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The parameter space of the simplest extension of the standard model is studied in the light of the
125 GeV Higgs boson discovery. The Hill model extends the scalar sector of the standard model with
a real singlet, that mixes with the standard model Higgs boson only via cubic interactions. The two-
loop standard model renormalization group equations are completed with the one-loop Hill equations.
Stability up to the Planck scale is possible without tension with the other parameters. An extension with
more singlet fields, in particular a higher-dimensional (HEIDI) field, is presented.
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1. Introduction

The standard model describes particle physics in great detail.
Nonetheless, in the past most work has been based on the assump-
tion, with varying motivations, that the standard model must be
incomplete and that new physics should be just around the corner.
With the new data from the LHC it seems reasonable to ques-
tion this assumption. The fact that the LHC has found no evidence
for new physics puts strong constraints on possible extensions.
For instance, the fact that LHCb finds full agreement with stan-
dard model predictions basically rules out any new form of flavor
physics at accessible scales. Also direct searches have found no sign
for new physics, deep into the TeV scale.

The analysis of the Higgs boson properties is an eminent goal of
the physics at the LHC. The data show a resonance at 125 GeV that
is consistent with a standard model Higgs boson [1]. However
there is still a considerable uncertainty on the value of the overall
coupling strength to the different particles in the theory. Therefore
constraints on the presence of extra states mixed with the Higgs
boson are relatively mild.

The two-loop renormalization group equations (RGEs) of the
standard model with the present central value for the Higgs mass
do not lead to a theory that is stable up to the Planck scale [2–4]
(see, however, [5,6]). This statement is strongly dependent on the
value of the top quark and Higgs boson masses. Based on old ideas,
a number of studies in the light of recent developments have re-
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inforced the picture that simple scalar extensions can relax this
tension and lead to a theory that is stable up to very large mass-
scales, either via tree-level mixing [7–9] or as new thresholds in
the running of the quartic coupling [10].

Another major point of interest in the running of the Higgs cou-
pling is the fact, that the vanishing of the Higgs quartic coupling
at the Planck scale sets the lower bound on the Higgs mass when
related to inflation (see, e.g., [2,11] and references therein).

In the present Letter we investigate at the two-loop level
whether the Hill model can improve the validity range of the stan-
dard model. Further, we begin the analysis of its extension, the
HEIDI model, by constraining the parameter space of the latter
compatible with inflation in view of the Higgs boson discovery at
the LHC.

This Letter is organized as follows: in the next section we de-
scribe the Hill model and give the one-loop RGEs of the model
parameters. In Section 3 we present the results of our analysis. In
Section 4 we discuss the HEIDI extension, and in the last section,
we conclude.

2. The model

The Hill model is the simplest extension of the scalar sector of
the standard model. One real scalar field (H) is introduced, that
mixes with the standard model field (Φ) [12,13]. The scalar poten-
tial reads

V = λ1

(
Φ†Φ − v2

2

)2

+ λ2
(√

2 f2 H − Φ†Φ
)2

. (1)

A defining feature of the Hill model is the absence of H self-
interactions, as well as H2Φ2 terms, so there are only two new pa-
rameters. The fact that the extra interaction is superrenormalizable
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leads to a limited impact on the renormalization group, whose
study is the aim of this Letter. The beta function for the standard
model Higgs coupling stays untouched, which makes it possible
to study it at 2 loops while still considering new physics at 1
loop, as discussed in the next section. Moreover, the absence of
H self-interactions is a key feature that allows for an extension to
higher-dimensional (HEIDI) fields in a renormalizable way up to six
dimensions, to be discussed in Section 4. Notice that the normal-
ization of the couplings λ1,2 is changed by a factor of 2, compared
to Ref. [13], in order to conform with the conventions in [3].

