
International Journal of Solids and Structures 43 (2006) 3542–3568

www.elsevier.com/locate/ijsolstr
A stochastic constitutive model for disordered
cellular materials: Finite-strain uni-axial compression

M.W. Schraad *, F.H. Harlow

Fluid Dynamics Group, Theoretical Division, Los Alamos National Laboratory, Mail Stop B216, Los Alamos, NM 87545, United States

Received 1 March 2005; received in revised form 18 May 2005
Available online 11 July 2005
Abstract

A stochastic constitutive model is developed for describing the continuum-scale mechanical response of disordered cel-
lular materials. In the present work, attention is restricted to finite-strain uni-axial compression under quasi-static loading
conditions. The development begins with an established cellular-scale mechanical model, but departs from traditional
modeling approaches by generalizing the cellular-scale model to accommodate finite strain. The continuum-scale model
is obtained by averaging the cellular-scale mechanical response over an ensemble of foam cells. Various stochastic material
representations are considered through the use of probability density functions for the relevant material parameters, and
the effects of the various representations on the continuum-scale response are investigated. Combining cellular-scale
mechanics with a stochastic material representation to derive a continuum-scale constitutive model offers a promising
new approach for simulating the finite-strain response of cellular materials. Results demonstrate that increasing a mate-
rial�s degree of polydispersity can produce the same stiffening effects as increasing the initial solid-volume fraction. Addi-
tionally, particular stochastic material representations are shown to provide upper and lower bounds on the mechanical
response of the cellular materials under investigation, while suitable choices for the stochastic representation are shown to
accurately reproduce experimental stress–strain data through the large deformations associated with densification.
Published by Elsevier Ltd.
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1. Introduction

Cellular materials are used extensively in a variety of applications. The most widely used cellular
materials are natural cellular solids, such as wood and sponge, but polymers and metals have been the
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traditional materials selected for the synthesis and manufacture of foams and honeycombs, and ceramics
are becoming the material of choice for many engineering purposes. Cellular materials are used in water
and air filtration systems, for thermal and sound insulation, and in many structural applications. Structural
foams, furthermore, can be soft and flexible, such as the packaging material and stress pads used for load
and shock mitigation, or they can be stiff, but still deformable, such as those employed in energy absorption
applications or those used as cores for sandwich structures. In the present work, attention is restricted to
the class of flexible cellular solids with disordered structure that are used for cushioning, padding, and
packaging materials. Of specific interest are polymeric foams, for which the primary objective is the devel-
opment of a continuum-scale constitutive model for simulating finite-strain uni-axial compression.

Many issues conspire to make the development of a physically based constitutive model for cellular
materials a substantial challenge. The properties and highly nonlinear mechanical response exhibited by cel-
lular materials at the continuum scale are directly related to the mechanisms of deformation occurring in
the structure found at the level of an individual foam cell. At the cellular scale, the structure is comprised of
an intricate, interconnected network of cells. Cell edges are defined by relatively slender struts and cell faces,
if closed, by thin films. Under compressive loading conditions, bending and stretching of the struts and
films are the dominant deformation mechanisms. Nonlinear effects associated with finite strains, coupled
with a changing cellular geometry, and competing with the effects of cell-wall contact, lead to the charac-
teristic physical behavior exhibited at the continuum scale. A model that spans the two length scales, there-
fore, is required.

The inherent relationship between the cellular structure and the macroscopic response dictates that any
modeling effort begin with a cellular-scale mechanical response description. The disordered nature of the
cellular structure, however, points to the usefulness of a stochastic material representation in the develop-
ment of any continuum-scale constitutive model. Furthermore, the large deformations these materials expe-
rience often are accompanied by fully three-dimensional stress and strain states, the evolving cellular
geometry and the friction associated with cell-wall contact leads to prevalent strain-path dependence,
and the visco-elastic nature of the parent solid leads to rate-dependent behavior. The porous nature of
the cellular structure only complicates matters, as the evolving pressures and flow behavior of the perme-
ating fluid affect the stiffness and rate-dependent response of these material systems. Each of these issues
can be addressed, however, and previous researchers have done much to provide an excellent starting point.

Synthetic cellular materials first appeared in the late 1930s in the form of latex rubber foams. Talalay
(1949) possibly was the first to note that the relative density, or solid-volume fraction, of a cellular material
is the single most important material parameter for use in determining the corresponding macroscopic
properties of cellular solids and the first to experimentally study the effects of cell size and shape on the
continuum-scale response of these materials.

The mechanical behavior of these unique materials was not studied in detail until some time later.
Among the earliest investigations into the mechanics of cellular materials are the works of Gent and Tho-
mas (1959a,b, 1963). These early theoretical investigations represent the first attempts to relate the contin-
uum-scale response of cellular materials to the physical mechanisms of deformation occurring at the
cellular scale and the first to use an idealized cell-level model for such purposes. Similar attempts to model
the macroscopic response of these materials followed, but these earliest investigators understood that their
models were idealized representations of actual cellular solids and that, in reality, the cellular materials they
studied were far from homogeneous, with a variety of cell shapes, orientations, and sizes. A review of early
contributions in this area is provided by Hilyard (1982).

Subsequent attempts to model the macroscopic response of cellular materials generally fall into one of
two categories. The first category includes other cellular-scale mechanical models, like those of Gent
and Thomas, which are based on the simplified mechanics of a single, idealized, foam cell or suitable
representative structure. Gibson, Ashby, and their co-workers (see Gibson et al., 1982; Gibson and Ashby,
1982; Ashby, 1983) devoted themselves to understanding cell-level structural mechanics and relating the
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deformation mechanisms at this scale to the continuum-scale response of honeycombs and foams. Indeed,
the most often referenced work in the fields of cellular material mechanics and modeling is the now classic
text of Gibson and Ashby (1988). In each of these works, the nonlinear compressive behavior of cellular
materials is simplified to a tri-linear response broken down into an initial linearly elastic regime, a con-
stant-stress load plateau, and a stiff densification regime. The macroscopic properties of cellular materials
in each regime of compressive behavior, as well as in tension and shear, are correlated to a specific mech-
anism of deformation occurring in the single-cell model when subjected to the appropriate corresponding
loading condition.

Other cell-level modeling efforts followed, but remained based on the mechanics of perfectly ordered
structures. While Gibson and Ashby focused on an idealized foam cell, Warren and Kraynik (1987,
1988, 1991, 1997) and Warren et al. (1989) focused on an even smaller representative structure—an ideal-
ized cell vertex—in their investigations into the properties and behavior of these materials. More recently,
Zhu et al. (1997) used a representative substructure of a body-centered-cubic lattice of tetrakaidecahedral
cells to analyze the high-strain response of foams. Their work appears to be unique, in that they compare
their quasi-single-cell results to experimental data obtained for a single foam cell.

The single-cell view, while illustrative, assumes a uniformity in the underlying cellular structure that is
not present, and thus, can lead to gross over or under predictions of stress levels for given levels of strain.
Additionally, most often, the single-cell approach has been used to calculate initial linearly elastic proper-
ties of cellular materials, but rarely to generate a description of the evolving nonlinear properties or to con-
struct a fully three-dimensional constitutive model that is valid for large deformations.

