 ) and are taken as 

 

(e ) 
1 = 

ηe +1 − η

ηe +1 − ηe 
, ψ 

(e ) 
2 = 

η − ηe 

ηe +1 − ηe 
, ηe ≤ η ≤ ηe +1 . (29) 

The finite element model of the equations thus formed is 
iven by: 

 

 

 

 

[ K 

11 ] [ K 

12 ] [ K 

13 ] [ K 

14 ] 
[ K 

21 ] [ K 

22 ] [ K 

23 ] [ K 

24 ] 
[ K 

31 ] [ K 

32 ] [ K 

33 ] [ K 

34 ] 
[ K 

41 ] [ K 

42 ] [ K 

43 ] [ K 

44 ] 

⎤ 

⎥ ⎥ ⎦ 

⎡ 

⎢ ⎢ ⎣ 

{ f } 
{ h } 
{ θ} 
{ φ} 

⎤ 

⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎣ 

{ b 1 } 
{ b 2 } 
{ b 3 } 
{ b 4 } 

⎤ 

⎥ ⎥ ⎦ 

here [ K 

mn ] and [ b m ](m = 1 , 2) are defined as 

 

11 
i j = 

∫ ηe +1 

ηe 

ψ i 
d ψ j 

d η
d η, K 

12 
i j = −

∫ ηe +1 

ηe 

ψ i ψ j d η, 

 

13 
i j = K 

14 
i j = K 

21 
i j = 0 , 

 

22 
i j = 

∫ ηe +1 

ηe 

[
− n 

(
h ′ 

)n −1 d ψ i 

d η

d ψ j 

d η
+ 

(
2 n 

n + 1 

)
f ψ i 

d ψ j 

d η

−h ψ i ψ j − Mψ i ψ j 

]
d η, 

 

23 
i j = �

∫ ηe +1 

ηe 

ψ i ψ j d η, K 

24 
i j = N�

∫ ηe +1 

ηe 

ψ i ψ j d η, 

 

31 
i j = K 

32 
i j = 0 , 

 

33 
i j = 

∫ ηe +1 

ηe 

[
− 1 

Pr 

(
1 + 

4 R d 

3 

)
d ψ i 

d η

d ψ j 

d η
+ 

(
2 n 

n + 1 

)
f ψ i 

d ψ j 

d η

+ N b φ′ ψ i 
d ψ j 

d η
+ N t θ ′ ψ i 

d ψ j 

d η

]
d η, 

 

34 
i j = K 

41 
i j = K 

42 
i j = 0 , K 

43 
i j = − Nt 

Nb 

∫ ηe +1 

ηe 

d ψ i 

d η

d ψ j 

d η
d η, 

 

44 
i j = 

∫ ηe +1 

ηe 

[
−d ψ i 

d η

d ψ j 

d η
+ Le 

(
2 n 

n + 1 

)
f ψ i 

d ψ j 

d η

]
d η. (30) 

nd 

 

1 
i = 0 , b 2 i = −

[( a 
c 

)2 
+ M 

( a 
c 

)]∫ ηe +1 

ηe 

ψ i d η − n 
(

h ′ 
)n −1 

(
ψ i 

d h 
d η

)ηe +1 

ηe 

, 

 

3 
i = − 1 

Pr 

(
1 + 

4 R d 

3 

)(
ψ i 

d θ
d η

)ηe +1 

ηe 

, b 4 i = −
(

ψ i 
d φ
d η

)ηe +1 

ηe 

− Nt 
Nb 

(
ψ i 

d θ
d η

)ηe +1 

ηe 

. 

(31)
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Fig. 1. Effect of power-law index n on velocity, temperature and concentration profiles. 

Table 4 Computations of the Nusselt number, skin friction co- 
efficient and the Sherwood number for various values of n and 
Nb . 

n Nb f ′ ′ (0) −(1 + 

4 R d 
3 ) θ ′ (0) −φ′ (0) 

0.6 0.2 3.4308 2.0872 2.5483 
0.6 3.4300 2.0219 2.5551 

1.0 0.2 2.3758 2.3684 2.8038 
0.6 2.3758 2.3619 2.8114 

1.6 0.2 1.4333 2.5683 2.9810 
0.6 1.4333 2.4981 2.9846 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 Computations of the Nusselt number, skin friction co- 
efficient and the Sherwood number for various values of �, a / c , 
Le , Pr and Rd . 