In unitary gauge, Φ = (0, (h + v)/
√

2)T , and H = (h′ + v H )/
√

2.
The scalar potential is minimized for 〈Φ〉 = v = 246 GeV and
〈H〉 = v2

2 f2
≡ v H . At the minimum, the two CP-even scalars mix

as follows:(
h1
h2

)
=

(
cα sα

−sα cα

)(
h
h′

)
, (2)

with sα (cα) the sine (cosine) of the mixing angle α. The mass
eigenstates h1(2) couple to the standard model particles with an
overall cα (sα) prefactor and have masses

m2
h1,2

= (
λ2 f 2

2 + λ3 v2) ±
√

4λ2
2 v2 f 2

2 + (
λ2 f 2

2 − λ3 v2
)2

, (3)

where we have defined λ3 = λ1 + λ2 and mh1 < mh2 . Notice that
λ3 is the total self coupling of the Higgs doublet. The mixing angle
is given by

c2
α = m2

h2
− 2λ3 v2

m2
h2

− m2
h1

. (4)

Eqs. (3) and (4) can be inverted to express the parameters f2,
λ2 and λ3 in terms of the observable scalar masses and mixing
angle,

λ2 = s2
αc2

α(m2
h2

− m2
h1

)2

2v2(s2
αm2

h1
+ c2

αm2
h2

)
, (5)

λ3 = c2
αm2

h1
+ s2

αm2
h2

2v2
, (6)

f2 = v
s2
αm2

h1
+ c2

αm2
h2

sαcα(m2
h2

− m2
h1

)
. (7)

To extract the equations describing the running of the param-
eters, it is easiest to consider the one-loop improved scalar po-
tential. The presence of the Hill singlet modifies the contribution
solely of the real Higgs field, via tree-level mixing, while leaving
all the rest untouched. It is therefore sufficient to replace the real
Higgs contribution in the one-loop scalar potential with the fol-
lowing term:

V(1)

Hill = 1

64π2
Tr

[(
M2

ϕ

)2
[

ln

(
M2

ϕ

μ2

)
− 3

2

]]
, (8)

in which the field-dependent mass now reads as a matrix;

M2
ϕ =

(
(−m2

0 + 3λ3ϕ
2 − ηH) −ηϕ

−ηϕ m2
1

)
, (9)

with ϕ2 = Φ†Φ being a real field. The condition of minimization
of the tree-level potential fixes the parameter m2

0 = λ1 v2, and we
defined

m2
1 = 2λ2 f 2

2 , (10)

η = 2λ2 f2. (11)
Imposing the condition that the improved potential does not de-
pend on the renormalization scale yields the RGEs for m1, η

1

m2
1

dm2
1

dt
= η2

16π2m2
1

, (12)

dη

dt
= −2γ0η + 3ηλ3

16π2
, (13)

with t = ln Q and γ0 = − 1
16π2 (3y2

t − 9
4 g2 − 3

4 g′ 2) the anomalous
dimension of the Higgs boson at one loop. g, g′ are the gauge cou-
plings and yt is the top Yukawa coupling. Among the RGEs of the
standard model at one loop, only the equation for the Higgs mass
receives a contribution from the Hill field,

1

m2
0

dm2
0

dt
= −2γ0 + 2

16π2

η2

m2
1

. (14)

The other equations for gauge and Yukawa couplings remain un-
changed. Finally and most importantly, the absence of a quartic
coupling between the Hill field and the standard model doublet
ensures that the RGE for λ3 reads as in the standard model.

3. Results

We identify h1, the lighter mass eigenstate, with the scalar bo-
son as observed at the LHC, with a mass of 125 GeV. The mass of
the second boson and the mixing angle α are our free parameters.
We have thus

mh1 = 125 GeV with mh2 > 125 GeV. (15)

We will call the particle with mass of 125 GeV the standard
model-like Higgs boson, and the other one the Hill field, with mass
mHill = mh2 . The labels h1, h2 and their corresponding masses will
be employed accordingly.