The second category of cellular material models includes those that are derived from detailed numerical
simulations; for example, those involving finite-element discretizations of real, or at least realistic, cellular
structures containing a statistically meaningful number of foam cells. Direct numerical simulations of such
representative structures then can be carried out to determine the macroscopic response of the materials
comprised of such structures. Kraynik et al. (1999) used finite-element analysis to study the mechanical re-
sponse of perfectly ordered, three-dimensional, open- and closed-cell foams to uni-axial and hydrostatic
compression. Zhu et al. (2000) and Zhu and Windle (2002) used finite-element analysis to investigate the
effects of cell irregularity on the initial properties and the high-strain compression of open-cell foams.
And as an extension of the work of Triantafyllidis and Schraad (1998) for two-dimensional honeycombs,
Laroussi et al. (2002) used numerical simulations to explore the nonlinear response of materials with three-
dimensional, periodic, cellular micro-structures.

When formulated properly, the results of a detailed numerical study can be as illuminating as well-
conducted experiments. An obvious and significant advantage of using a numerical technique to study
cellular materials is that it permits a detailed representation of the cellular geometry and the material prop-
erties of the parent solid. Unfortunately, numerical analyses—especially finite-element methods—often
succumb to problems associated with large deformations and contact long before reaching the finite strains
for which these materials are intended. Also, because the materials of interest exhibit highly nonlinear
behavior, their mechanical properties depend strongly on both strain and strain history, and thus, these
numerical techniques cannot be used in the construction of a constitutive model—except in the same
guiding capacity as good experimental data.

In the present work, attention is restricted to the development of a constitutive model for simulating the
continuum-scale mechanical response of disordered cellular materials to finite-strain uni-axial compression
under quasi-static loading conditions. Modeling the three-dimensional, rate-dependent, dynamic response
of such materials requires a tensorial form for the constitutive model, a proper accounting of frictional and
visco-elastic effects, and a description of the coupled effects of the permeating fluid. Extensions of the con-
stitutive model developed here for such situations are the subjects of several forthcoming articles.

The constitutive model development begins with a cellular-scale mechanical response description gener-
alized to accommodate finite strain. As in previous studies, the mechanical model used is based on cellular-
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scale deformation mechanisms. But unlike in previous studies, the nonlinear response associated with large
deformations is considered. The cellular-scale mechanical model then is averaged over an ensemble of foam
cells, forming a continuum-scale constitutive model that relates the macroscopic stress rate in the cellular
material to the macroscopic strain rate. Various stochastic representations then are considered through the
use of probability density functions for the relevant material parameters, and closures for the continuum-
scale model are obtained.

The stochastic constitutive model is used to calculate the continuum-scale mechanical response of a low-
density, open-cell, polyurethane foam. The response obtained using the stochastic model is compared to
experimental stress–strain data for finite-strain uni-axial compression, and the effects of various stochastic
material representations on the macroscopic behavior are investigated. Results demonstrate that increasing
a material�s degree of polydispersity can produce the same stiffening effects as increasing the initial solid-
volume fraction. Additionally, particular stochastic representations are shown to provide upper and lower
bounds on the stress–strain response of the cellular material under investigation, while suitable choices for
the stochastic representation are shown to accurately reproduce the stress–strain response through the large
deformations associated with densification, where most other models and direct numerical simulations fail.
2. Cellular-scale constitutive model

Consider a low-density, open-cell, polyurethane foam, such as the sample shown in Fig. 1. Traditional
approaches for modeling the mechanical response of such materials are reviewed in Section 1. These ap-
proaches typically focus on the development of expressions for the initial material properties in terms of
the cellular-scale geometry, the properties of the parent solid, and the relative density, or solid-volume frac-
tion, of the material. In this section, the development of the continuum-scale constitutive model begins with
just such an expression for the initial tangent modulus of the material. The nonlinear response associated
with large deformations, however, also is considered, and the cellular-scale mechanical model is generalized
to accommodate finite strain.

Gibson and Ashby (1988) show that, for a broad class of disordered cellular materials, the initial
Poisson�s ratio, mc

0 � 1=3. Zhu et al. (2000) and Zhu and Windle (2002), however, show that Poisson�s ratio
decreases rapidly with increasing compressive strain and that for low-density open-cell foams, the finite-
strain Poisson�s ratio can be as small as 0.02. In the derivation to follow, therefore, Poisson�s ratio is
approximated as zero, and no distinction is made between uni-axial stress and uni-axial strain. Under such
circumstances, the initial tangent modulus for a cellular material, denoted here by Ec

0, is defined as
Ec
0 �

dr
d�

����
�¼0

; ð1Þ
in which r is the continuum-scale stress and � the continuum-scale strain. Gibson and Ashby (1988),
Warren and Kraynik (1988), Van Der Burg et al. (1997), and many others, show that for an open-cell foam,
the initial tangent modulus can be written as
Ec
0 ¼ A0Es/2

0; ð2Þ

in which the parameter, A0, is a geometric constant of proportionality, Es is the tangent modulus of the
parent solid (assumed to be constant), and /0 is the initial solid-volume fraction of the material. Here,
the subscripts are used to denote initial material properties, which are relevant only for infinitesimal strain.

Despite being applied at the continuum scale, the relationship provided in Eq. (2) is derived by consid-
ering the mechanics of a single, idealized, foam cell or suitable representative structure and by assuming
that cell-wall bending is the dominant mechanism of deformation occurring at the cellular scale. Analysis
of any particular open-cell geometry under compressive loading conditions leads to this relationship.



Fig. 1. A scanning electron micrograph of a low-density, open-cell, polyurethane foam showing the intricate structure at the cellular
scale. This material was provided courtesy of the Dow Chemical Company, and the micrograph was provided courtesy of Dr. D.J.
Alexander of the Materials Science & Technology Division (MST-6) at Los Alamos National Laboratory. The continuum-scale
response of this material is inherently related to the cellular-scale geometry, the properties of the parent solid, and the relative density,
or solid-volume fraction, of the material. Bending in the struts is the dominant deformation mechanism at the cellular scale when such
a material is subjected to uni-axial compression.
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Different cell geometries lead to different values of the parameter, A0, as do different orientations of a par-
ticular cell to the direction of loading, different strut geometries, or different constraints at the cell vertices.