� a / c Le Pr Rd f ′ ′ (0) −(1 + 

4 R d 
3 ) θ ′ (0) −φ′ (0) 

–1 1.5 10 0.71 5 0.5400 2.1505 2.5521 
0 1.5 10 0.71 5 1.0258 2.2182 2.6209 
1 1.5 10 0.71 5 1.4925 2.2776 2.6832 
3 1.5 10 0.71 5 2.3873 2.3856 2.7928 
3 1.8 10 0.71 5 3.0008 2.5332 2.8682 
3 2.0 10 0.71 5 3.4425 2.6278 2.9193 
3 1.5 20 0.71 5 1.542 0.9756 1.6267 
3 1.5 30 0.71 5 1.0333 0.9756 1.9603 
3 1.5 10 1 5 2.3475 2.7862 2.7804 
3 1.5 10 10 5 2.0817 7.2348 2.5987 
3 1.5 10 100 5 1.8883 10.2348 2.5387 
3 1.5 10 0.71 10 2.4258 3.3600 2.8093 
3 1.5 10 0.71 15 2.4500 4.1597 2.8163 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where 

f = 

2 ∑ 

i=1 

f i ψ i , h = 

2 ∑ 

i=1 

h i ψ i , h ′ = 

2 ∑ 

i=1 

h ′ i ψ i , θ ′ = 

2 ∑ 

i=1 

θ ′ 
i ψ i , φ = 

2 ∑ 

i=1 

φ′ 
i ψ i . 

(32)

Each element matrix is of the order 8 × 8. The whole domain
is divided into 100 linear elements of equal size, after assembly
of all the elements equations, we obtain a matrix of the order
404 × 404. This system of equations as obtained after, assem-
bly of the element equations, is non-linear. Therefore, an itera-
tive scheme must be utilized in the solution. After imposing the
boundary conditions only a system of 397 equations remains for
the solution, which is solved by the Gauss elimination method
maintaining an accuracy of 10 −4 . 

4. Result and discussion 

The numerical solutions of governing equations (11) –(13) with
boundary conditions (14) have been solved by using the varia-
tional finite element method. To validate our results the numeri-
cal computations of these skin friction coefficient, Nusselt num-
ber and Sherwood number which are respectively, proportional
to f ′ ′ (0), −(1 + 

4 R d 
3 ) θ ′ (0) and −φ′ (0) are presented in tabular

form and one results are compared with Mahapatra [35] . The
validation of present results has been verified with the classical
case of Newtonian fluid ( n = 1) and there is a good agreement
between present and Mahapatra [35] ( Table 1 ). 
To analyse the results, numerical computations have been
carried out for the dimensionless velocity, temperature and
nano partical volume fraction distributions for the flow under
considerations and are obtained and their behavior have been
discussed for various governing parameters such as magnetic
parameter M , dimensionless mixed convection parameter �,
concentration to thermal buoyancy ratio N , Prandtl number Pr ,
radiation parameter R d , Brownian motion Nb , thermophore-
sis parameter Nt , Lewis number Le . Tables 2 , 3 , 4 , 5 show the
effect of magnetic parameter M , power-law index n , dimen-
sionless mixed convection parameter �, Prandtl number Pr ,
radiation parameter R d , Brownian motion Nb , thermophore-
sis parameter Nt , Lewis number Le on the coefficient of skin
friction coefficient f ′ ′ (0), Nusselt number −(1 + 

4 R d 
3 ) θ ′ (0) and

Sherwood number −φ′ (0) respectively.It can be seen that the
effect of magnetic field parameter M is to decreases the values
of f ′ ′ (0), −(1 + 

4 R d 
3 ) θ ′ (0) and −φ′ (0) . The skin friction coeffi-

cient f ′ ′ (0) decreases with the increase of power-law index n . It is
also observed that Nusselt number −(1 + 

4 R d 
3 ) θ ′ (0) and Sher-

wood number −φ′ (0) increases with the increase of power-law
index n . The skin friction coefficient f ′ ′ (0) value increases with
the increase of thermophoresis parameter Nt . Nusselt num-
ber −(1 + 