The RGEs from the previous section are solved numerically,
identifying the regions in parameter space that comply with the
following conditions:

0 < λ3(Q ) < 1 ∀Q � Q ′, (16)

where the left-/right-hand side is usually referred to as the “vac-
uum stability”/“triviality” condition. Their meaning is that the con-
dition of perturbativity and the existence of a well-defined vacuum
of the model must be fulfilled at any scale Q � Q ′ , with Q ′ the
ultimate scale of validity of the theory. In this Letter, we take
Q ′ = MPl = 1019 GeV. Both conditions have been chosen some-
what restrictive in order to show that the model under considera-
tion is a simple standard model extension that is viable up to the
Planck scale, and to identify the tightest possible bounds in param-
eter space. Relaxing these conditions (e.g., considering Q ′ < MPl or
increasing the perturbativity bound) will lead to results for which
our findings are a valid subset. The allowed parameter space is
presented in Fig. 1.

As remarked earlier, the RGE for the quartic coupling reads as
in the standard model. However, the standard model Higgs bo-
son is now mixed with the Hill field, which will affect the former
running. Strictly speaking, a threshold effect appears at the mass
of the new particle (see for instance Ref. [10]), which should be
treated with care. If the difference between the mass threshold and
the initial energy scale is much smaller than the range in energy
that is considered, one could in first approximation use for all en-
ergies the modified RGEs, since the numerical difference with and
without threshold effect is very small. In this Letter we consider
Hill boson masses below 1 TeV, and evolve the RGEs all the way



328 L. Basso et al. / Physics Letters B 730 (2014) 326–331
Fig. 1. Allowed parameter space in the Hill model. The green (red) area corre-
sponds to parameter sets yielding a stable and non-trivial potential up to the Planck
scale, considering one-(two)-loop RGEs for the standard model parameters. The
blue/dashed line represents the experimental exclusion, adjusted for the Hill model
(see text for details). (For interpretation of the references to color in this figure leg-
end, the reader is referred to the web version of this article.)

up to the Planck scale: it is then a justified approximation to con-
sider the impact of the Hill boson on the boundary condition for
the standard model quartic coupling instead of the full treatment
of the threshold effect. Hence, in first approximation, it is possi-
ble to improve on the previous study by considering the two-loop
RGEs of the standard model integrated by the one-loop equations
for the Hill parameters from the previous section, and consider the
effect of the Hill boson on the standard model solely in Eq. (14)
and in the modified boundary condition for the standard model
quartic coupling. At the electroweak scale the following two-loop
corrected Higgs coupling is used [3]:

λ3 = 0.12577 + v HδH + vtδt + 
λ, (17)

with the Hill-induced tree-level shift (
λ) from Eq. (6) and the
other parameters given by, respectively,


λ = s2
α

m2
h2

− m2
h1

2v2
, (18)

v H = 0.00205, δH = mh

GeV
− 125.0, (19)

vt = 0.00004, δt = mt

GeV
− 173.15, (20)

where the indices H and t denote the Higgs and top parame-
ters. Furthermore, we adopt σt = |mt − 173.15| GeV = 0.7 GeV and
σH = |mh − 125.0| GeV = 1.0 GeV as one-sigma standard devia-
tions. The shift on the boundary condition of Eq. (18) is completely
general, see [9], and therefore our results can be considered as
general for models in which the quartic coupling running is not
affected by the extra content of the model, but only its boundary
condition.

Fig. 1 shows the range of parameters allowed by the stability
and triviality conditions for mt = 173.15 GeV and mh = 125.0 GeV.
Comparing the two-loop case to the one-loop one, it is evident
that a smaller tree-level shift is sufficient to achieve stability up to
the Planck scale.

We compare the previous results to the experimental con-
straints, given by CMS [14]. We point out that these bounds come
from the standard Higgs searches applied to the heavy scalar. This
means that the heavier scalar has all the properties of the standard
model boson with a higher mass. However, no new decay chan-
nels were considered, such as the decay of the heavy state into
pairs of the lighter one. The blue/dashed line in Fig. 1 is the ex-
clusion curve, adjusted to account for the new h2 → h1h1 channel,
kinematically accessible for mh2 � 250 GeV, as follows.