Because cellular materials retain their cellular structure through all deformations up to full densification,
and because cell-wall bending remains the dominant mode of deformation at the cellular scale for low-
density open-cell foams subjected to compressive deformations, it is postulated that the tangent modulus
maintains the functional form presented in Eq. (2) through all deformations as well. When subjected to
compression, however, the cellular-scale geometry and solid-volume fraction evolve with strain. In other
words, the geometric ‘‘constant’’ of proportionality, A (henceforth, referred to as the geometric stiffness),
and the solid-volume fraction, /, are functions of strain, and thus, the tangent modulus, Ec, is a function of
strain as well. That is
Ecð�Þ ¼ Að�ÞEs½/ð�Þ�2; ð3Þ

in which A(0) = A0, /(0) = /0, and Ecð0Þ ¼ Ec

0.
The relative density, or solid-volume fraction, of a particular foam cell is defined as the ratio of the den-

sity associated with the foam cell, qc, to the density of the parent solid, qs. That is
/ � qc

qs
¼ mc

V c

V s

ms
; ð4Þ
in which mc and Vc are the mass and volume associated with the foam cell, and ms and Vs are the mass and
volume of the solid material comprising the cellular structure. But the mass associated with the foam cell
must equal the mass of the solid material comprising the cell. That is
mc ¼ ms. ð5Þ



M.W. Schraad, F.H. Harlow / International Journal of Solids and Structures 43 (2006) 3542–3568 3547
Also, because bulk polyurethane is nearly incompressible under quasi-static loading conditions, and be-
cause only a small fraction of solid material is expected to reach a finite level of strain (even for finite-strain
compression of the cellular material), it can be assumed that
V s � constant. ð6Þ

Furthermore, for uni-axial compression of a cellular material (assuming mc � 0), it can be shown that
V c ¼ V c
0ð1þ �Þ ð7Þ
in which V c
0 is the initial volume of the foam cell. Substitution of Eqs. (5) and (7) into Eq. (4) then provides
/ð�Þ ¼ V s

V c
0ð1þ �Þ

¼ /0

1þ � ð8Þ
in which /0 ¼ V s=V c
0 is the initial solid-volume fraction of the particular foam cell under consideration.

The effects of an evolving cellular-scale geometry on the geometric stiffness, A, are more difficult to quan-
tify. For a particular foam cell, the exact value of A depends on cell shape, orientation, strut geometry (e.g.,
strut cross-sectional shape and constraints at the cell vertices), and strain. Analysis of any realistic cellular
geometry to determine all possible initial values of A, for all possible cell shapes, orientations, and strut
geometries, likely presents an intractable task. Analysis of any realistic cellular geometry to account for
the nonlinear effects associated with finite bending strains in the cell walls is virtually guaranteed to be
impossible. Using the physical behavior at the cellular scale as a guide, however, a simple, yet useful,
approximation can be made.

Cellular materials soften with increasing compressive deformations, as shown in Fig. 2. This decrease in
stiffness is due to the increasing misalignment of material with the direction of loading that accompanies
finite bending strains. The softening continues until the competing mechanism of cell-wall contact begins
to dominate the response at moderate strain, and a gradual increase in stiffness is induced. This stiffening
continues, and as the deforming structure approaches full densification, the tangent modulus of the cellular
material approaches the tangent modulus of the parent solid.

With regard to the mechanical response of an individual foam cell, the geometric stiffness, A, decreases
with increasing compressive deformations until cell-wall contact occurs. The value of A, however, is
bounded from below at this point by the theoretical limit of zero, which corresponds to the buckling load
of the cell for a particular initial configuration (see Gibson and Ashby, 1988). The geometric stiffness, how-
ever, never reaches this theoretical limit, because disordered cellular materials lack the symmetries neces-
sary for such bifurcations to occur. After cell-wall contact, the geometric stiffness, A, remains constant
through moderate strain. The continued increase in the cell stiffness in this regime of behavior is associated
with the process of densification [i.e., Ec � 1/(1 + �)2]. As the material approaches full densification, how-
ever, the geometric stiffness once again increases, and the value of A is bounded from above at this point by
lim�!�1þ/0

Ec ¼ Es.
An estimate of the average value of the geometric stiffness, A, for an ensemble of foam cells can be ob-

tained at any value of strain by examining the slope of the stress–strain curve for the material of interest, as
shown in Fig. 2. Therefore, as a first approximation to the response of an individual foam cell, consider the
following tri-linear approximation to the function A(�):
Að�Þ ¼ A0Hð�� �1Þ þ A1Hð�1 � �Þ þ ðA2 � A1ÞHð�2 � �Þ. ð9Þ

Here, �1 and �2 are transition strains corresponding to the onset of softening and to full densification,
respectively, in the foam cell; A0, A1, and A2 are the values of the geometric stiffness evaluated at � = 0,
� = �1, and � = �2, respectively; and the function, H(x), is the Heaviside step function, defined by
HðxÞ ¼
1; x P 0

0; x < 0.

�
ð10Þ



Fig. 2. The continuum-scale stress–strain response of a cellular material subjected to quasi-static uni-axial compression. Characteristic
features and mechanism-dependent behavior are identified. The analagous components of the cellular-scale mechanical model also are
shown for purposes of comparison.
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Substituting the relations provided in Eqs. (8) and (9) into Eq. (3) results in the following expression for the
tangent modulus of the foam cell:
Ecð�Þ ¼ ½A0Hð�� �1Þ þ A1Hð�1 � �Þ þ ðA2 � A1ÞHð�2 � �Þ�Es/2
0

ð1þ �Þ2
. ð11Þ
A foam cell reaches full densification (i.e., Ec�Es), however, for � � �1 + /0, and it follows from Eq. (11)
that:
Ecð�1þ /0Þ ¼ ðA1 þ A2 � A1ÞEs /2
0

ð1� 1þ /0Þ
2
¼ A2Es � Es; ð12Þ
which suggests either
A2 � 1 for �2 ¼ �1þ /0 ð13Þ

or
A2 ¼ 1 for �2 � �1þ /0. ð14Þ

By employing the latter, the tri-linear approximation to the function, A(�), can be rewritten as
Að�Þ ¼ A0Hð�� �1Þ þ A1Hð�1 � �Þ þ ð1� A1ÞHð�2 � �Þ ð15Þ
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and the tangent modulus for the foam cell becomes
Ecð�Þ ¼ ½A0Hð�� �1Þ þ A1Hð�1 � �Þ þ ð1� A1ÞHð�2 � �Þ�Es/2
0

ð1þ �Þ2
. ð16Þ
In this way, the rate form of the constitutive model at the cellular scale can be written as
_r ¼ Ecð�Þ_� ð17Þ

in which _r and _� are the rates of stress and strain, respectively, for an individual foam cell.

Of course, the tri-linear form of the constitutive model is an approximation to the actual mechanical re-
sponse of an individual foam cell. This approximation, however, can be used to model all uni-axial com-
pressive deformations of the cell up to full densification of the material and beyond (i.e., for �!�1).