4 R d 
3 ) θ ′ (0) and Sherwood number −φ′ (0) decreases

with the increase of thermophoresis parameter Nt . The effect of
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Fig. 2. Effect of Pr on velocity, temperature and concentration profiles for pseudo-plastic, Newtonian and dilatant fluids. 
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rownian motion parameter Nb is to decreases with f ′ ′ (0) values 
n case of n < 1 and it does not have any effect in case of n = 1
nd n > 1. The effect of Brownian motion parameter ( Nb ) is
o decreases the Nusselt number −(1 + 

4 R d 
3 ) θ ′ (0) and increases 

herwood number −φ′ (0) for Newtonian and non-Newtonian 

uids. 
From Table 5 it can be seen that skin friction coefficient f ′ ′ (0)

s to increase with the increase of �, a / c and Rd whereas skin
riction coefficient f ′ ′ (0) values decreases with the increase of Le ,
r . The Nusselt number −(1 + 

4 R d 
3 ) θ ′ (0) and Sherwood num-

er −φ′ (0) values increases with the increase of �, a / c and Rd .
s Le increases Sherwood number −φ′ (0) increases. The effect 
f Pr is to increases Nusselt number −(1 + 

4 R d 
3 ) θ ′ (0) and de-

reases the Sherwood number −φ′ (0) . 
Fig. 1 (a)–(c) illustrate the variation of velocity, temperature 

nd nanoparticles volume fraction profiles respectively for dif- 
erent values of power-law index n . The velocity, temperature 
nd nanoparticles volume fraction profiles decreases with the 
ncrease of power-law index n from 0.6 to 1.6. The effect of
he increases values of n is to reduce the boundary layer thick-
ess. It can be observed from Fig. 1 (b) effect of power-law index
 increases from 0.6 to 1.6 the temperature profiles decreases 
ith an increasing viscosity of nanofluid, thermal diffusion is 
epressed in the resume with cools the boundary layer and 
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Fig. 3. Effect of Nt on velocity, temperature and concentration profiles for pseudo-plastic, Newtonian and dilatant fluids. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

decreases the boundary layer thickness. It can also seen from
Fig. 1 (c) the increase of power-law index n from 0.6 to 1.6 de-
creases the nanoparticle volume fraction i.e, decreases diffusion
of nanoparticle volume fraction (concentration) boundary layer
thickness. 

Fig. 2 (a)–(c) drawn for the velocity, temperature and con-
centration profiles for different values of Prandtl number Pr for
the cases shear-thinning ( n < 1), Newtonian ( n = 1 ) and shear-
thickening ( n > 1) fluids. The effect of Prandtl number Pr is to
reduce the velocity and temperature profiles for both Newto-
nian and non-Newtonian fluids. Physically, fluids with smaller
Prandtl number Pr have larger thermal diffusivity. Fig. 2 (c) in-
dicated that increasing Prandtl number Pr leads to increase the
concentration profile for both Newtonian and non-Newtonian
fluids. The effect of thermophoresis parameter Nt is to increase
velocity, temperature and concentration profiles for both New-
tonian and non-Newtonian fluids is noticed from Fig. 3 . 

Fig. 4 exhibits dimensionless velocity, temperature and con-
centration profiles for various values of Brownian motion pa-
rameter Nb . It can be seen that the temperature profile slightly
increases with an increasing in the value of Brownian motion
parameter Nb . The concentration profiles decreases with the
value of Brownian motion parameter Nb is noticed from these
figure. 
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Fig. 4. Effect of Nb on temperature and concentration profiles for pseudo-plastic, Newtonian and dilatant fluids. 

0 2 4 6 8 10 12
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

η

f’

N=0, 3, 5

n = 0.6

(a)
0 2 4 6 8 10 12

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

η

f’

N=0, 3, 5

n = 1

(b)
0 2 4 6 8 10 12

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

η

f’

N=0, 3, 5

n = 1.6

(c)