Experimental data are usually presented in terms of excluded
ratio of cross sections at a given mass: κ(mh2 ) ≡ σ DATA(mh2 )/

σ SM(mh2 ). In the Hill model,

κ(mh2 , sα) = s4
αΓ tot

SM (mh2)

Γ tot
Hill(mh2)

, (21)

given that each partial width into standard model particles is re-
duced by s2

α . Γ tot
SM (mh2) is the total decay width for a standard

model Higgs boson of mass mh2 . The total decay width of the Hill
particle is given by:

Γ tot
Hill(mh2) = s2

αΓ tot
SM (mh2) + F 2(α,mh2)

32πmh2

√√√√1 − 4m2
h1

m2
h2

(22)

where F is the h1–h1–h2 coupling,

F (α,mh2) = sαc2
α

(
2m2

h1
+ m2

h2

)
/v. (23)

When BR(h2 → h1h1) = 0 (i.e., mh2 < 2mh1 or sα = 0), κ = s2
α , as

usually assumed in the experimental analyses.
Solving Eq. (21) for s2

α gives the adjusted exclusion curve in the
(s2

α–mHill) plane of Fig. 1 (the blue/dashed line), compared to the
naive interpretation of the exclusion limit when h2 decays only
into standard model particles (black/dotted line). It is clear that
such naive interpretation is not adequate.

The observation of the 125 GeV Higgs boson also indirectly con-
straints the scalar mixing angle in this model. By simply averaging
the overall Higgs strengths of ATLAS (μ = 1.30 ± 0.2) and CMS
(μ = 0.80±0.14) [1], we obtain a 2σ constraint on the Higgs mod-
ulation of sin2 α � 0.263, compatible with constraints from fitting
an invisible width [15]. We show the bound in Fig. 1. It is clear
that for Hill boson masses above 250 GeV, the direct search limit
sets the most stringent bound.

The total Hill boson decay width is shown in the top panel
of Fig. 2. The partial widths were calculated with HDECAY [16].
Within the Hill model the total decay width is always less than
the standard model width. The other panels of the same figure
show the branching ratios (BR) of the Hill boson into pairs of the
125 GeV Higgs bosons and into W +W − bosons pairs, respectively.
The BR into Z Z pairs is given by the standard model ratio to the
W W case and therefore not shown. Furthermore, for small an-
gles, its total decay width can be much smaller than the standard
model case for the same masses, which means that the experi-
mental analyses (often assuming the standard model Higgs width)
might account for more background than required, as the real peak
is much narrower than assumed.

The request of a vanishing Higgs quartic coupling at the Planck
scale is of particular interest. In Fig. 1, this request represents the
lower bound on the allowed parameter space, here only for the
Higgs boson and top quark central value of the respective masses.
It is therefore interesting to evaluate the quantitative effect of a
one-sigma variation of these two parameters. This is done in Fig. 3,
where the solid line represents the central value.

For completeness, the required range of 
λ from Eq. (17), de-
picted in Fig. 1, is given in a model-independent fashion by:

0.005 � 
λ� 0.105, (24)

where the lower bound comes assuming mt = 172.45 GeV,
mh1 = 126.0 GeV and the upper bound assuming mt = 173.85 GeV,
mh1 = 124.0 GeV.
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Fig. 2. Top panel: ratio Γ tot
Hill/Γ

tot
SM . Middle panel: BR(h2 → h1h1). Bottom panel:

BR(h2 → W +W −). The solid line is the adjusted experimental exclusion.

The variation for the triviality bound (represented by the upper
edge of the colored areas in Fig. 1) is not shown, since it varies
below the percent level, when the Higgs boson and the top quark
masses are varied within one sigma around their respective central
values.