Most previous modeling efforts apply the relationship provided in Eq. (2) directly to the continuum
scale. This is, however, only useful for describing how an individual foam cell responds to infinitesimal
compressive strain. To obtain the continuum-scale response to large deformations for a cellular material
comprised of a collection of many cells, one must average the finite-strain response of the individual foam
cell over the entire ensemble, allowing for stochastic variations in the material parameters. In this way, the
discontinuities associated with the tri-linear approximation for an individual cell are smoothed through the
averaging process. This averaging process, and the resulting continuum-scale constitutive model, are out-
lined in Section 3.
3. Continuum-scale constitutive model

Previous researchers have firmly established the relationship among the initial continuum-scale mechan-
ical properties of cellular materials, the intricate structure found at the level of an individual foam cell, the
properties of the parent solid, and the relative density, or solid-volume fraction. Most often, this relation-
ship is expressed as an equation for the initial tangent modulus of the material. In Section 2, an established
cellular-scale mechanical model is introduced and extended to accommodate finite strain by considering the
effects of a changing cellular geometry and an evolving material density. In this section, the continuum-
scale constitutive model is obtained by taking appropriate averages of the cellular-scale model over an
ensemble of many foam cells.

The rate form of the constitutive model for an individual foam cell is given by Eq. (17), and the corre-
sponding strain-dependent tangent modulus is given by Eq. (16). These equations provide a description of
the mechanical response for any particular foam cell taken at random from a collection of foam cells com-
prising an ensemble of similar foam samples. To obtain a constitutive model at the continuum scale for
such a material, this cellular-scale model must be averaged over the ensemble. That is,
_r ¼ Ecð�Þ_� ¼ Ecð�Þ_�þ Ec0ð�Þ_�0. ð18Þ

Here, a line over any quantity denotes that quantity�s properly weighted ensemble average, so Ecð�Þ is the
average tangent modulus of the cellular material, and _r and _� are the average stress and strain rates, respec-
tively. The quantities, Ec0ð�Þ and _�0, are fluctuations in the cellular-scale modulus and strain rate, respec-
tively, and therefore, the term, Ec0ð�Þ_�0, represents an average of the cross correlation between these two
quantities.

Terms such as Ecð�Þ, _�, etc., represent averages over many cells taken at random from an ensemble of
similar foam samples. Ergodically, this is equivalent to averages over a volume of many cells taken from
a single cellular material system. The ensemble-averaged quantities, therefore, are equivalent to volume-
averaged, continuum-scale quantities. In this sense, these terms are synonomous, and are treated as such
for the remainder of this discussion.



3550 M.W. Schraad, F.H. Harlow / International Journal of Solids and Structures 43 (2006) 3542–3568
In general, the cross-correlation term, Ec0ð�Þ_�0, requires modeling, and often, direct numerical simula-
tions to verify that the model fits empirical data. Schjødt-Thomsen and Pyrz (2004), however, use numerical
techniques to show that strain fluctuations are small in three-dimensional random dispersions of cells sub-
jected to various loading conditions, and they suggest the traditional approach offered by Voigt (1889) for
modeling strain can lead to reasonably accurate approximations to the actual strain response of disordered
cellular materials.

3.1. Voigt approximation

The Voigt approximation simplifies the form of the continuum-scale constitutive model by assuming the
strain fluctuations are negligible. Therefore, consider
�0 ¼ 0) � ¼ � ð19Þ

in which � 0 is the strain fluctuation for the individual foam cell, � is the cell strain, and � is the average strain
for an ensemble of cells (i.e., � ¼ �þ �0). Equivalently, one can assume
_�0 ¼ 0) _� ¼ _�. ð20Þ

Eqs. (19) and (20) state that the strain, and thus the strain rate, are the same for all cells in the ensemble,

and therefore, the local cellular-scale strain and strain-rate fields do not vary with position.
Because the strain-rate fluctuations are assumed to be zero, the cross-correlation term in Eq. (18) also is

zero. The continuum-scale constitutive model then reduces to
_r ¼ Ecð�Þ_� ð21Þ

and it remains to determine the average tangent modulus Ecð�Þ.

3.2. Reuss approximation

Alternatively, the cellular-scale constitutive model can be rewritten as
_� ¼ Ccð�Þ _r ð22Þ

in which
Ccð�Þ ¼ 1

Ecð�Þ ð23Þ
is the cellular-scale compliance.
Averaging over an ensemble of foam cells provides
_� ¼ Ccð�Þ _r ¼ Ccð�Þ _rþ Cc0ð�Þ _r0. ð24Þ

Here, Ccð�Þ is the average compliance of the cellular material, the quantities Cc0ð�Þ and _r0 are fluctuations in
the cellular-scale compliance and stress rate, respectively, and the term, Cc0ð�Þ _r0, represents an average of
the cross correlation between these two quantities.

Again, in general, the cross-correlation term, Cc0ð�Þ _r0, requires modeling, however, similar to the ap-
proach taken above, one can assume that the traditional approach offered by Reuss (1929) for modeling
stress will lead to reasonably accurate approximations to the actual stress response of disordered cellular
materials.

The Reuss approximation also simplifies the form of the continuum-scale constitutive model by assum-
ing the stress fluctuations are negligible. Therefore, consider
r0 ¼ 0) r ¼ r; ð25Þ
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in which r 0 is the stress fluctuation for the individual foam cell, r is the cell stress, and r is the average stress
for an ensemble of cells (i.e., r ¼ rþ r0). Equivalently, one can assume
_r0 ¼ 0) _r ¼ _r. ð26Þ
Eqs. (25) and (26) state that the stress, and thus the stress rate, are the same for all cells in the ensemble, and
therefore, the local cellular-scale stress and stress-rate fields do not vary with position.

Because the stress-rate fluctuations are assumed to be zero, the cross-correlation term in Eq. (24) also is
zero. The continuum-scale constitutive model then reduces to
_� ¼ Ccð�Þ _r ð27Þ
and it remains to determine the average compliance, Ccð�Þ.
Dealing with this particular form of the continuum-scale constitutive model, however, presents some dif-

ficulties, because the cellular-scale compliance is constructed as a function of strain, and so, the average
compliance remains a function of strain as well. To evaluate the average compliance, the rate form of
the cellular-scale constitutive model must be integrated and the resulting stress–strain model must be in-
verted before the Reuss approximation can be used. While nontrivial, this can be done in principle, pro-
vided the stress is a monotonically increasing function of strain. In other words, one must determine
� ¼ f ðrÞ ¼ f ðrÞ and substitute this relation into Eq. (27) to obtain
_� ¼ Ccðf ðrÞÞ _r. ð28Þ

This relation then can be inverted to obtain the continuum-scale constitutive model in the usual rate form.

To limit the scope of the present work, attention is restricted to the use of the Voigt approximation for
the remainder of this discussion. In the next section, various stochastic material representations are consid-
ered through the use of probability density functions for the relevant material parameters. The various sto-
chastic representations are used to determine corresponding expressions for the average tangent modulus of
the cellular material. By substituting these expressions into Eq. (21), the resulting continuum-scale stress–
strain response can be obtained.
4. Stochastic material representation

In Section 2, a nonlinear constitutive model is developed to describe the mechanical response of an indi-
vidual foam cell to finite-strain uni-axial compression. In Section 3, this cellular-scale constitutive model is
averaged over an ensemble of foam cells, forming a continuum-scale description of the mechanical response
for a cellular material. It remains to determine the average tangent modulus of the cellular material, which
depends on cell-to-cell fluctuations in the parameters that describe the individual foam cell response. In this
section, various stochastic material representations are examined and used to obtain the corresponding con-
tinuum-scale constitutive model in closed form.