Fig. 5. Effect of N on velocity profiles for pseudo-plastic, Newtonian and dilatant fluids. 
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Fig. 5 shows that the effect of thermal buoyancy ratio N on
elocity profiles for shear-thinning ( n < 1), Newtonian ( n = 1 )
nd shear-thickening ( n > 1) fluids respectively. It is noticed that
ith the increase of N values have a tendency to increase the
uoyancy effects changing more induced flow along the stretch- 

ng sheet in the vertical direction reflected by the increase in 

he fluid velocity. This enhancement in the fluid velocity has 
ore in shear-thinning fluid ( n < 1) than shear-thickening fluid 

 n > 1). 
Fig. 6 (a) shows that the effect of radiation parameter R d on

he velocity profiles for both Newtonian and non-Newtonian 
uids. It is noticed from the figure that the velocity of the fluid
ncreases with the increase of radiation parameter R d values. It 
an be shown from the Fig. 6 (b) that temperature of the fluid
ncreases with the increase of radiation parameter R d . As ex-
ected, an increase of the radiation parameter R d has the ten-
ency to increase the effect of conduction as well as to increase
he temperature at each point away from the surface. Hence, 
igher values of radiation parameter R d implies a higher sur- 
ace heat flux. 

Fig. 7 (a)–(c) presents the changes in the velocity profiles with
he effect of magnetic parameter M for shear-thinning ( n < 1),
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Fig. 6. Effect of Rd on velocity and temperature profiles for pseudo-plastic, Newtonian and dilatant fluids. 
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Fig. 7. Effect of M on velocity profiles for pseudo-plastic, Newtonian and dilatant fluids. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Newtonian ( n = 1 ) and shear-thickening ( n > 1) fluids respec-
tively. The velocity profiles f ′ decreases with the raising of mag-
netic parameter M . This is due to magnetic field opposing the
transport phenomena, since the variation of magnetic parame-
ter M causes the variation of Lorentz forces. The Lorentz force
is a drag-like force that produces more resistance to transport
phenomena and that causes reduction in the fluid velocity. The
effect of magnetic field is more in shear thinning fluids than
shear thickening fluids. The effect of magnetic fields is very mea-
ger on temperature profiles hence it is not shown. 

Fig. 8 (a)–(c) shows that the effect of dimensionless mixed
convection parameter � on velocity, temperature and concen-
tration profiles respectively. The velocity profiles are increasing
with increasing values of � whereas temperature and concen-
tration profiles are decreasing with increasing values of �. The
presence of the thermal buoyancy effects represented by finite
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Fig. 8. Effect of � on the velocity, temperature and concentration profiles for n = 0 . 6 . 
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Fig. 9. Effect of Le on concentration profiles for pseudo-plastic, Newtonian and dilatant fluids. 
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Fig. 10. Effect of a/c on the velocity, temperature and concentration profiles for n = 0 . 6 . 
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alues of the mixed parameter has the tendency to induce more 
ow along the surface at the expense of small reductions in the
emperature and concentration. Distinctive peaks in the veloc- 
ty profiles which are characteristics of free-convection flows are 
lso observed as � increases. 

Fig. 9 shows the variation of nanoparticle concentration pro- 
les for Newtonian and non-Newtonian fluids with different 
alues of Lewis number Le . The concentration profile is de-
reased due to increase of Lewis number Le . Increasing in the
ewis number Le reduces the nanoparticle volume fraction and 

ts boundary layer thickness. 
Fig. 10 (a)–(c) present the velocity, temperature and concen- 

ration profiles for various values of ratio of velocity parameter 
 / c . It can be observed that an increase in a / c causes increase
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in velocity profiles and significant decrease on the temperature
and concentration profiles. These behaviors are clearly shown in
Fig. 10 . 

5. Conclusions 

The influence of Brownian motion and thermophoresis on
mixed convection magneto hydrodynamic boundary layer flow
of heat and mass transfer stagnation point flow of power-law
non-Newtonian nanofluid towards a stretching surface is in-
vestigated. The main findings of the present study can be sum-
marised as follows: 

• The effect of magnetic field parameter M reduces the velocity
profiles. 

• The influence of thermophoresis parameter Nt is to increase
the velocity, temperature and concentration profiles for both
newtonian and non-Newtonian fluids. The effect of Brown-
ian motion Nb is to increases the temperature profiles and
decreases the concentration profiles. 

• The velocity and concentration profiles are increases with
the increase of radiation parameter R d for both newtonian
and non-Newtonian fluids. 

• With the effect of mixed convection parameter � and veloc-
ity ratio parameter a / c are to increase the velocity profiles
and reduces the temperature and concentration profiles. 

• The skin friction co-efficient f ′ ′ (0) increases with the increase
of thermophoresis parameter Nt and it decreases with the
increase of Brownian motion parameter Nb and the power-
law index n . The co-efficient of nusslet number and sherwood
number decreases with the increase of Nt . 
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