The vanishing of the scalar quartic coupling at a very large scale
μ is not the only interesting aspect one might consider. A more
restrictive condition on the Higgs mass comes from the request
that also its beta function vanishes at some scale μ,

λ(μ) = βλ(μ) = 0. (25)
Fig. 3. Regions in the (s2
α–mHill) plane such that the scalar quartic coupling vanishes

at the Planck scale, varying the top quark and Higgs boson masses by one sigma
around their central value (represented by the red/solid curve inside the shaded
areas). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

This situation is of interest because it plays an important role in
the argument whether the Higgs boson might be responsible for
the inflationary phase of the universe, where said equation sets the
minimum Higgs mass compatible with slow-roll inflation. We focus
on Eq. (25) also because it might be related to the existence of a
conformal window for scales near the Planck mass. The solution of
Eq. (25) is found in Ref. [2] to be

Mmin = [129.57 + 2.2δt − 0.56δαs ± δth] GeV, (26)

δt = (mt/GeV − 172.9)

1.1
, (27)

δαs = αs − 0.1184

0.0007
, (28)

δth 
 1.2, (29)

where Mmin is the standard model Higgs mass where at some
scale μ (close to the reduced Planck mass, 2.44 · 1018 GeV), both
the scalar coupling and its derivative vanish. We can interpret the
equation in the Hill model by considering M2

min ≡ 2λ3 v2 in Eq. (6),
to be solved for the Hill mass or, equivalently, for the mixing angle.
In a model independent fashion, the required 
λ from Eq. (17), is

λ 
 0.0096 for the central values of the top quark and Higgs bo-
son masses.

4. Extension to the HEIDI model

The Hill model can be easily extended to include more Hill
fields Hi . In terms of the modes Hi the Lagrangian, that we use, is
the following:

L = −DμΦ† DμΦ − 1

2

∑
(∂μHk)

2

+ m2
0Φ

†Φ − λ
(
Φ†Φ

)2 − 1

2

∑
m2

k H2
k

− gΦ†Φ
∑

Hk − ζ

2

∑
Hi H j . (30)

We take the coupling of the fields Hi to the Higgs field to be
equal. This condition is respected by renormalization because of
the permutation symmetry for the fields Hi , that is only softly bro-
ken by the mass terms. This property allows us to take the limit
of an infinite number of fields in the form of a higher-dimensional
(HEIDI) Hill field [17,18]. To go to a higher-dimensional field one



330 L. Basso et al. / Physics Letters B 730 (2014) 326–331
simply takes m2
k = m2 + m2

γ
�k2, where �k is a γ -dimensional vector,

mγ = 2π/L and m is a d-dimensional mass term for the field H .
Subsequently one can take the continuum limit, which corresponds
to the Hill field moving in a flat open space. Such a theory is renor-
malizable, as long as the dimension of the space is six or less. The
Higgs propagator is given by:

D H H
(
q2) =

(
q2 + M2 − g2 v2 ∑

(q2 + m2
i )

−1

1 + ζ
∑

(q2 + m2
i )

−1

)−1

=
∑ c2

i

q2 + M2
i

, (31)

where M2 = 2λv2.
In the continuum limit the propagator can be rewritten in the

form [18]

D H H
(
q2) =

(
q2 + M2 − μ8−d

(q2 + m2)
6−d

2 ± ν6−d

)−1

(32)

where ν is positive and the sign in front of the ν term is the sign
of ζ .

We first want to prove that the coefficients c2
i sum up to one.

Performing a contour integral on Eq. (31), with the contour at in-
finity, we get the residues of the poles of both sides,

1 =
∑

i

c2
i . (33)

In general this is a consequence of diagonalizing the scalar mass
matrix with a unitary matrix. For the Hill model, with one extra
scalar field, the ci are simply the sine and cosine of the scalar
mixing angle.