At the cellular scale, the tangent modulus for an individual foam cell is given by Eq. (16). In general, it is
expected that all of the material parameters, A0, A1, �1, �2, Es, and /0, along with the individual cell strain, �,
vary from cell to cell in an ensemble of foam cells, when random samples of the cellular material are sub-
jected to any macroscopic loading. Therefore, all of the material parameters, along with the individual cell
strain, are treated as independent variables in the stochastic material representation, and in general, the
average tangent modulus is given by
Ec �
Z

A0

Z
A1

Z
�1

Z
�2

Z
Es

Z
/0

Z
�

Ecð�ÞP d�d/0 dEsd�2 d�1 dA1 dA0; ð29Þ
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in which Ec(�) is the tangent modulus of any particular foam cell in an ensemble of cells, and the quantity
Pd�d/0 dEs d�2 d�1 dA1 dA0 is the probability that this particular foam cell is characterized by the parame-
ters, A0, in the interval dA0; A1, in the interval dA1; . . .;/0, in the interval d/0; and by the strain, �, in the
interval d�. The function P is the probability density function.

4.1. Uncorrelated variables

The cellular-scale constitutive model is derived in such a way that the effects of the cellular-scale geom-
etry, the properties of the parent solid, and the solid-volume fraction on the tangent modulus of the indi-
vidual foam cell are uncorrelated. Therefore, consider the case for which all of the independent variables in
the stochastic material representation are uncorrelated. In this case, the probability density function as-
sumes the following form:
P ¼ P A0
ðA0ÞP A1

ðA1ÞP �1ð�1ÞP �2ð�2ÞP EsðEsÞP/0
ð/0ÞP �ð�Þ ð30Þ
in which P A0
; P A1

; . . . ; P � are the probability density functions associated with each of the respective uncor-
related independent variables.

By invoking the Voigt approximation, however, it is assumed that � ¼ �, and therefore
P �ð�Þ ¼ dð�� �Þ ð31Þ

in which the function, d(x), is the Dirac delta function, defined by
Z x2

x1

f ðxÞdðxÞdx ¼
1; x1 < x < x2;

0; otherwise.

�
ð32Þ
Substitution of the relationship given in Eq. (31) into the probability density function expressed in Eq. (30),
and subsequent substitution of the result into Eq. (29) provides the average tangent modulus for uncorre-
lated variables, which can be written as
Ecð�Þ ¼ ~Að�ÞEs½~/ð�Þ�2 ð33Þ

in which the effective geometric stiffness is defined by
~Að�Þ � A0

Z
�1

Hð�� �1ÞP �1ð�1Þd�1 þ A1

Z
�1

Hð�1 � �ÞP �1ð�1Þd�1 þ ð1� A1Þ
Z
�2

Hð�2 � �ÞP �2ð�2Þd�2 ð34Þ
and the effective solid-volume fraction is defined by
~/ð�Þ � 1

ð1þ �Þ2
Z

/0

/2
0P/0
ð/0Þd/0

" #1
2

. ð35Þ
The expressions for the effective geometric stiffness and the effective solid-volume fraction depend on the
average continuum-scale strain, �, as well as on the probability density functions for the transition strains,
�1 and �2, and the initial solid-volume fraction, /0. Therefore, the average tangent modulus evolves with
strain and depends on the stochastic material representation as well.

Here, it is noted that the mean of any random variable, x, is defined as
x �
Z 1

�1
xPðxÞdx ð36Þ
and that the corresponding probability density function must satisfy the following relation:
Z 1

�1
P ðxÞdx � 1. ð37Þ
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Therefore, because the tangent modulus for an individual foam cell depends linearly on the geometric stiff-
ness parameters, A0 and A1, and the initial tangent modulus of the parent solid, Es, and because these vari-
ables are uncorrelated, the average tangent modulus only depends on the average values, A0; A1, and E

s
,

rather than on the distributions of A0, A1, and Es. Consequently, the resulting expression for the average
tangent modulus assumes a relatively simple form.

4.2. Monodisperse distributions

Consider an idealized cellular material, for which the parameters describing the cellular-scale mechanical
response of any particular foam cell are characterized by monodisperse distributions. In other words, each
material parameter is constant over the entire ensemble of foam cells. While not realistic, this example dem-
onstrates the similarities and differences between the stochastic model and previous approaches for model-
ing the continuum-scale stress–strain response of cellular materials. In this case, the probability density
functions for the transition strains and the initial solid-volume fraction are given, respectively, by
P �1ð�1Þ ¼ dð�1 � �1Þ; ð38Þ
P �2ð�2Þ ¼ dð�2 � �2Þ; ð39Þ
and
P/0
ð/0Þ ¼ dð/0 � /0Þ. ð40Þ
For a cellular material characterized by monodisperse distributions, the effective geometric stiffness then is
given by
~Að�Þ ¼ A0Hð�� �1Þ þ A1Hð�1 � �Þ þ ð1� A1ÞHð�2 � �Þ ð41Þ
and the effective solid-volume fraction is given by
~/ð�Þ ¼ /0

1þ � . ð42Þ
Substitution of the relations provided in Eqs. (41) and (42) into the relation for the average tangent mod-
ulus provided in Eq. (33) yields
Ecð�Þ ¼ ½A0Hð�� �1Þ þ A1Hð�1 � �Þ þ ð1� A1ÞHð�2 � �Þ�E
s
/

2

0

ð1þ �Þ2
. ð43Þ
This is the simplest form of the average tangent modulus representing the collective mechanical response of
an ensemble of foam cells. It is analagous to applying a single-cell mechanical model to the continuum scale
by replacing single-cell model parameters with their continuum-scale averages, and thus, is equivalent to
many previous single-cell modeling efforts. A discontinuity in the tangent modulus necessarily results from
using monodisperse distributions, however, this discontinuity is smoothed through the averaging process
for more realistic, polydisperse, stochastic material representations.

4.3. Random distributions

Next, consider a cellular material, for which the parameters describing the cellular-scale mechanical re-
sponse of any particular foam cell are characterized by random distributions. In other words, there exists an
equal likelihood that a parameter, say A0, takes on any particular value within some range of permissible
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values. Because disordered cellular materials are not necessarily strictly random, this is an approximation.
In this case, the probability density functions for the transition strains are given by
P �1ð�1Þ ¼
1

2D�1

; �1 � D�1
6 �1 6 �1 þ D�1

0; otherwise

8<
: ð44Þ
and
P �2ð�2Þ ¼
1

2D�2

; �2 � D�2
6 �2 6 �2 þ D�2

0; otherwise

8<
: ð45Þ
in which 2D�1 and 2D�2
are the ranges of permissible values of the transition strains, �1 and �2, respectively.

The quantities, D�1 and D�2 , must be greater than zero, but must not be so large that the distributions be-
come physically meaningless. For example, �1 6 �1 6 0 and �1 6 �2 6 0, and thus �1 þ D�1 6 0 and
�2 � D�2 P �1. Also, in general, a regime of deformation exists between the onset of softening and densi-
fication (the term ‘‘load plateau’’ is often applied to the corresponding portion of the stress–strain curve).
This regime spans a finite range of strain, which is especially prolonged for highly ordered cellular materi-
als. Therefore, it is reasonable to assume that �2 þ D�2

6 �1 � D�1
. These constraints ensure that the transi-

tion strains are physically realizable and provide lower and upper bounds on the permissible values of the
transition strains for a particular foam cell.

Upon substitution of the relations provided in Eqs. (44) and (45), the integrals in Eq. (34) are evaluated
as
Z
�1

Hð�� �1ÞP �1ð�1Þd�1 ¼
Z �1þD�1

�1�D�1

Hð�� �1Þ
2D�1

d�1 ¼
1

2D�1

ð�1 � �ÞHð�� �1Þ
����
�1þD�1

�1�D�1

¼ 1

2D�1

½ð�1 þ D�1 � �ÞHð�� �1 � D�1Þ � ð�1 � D�1 � �ÞHð�� �1 þ D�1
Þ�; ð46Þ

Z
�1

Hð�1 � �ÞP �1ð�1Þd�1 ¼
1

2D�1

½ð�1 þ D�1 � �ÞHð�1 þ D�1
� �Þ � ð�1 � D�1 � �ÞHð�1 � D�1 � �Þ� ð47Þ
and
 Z
�2

Hð�2 � �ÞP �2ð�2Þd�2 ¼
1

2D�2

½ð�2 þ D�2 � �ÞHð�2 þ D�2
� �Þ � ð�2 � D�2 � �ÞHð�2 � D�2 � �Þ�. ð48Þ
For a cellular material characterized by random distributions, the effective geometric stiffness then is given
by
~Að�Þ ¼ A0ð�1 þ D�1
� �Þ

2D�1

Hð�� �1 � D�1Þ �
A0ð�1 � D�1

� �Þ
2D�1

Hð�� �1 þ D�1Þ

þ A1ð�1 þ D�1 � �Þ
2D�1

Hð�1 þ D�1 � �Þ �
A1ð�1 � D�1 � �Þ

2D�1

Hð�1 � D�1 � �Þ

þ ð1� A1Þð�2 þ D�2 � �Þ
2D�2

Hð�2 þ D�2 � �Þ �
ð1� A1Þð�2 � D�2

� �Þ
2D�2

Hð�2 � D�2 � �Þ; ð49Þ
which can be represented in a slightly different, perhaps more transparent, form as
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~Að�Þ ¼

A0; �1 þ D�1 6 � 6 0;

ðA0 � A1Þ�� A0ð�1 � D�1Þ þ A1ð�1 þ D�1Þ
2D�

; �1 � D�1 6 � 6 �1 þ D�1 ;

A1; �2 þ D�2 6 � 6 �1 � D�1 ;

ðA1 � 1Þ�� A1ð�2 � D�2
Þ þ ð�2 þ D�2Þ

2D�2

; �2 � D�2 6 � 6 �2 þ D�2 ;

1; �1 6 � 6 �2 � D�2 .

8>>>>>>>>>><
>>>>>>>>>>:

ð50Þ
For a random distribution, the probability density function for the initial solid-volume fraction is given by
P/0
ð/0Þ ¼

1

2D/
; /0 � D/ 6 /0 6 /0 þ D/

0; otherwise

8<
: ð51Þ
in which 2D/ is the range of permissible values of the initial solid-volume fraction, /0. Again, the quantity,
D/, must be greater than zero, but must not be so large that the distribution becomes physically meaning-
less. For example, /0 P 0, and thus /0 � D/ P 0. This constraint ensures that the solid-volume fractions
are physically realizable and provides lower and upper bounds on the permissible values of the initial solid-
volume fraction for a particular foam cell, which in turn, provide lower and upper bounds on the average
initial solid-volume fraction, and thus, on the average tangent modulus and the continuum-scale stress in
the cellular material.

Upon substitution of the relation provided in Eq. (51), the integral in Eq. (35) is evaluated as
Z
/0

/2
0P/0
ð/0Þd/0 ¼

Z /0þD/

/0�D/

/2
0

2D/
d/0 ¼

3/
2

0 þ D/

3
. ð52Þ
For a cellular material characterized by random distributions, the effective solid-volume fraction then is
given by
~/ð�Þ ¼ 3/
2

0 þ D/

3ð1þ �Þ

" #1
2

. ð53Þ
Substitution of the relations provided in Eqs. (49) and (53) into the relation for the average tangent mod-
ulus provided in Eq. (33) yields a form of the average tangent modulus representing the collective mechan-
ical response of a random dispersion of foam cells.

4.4. Gaussian distributions

Now, consider a cellular material, for which the parameters describing the cellular-scale mechanical re-
sponse of any particular foam cell are characterized by Gaussian distributions. Many random variables
studied in various physical experiments often have distributions that are approximately Gaussian. For
example, a Gaussian distribution most often is a close approximation to the distribution of heights or
weights of individuals taken at random from a homogeneous population of people, to the distribution
of pore or crack sizes in samples of a particular metal, or to the distribution of tensile strengths for samples
of a particular material. It is reasonable to expect that a Gaussian distribution is a close approximation to
the distribution of parameters that describe the mechanical behavior of the cells taken at random from a
sample of foam. In this case, the probability density functions for the transition strains are given by
P �1ð�1Þ ¼
1ffiffiffiffiffiffi

2p
p

r�1
exp

�ð�1 � �1Þ2

2r2
�1

" #
ð54Þ
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and
P �2
ð�2Þ ¼

1ffiffiffiffiffiffi
2p
p

r�2

exp
�ð�2 � �2Þ2

2r2
�2

" #
ð55Þ
in which r�1 and r�2
are the standard deviations in the distributions of �1 and �2, respectively, which provide

measures of the dispersion of the distributions around the average values, �1 and �2. The standard devia-
tions must be greater than zero, but must not be so large that the distributions become physically mean-
ingless. For example, if �1 þ mr�1 6 0 and �2 � mr�2 P �1, then by choosing an appropriate value for m,
one can ensure that, to an acceptable probability, �1 6 �1 6 0 and �1 6 �2 6 0 (e.g., for m = 1, the prob-
abilities that �1 6 0 and �2 P �1 are 0.842; for m = 2, the probabilities are 0.977; for m = 3, the probabil-
ities are 0.999). Also, for the same reasons outlined above for random distributions, it is reasonable to
assume that �2 þ mr�2

6 �1 � mr�1 . These constraints ensure that, to an acceptable probability, the transi-
tion strains are physically realizable and provide lower and upper bounds on the permissible values of the
transition strains for a particular foam cell.