Subsequently we want to generalize Eq. (6). Performing once
more a contour integral at infinity for the following function:

q2 D H H
(
q2) − 1 =

∑
i

q2c2
i

q2 + M2
i

− 1, (34)

one finds

M2 =
∑

i

c2
i M2

i . (35)

In the continuous case, the RHS of the above equation must be
replaced with an integral over the spectral density, where poles are
still allowed as delta functions in the spectral density. This leads to
the following result for the Higgs coupling λ:

λ =
∫ ∞

0 sρ(s)ds

2v2
. (36)

Eq. (36) allows for the reinterpretation of the results for the Hill
model in its HEIDI extension. This reinterpretation is however not
completely straightforward because of the additional parameters in
the model. In fact, within the HEIDI models various possibilities re-
garding the spectrum of the Higgs propagator exist. Dependent on
the parameters there are zero, one or two peaks plus a continuum,
that would show up as an invisible decay spectrum. A full analysis
of all possibilities is beyond the scope of this Letter. The most in-
teresting one for the LHC physics would be the two particle peaks
plus continuum. If the strength of the peak at 125 GeV is not the
full standard model one, it is still possible that the Higgs boson
satisfies the condition of Eq. (26) due to the presence of higher
masses in the spectral density. If we know the strength of the first
peak at 125 GeV and the location of the second peak, the strength
of the second peak and the form of the continuum are fixed once
one extra condition is set.
Fig. 4. Strength of the second peak fulfilling the vacuum stability bound for (top)
a 5-dimensional and (bottom) a 6-dimensional field, as a function of the mass of
the second peak, for an 80% (left/red) and a 90% (right/blue) peak at 125 GeV. The
dashed lines satisfy Eq. (26). The shading is as in Fig. 3. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

Here we look at what parameters are allowed by vacuum stabil-
ity. We compare it to the case that the strict condition of Eq. (26) is
imposed, i.e., the existence of a conformal window near the Planck
scale. As an example we give in Fig. 4 the strength of the second
peak for a 5-dimensional and a 6-dimensional field as a function
of the mass of the second peak. We do this for an 80% and a 90%
peak at 125 GeV. At the high mass end of the curve one is back at
the simple Hill model. We remark that the area on the right of the
curves is allowed by stability. The curves themselves correspond
to the boundary between stability and instability, the curves cor-
responding to the extremes when varying top and Higgs mass. The
more we increase the suppression of the 125 GeV Higgs strength
(allowing for higher cross sections for the second peak), the more
the heavier state needs to be close in mass to the lighter one. It
is clear from the values, that this model is difficult to study at
the LHC, especially due to the rather poor experimental resolution.
In particular the continuum can probably not be established. This
type of model can only be studied at a high-luminosity electron–
positron machine like the ILC or TLEP, where one can study the
Higgs field in the recoil spectrum independent of the decay modes.
At least naively a circular collider appears to have advantages for
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this model, again due to the higher achievable resolution, but the
comparison with the ILC should be studied in more detail.

5. Conclusions

The one-loop effective potential for the simplest extension of
the standard model has been used to derive the RGEs for its new
parameters. The two-loop standard model RGEs have then been
completed by the former, to study the stability of the Hill model
up to the Planck scale. This is a reasonable approximation, because
the evolution of the Higgs quartic coupling reads as in the standard
model. Its boundary condition is modified by a positive amount
due to the tree-level mixing among the real scalars.

The regions of the parameter space that satisfy the tightest
bounds of vacuum stability and triviality were shown, including
the impact on the former of varying the Higgs boson and the
top quark masses within one sigma around their central value.
The resulting area is the one for which the quartic Higgs coupling
vanishes at the Planck scale, that some authors in the literature
suggest as a minimum requirement for explaining Higgs inflation.

The experimental constraints on large Higgs boson masses have
been discussed, showing that the decay channel into a pair of
lighter Higgs states should not be neglected. Due to its simplic-
ity, the Hill model can be considered as a benchmark model for
the search of any heavy scalar boson, that mixes with the Higgs
doublet. An extension with a higher-dimensional (HEIDI) singlet
was discussed, that showed that its physics might be hidden at
the LHC. In that case a new lepton collider, like the ILC or TLEP, is
needed to study this model.
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