Upon substitution of the relations provided in Eqs. (54) and (55), the integrals in Eq. (34) are evaluated
as
 Z

�1

Hð�� �1ÞP �1ð�1Þd�1 ¼
1ffiffiffiffiffiffi

2p
p

r�1

Z 0

�1
Hð�� �1Þ exp

�ð�1 � �1Þ2

2r2
�1

" #
d�1

� 1ffiffiffiffiffiffi
2p
p

r�1

Z 1

�1
Hð�� �1Þ exp

�ð�1 � �1Þ2

2r2
�1

" #
d�1

¼ 1ffiffiffiffiffiffi
2p
p

r�1

Z 1

�1��
exp

�u2

2r2
�1

 !
du ¼ 1

2
1� erf

�1 � �ffiffiffi
2
p

r�1

 !" #
; ð56Þ

Z
�1

Hð�1 � �ÞP �1ð�1Þd�1 ¼
1

2
1� erf

�� �1ffiffiffi
2
p

r�1

 !" #
ð57Þ
and
 Z
�2

Hð�2 � �ÞP �2ð�2Þd�2 ¼
1

2
1� erf

�� �2ffiffiffi
2
p

r�2

 !" #
; ð58Þ
in which the function, erf(x), is the error function (or probability integral), defined by
erfðxÞ � 2ffiffiffi
p
p

Z x

0

e�t2 dt. ð59Þ
For a cellular material characterized by Gaussian distributions, the effective geometric stiffness then is given
by
~Að�Þ ¼ A0

2
1� erf

�1 � �ffiffiffi
2
p

r�1

 !" #
þ A1

2
1� erf

�� �1ffiffiffi
2
p

r�1

 !" #
þ ð1� A1Þ

2
1� erf

�� �2ffiffiffi
2
p

r�2

 !" #
. ð60Þ
For a Gaussian distribution, the probability density function for the initial solid-volume fraction is given by
P/0
ð/0Þ ¼

1ffiffiffiffiffiffi
2p
p

r/

exp
�ð/0 � /0Þ

2

2r2
/

" #
; ð61Þ
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in which r/ is the standard deviation in the distribution of /0, which provides a measure of the dispersion
of the distribution around the average value, /0. Again, the standard deviation must be greater than zero,
but must not be so large that the distribution becomes physically meaningless. For example, if
/0 � nr/ P 0, then by choosing an appropriate value for n, one can ensure that, to an acceptable proba-
bility, /0 P 0. This constraint ensures that, to an acceptable probability, the solid-volume fractions are
physically realizable and provides lower and upper bounds on the permissible values of the initial solid-
volume fraction for a particular foam cell, which in turn, provide lower and upper bounds on the average
initial solid-volume fraction, and thus, on the average tangent modulus and the continuum-scale stress in
the cellular material.

Upon substitution of the relation provided in Eq. (61) the integral in Eq. (35) is evaluated as
Z
/0

/2
0P/0
ð/0Þd/0 ¼

1ffiffiffiffiffiffi
2p
p

r/

Z 1

0

/2
0e

�ð/0�/0Þ2

2r2
/ d/0 �

1ffiffiffiffiffiffi
2p
p

r/

Z 1

�1
/2

0e

�ð/0�/0Þ2

2r2
/ d/0

¼ 1ffiffiffiffiffiffi
2p
p

r/

Z 1

�1
ðuþ /0Þ

2e
�u2

2r2
/ du ¼ /

2

0 þ r2
/. ð62Þ
For a cellular material characterized by Gaussian distributions, the effective solid-volume fraction then is
given by
~/ð�Þ ¼
/

2

0 þ r2
/

ð1þ �Þ2

" #1
2

. ð63Þ
Substitution of the relations provided in Eqs. (60) and (63) into the relation for the average tangent mod-
ulus provided in Eq. (33) yields a form of the average tangent modulus representing the collective mechan-
ical response of a disordered dispersion of foam cells characterized by Gaussian distributions.

4.5. Correlated variables

Despite the fact that the cellular-scale constitutive model is derived in such a way that the effects of the
cellular-scale geometry, the properties of the parent solid, and the initial solid-volume fraction on the tan-
gent modulus of the individual foam cell are uncorrelated, under certain circumstances, one might still ex-
pect some of independent variables to be correlated. For example, foam cells with a particular shape, or a
particular orientation to loading, producing a stiffer-than-average initial response, are likely to exhibit a
stiffer-than-average response for all levels of strain in that particular direction. In other words, for a par-
ticular cell, one might expect that
A0 > A0 ) A1 > A1. ð64Þ
Also, as discussed in Section 2
�2 � �1þ /0. ð65Þ
In other words, one might expect the transition strain, �2, to be strongly correlated to the initial solid-
volume fraction, /0.

Under these circumstances, with the Voigt approximation still in effect and with the initial tangent
modulus of the parent solid remaining uncorrelated, the probability density function can be generalized to
P ¼ P 1ðA0;A1ÞP �1ð�1ÞP 2ð�2;/0ÞP EsðEsÞdð�� �Þ; ð66Þ
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in which P1(A0,A1) and P2(�2,/0) are joint or conditional probabilities. Substitution of the probability den-
sity function expressed in Eq. (66) into Eq. (29) provides a more general form of the average tangent mod-
ulus for correlated variables, which can be written as
Ecð�Þ ¼ ~Að�ÞEs½~/ð�Þ�2 þ ð1� A1ÞE
s½~hð�Þ�2 ð67Þ
in which
~Að�Þ ¼ A0

Z
�1

Hð�� �1ÞP �1ð�1Þd�1 þ A1

Z
�1

Hð�1 � �ÞP �1ð�1Þd�1; ð68Þ

~/ð�Þ ¼ 1

ð1þ �Þ2
Z
�2

Z
/0

/2
0P 2ð�2;/0Þd/0d�2

" #1
2

ð69Þ
and
~hð�Þ ¼ 1

ð1þ �Þ2
Z
�2

Z
/0

Hð�2 � �Þ/2
0P 2ð�2;/0Þd/0d�2

" #1
2

. ð70Þ
Note that, similar to the circumstances for which the independent variables are uncorrelated, the average
tangent modulus only depends on the average values, A0, A1, and E

s
, rather than on the distributions of A0,

A1, and Es. It remains then to evaluate the integrals in Eqs. (68)–(70), which now depend on the joint prob-
ability, P2(�2,/0). In general, if a joint probability cannot be established through derivation, one must re-
sort to direct numerical simulation to determine the corresponding probability density function.

For the remainder of this discussion, attention is restricted to the circumstances for which the indepen-
dent variables are assumed to be uncorrelated. In Section 5, the various stochastic material representations
presented in this section are combined with the continuum-scale constitutive model to obtain the stress–
strain response for a cellular material subjected to finite-strain uni-axial compression.
5. Results and discussion

In this section, the stochastic constitutive model developed in Sections 2–4 is used to simulate the finite-
strain uni-axial compression of disordered cellular materials to quasi-static loading conditions. The results
are compared to previous modeling efforts and to experimental data obtained from tests on a commercially
available, low-density, open-cell, polyurethane foam. Effects of varying material parameters and stochastic
material representations also are examined. The material of interest represents one of the lightest of the
structural foams, and is used extensively in cushioning, padding, and packaging applications.

A scanning electron micrograph of a polyurethane foam is shown in Fig. 1 (see Section 2). The parent
solid (i.e., bulk polyurethane in the unfoamed state) has an average initial tangent modulus,
E

s ¼ 4.5� 104 kPa. The effects of the foaming process on the properties of the parent solid are not under-
stood well and provide a research topic of their own. Therefore, for present purposes, the properties of
foamed and unfoamed polyurethane are assumed to be identical, spatially uniform, and independent of
strain. Solid polyurethane has an average density, qs ¼ 1.2 g/cm3, while the average initial foam density
was measured to be qc

0 ¼ 0.036 g/cm3. Thus, this particular material has an average initial relative density,
or average initial solid-volume fraction, /0 ¼ qc

0=q
s ¼ 0.03. In other words, this material initially is 97% air

by volume, and thus, typical of this class of materials, is very lightweight and very soft relative to the parent
solid.
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The continuum-scale stress–strain response of a polyurethane foam subjected to uni-axial compression is
shown in Fig. 3. Experimental results are plotted as solid data points and are shown for three different foam
samples, each nominally possessing the same average material properties.

Many models exist for predicting the initial properties of cellular materials, however, the classic analytic
model developed by Gibson and Ashby (1988) also incorporates a buckling analysis to predict the level of
stress for the ‘‘load plateau’’ and a model for densificatin to cover a full range of compressive strain. Results
obtained using the Gibson and Ashby model are shown in Fig. 3 for purposes of comparison, and are plot-
ted as a thin dotted line with open data points. For this model, the geometric constant of proportionality is
set equal to unity, as suggested by the authors (see Gibson and Ashby, 1988, p.130).

Now, consider a monodisperse representation for the cellular material and the corresponding relation
for the average tangent modulus given by Eq. (43). If A1 ¼ 0 and if the nonlinear effects of strain on the
solid-volume fraction are neglected (i.e., if ~/ ¼ /0), the average tangent modulus becomes
Fig. 3
Experi
with o
represe
Divisio
E
c ¼ ½A0Hð�� �1Þ þ Hð�2 � �Þ�E

s
/

2

0. ð71Þ

This is equivalent to the model developed by Gibson and Ashby, provided that the material constants are
chosen appropriately. (Because the experimental data only is available for j � j6 0.70, the response corre-
sponding to full densification is not shown in these figures.) Results obtained using the stochastic constitu-
tive model for A0 ¼ 1; A1 ¼ 0; �1 ¼ �0.05; �2 ¼ �0.97, and ~/ ¼ /0 ¼ 0.03 are plotted as the first dashed
. The continuum-scale stress–strain response of a polyurethane foam subjected to quasi-static uni-axial compression.
mental results are plotted as solid data points, the analytic model of Gibson and Ashby (1988) is plotted as a thin dashed line
pen data points, and results obtained using the stochastic constitutive model with a monodisperse stochastic material
ntation are plotted as lines. The experimental data was provided courtesy of Dr. C. Liu of the Materials Science & Technology
n (MST-8) at Los Alamos National Laboratory.
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line in Fig. 3. As expected, these results exactly reproduce the stress–strain response obtained using the Gib-
son and Ashby model. Results obtained for the same average material parameters, but with ~/ ¼ /0=ð1þ �Þ,
are plotted as the second dashed line. The nonlinear effects associated with an evolving solid-volume frac-
tion produce a slightly stiffer stress–strain response prior to the load plateau, which also is elevated to a
higher level of stress.

The results presented in Fig. 3 show that the experimental stress–strain response is not reproduced accu-
rately if A0 ¼ 1.0 and �1 ¼ �0.05. Experimental data for this material suggest that 0.30 6 A0 6 0.35 and
�0.16 6 �1 6 �0.08. Results obtained using the stochastic constitutive model for A0 ¼ 0.32; A1 ¼ 0;
�1 ¼ �0.12; �2 ¼ �0.97, and ~/ ¼ /0=ð1þ �Þ are plotted in Fig. 3 as a solid line. This value of A0 produces
a stress–strain response that more closely matches the experimental data prior to the onset of softening.
While reproducing the initial stress–strain response, however, it remains clear that, for disordered
foams like this polyurethane material, the idealization of a constant-stress load plateau is not very close
to reality.

Results obtained using the stochastic constitutive model with a monodisperse representation and A1 6¼ 0
are shown in Fig. 4. Here, the effects of varying the average geometric stiffness parameters, A0 and A1, on
the continuum-scale stress–strain response are investigated. Again, the experimental results are plotted as
solid data points, while the results obtained using the stochastic constitutive model are plotted as lines.
Results are shown for A0 ¼ 0.26 and A1 ¼ 0.031; A0 ¼ 0.29 and A1 ¼ 0.038; A0 ¼ 0.32 and A1 ¼ 0.045;
A0 ¼ 0.35 and A1 ¼ 0.052, and A0 ¼ 0.38 and A1 ¼ 0.059. The results obtained for A0 ¼ 0.32 and
A1 ¼ 0.045 reproduce the experimental stress–strain response surprising well, however, one of the disadvan-
Fig. 4. The effects of varying average geometric stiffness parameters on the continuum-scale stress–strain response. Experimental
results are plotted as solid data points, and results obtained using the stochastic constitutive model with a monodisperse stochastic
material representation are plotted as lines.
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tages associated with using monodisperse distributions becomes evident when one notices the discontinuous
slope produced by the tri-linear approximation to the geometric stiffness. A smooth stress–strain response is
produced when consideration is given to more realistic polydisperse distributions for the transition strains,
�1 and �2.

Results obtained using random distributions for �1 and �2 are shown in Fig. 5. Here, the effects of intro-
ducing varying degrees of polydispersity into the distribution for �1 on the continuum-scale stress–strain
response are investigated. For each calculation, A0 ¼ 0.32; A1 ¼ 0.045; �1 ¼ �0.12, and �2 ¼ �0.97, and
results are plotted for D�1 ¼ 0.000, 0.040, 0.080, and 0.120. Because the effects of polydispersity in the dis-
tribution for �2 are not realized at these levels of strain—even for the largest permissible values of D�2 —re-
sults are plotted only for D�2 ¼ 0.020. The distribution for the initial solid-volume fraction remained
monodisperse for these calculations. The results obtained for D�1 ¼ 0.000 reproduce the stress–strain re-
sponse obtained using a monodisperse distribution for �1, as expected. As the range of �1 increases, how-
ever, the average tangent modulus decreases for low-to-moderate strain, as some cells soften prior to
reaching deformations corresponding to �1. And although the stress at moderate strain is affected slightly,
the average tangent modulus in this regime of behavior remains unaffected.

Results obtained using random distributions for /0 are shown in Fig. 6. Here, the effects of introducing
varying degrees of polydispersity into the distribution for /0 on the continuum-scale stress–strain response
are investigated. For each calculation, A0 ¼ 0.32; A1 ¼ 0.045; �1 ¼ �0.12, and �2 ¼ �0.97, and results are
plotted for D/ = 0.000, 0.010, 0.020, and 0.030. The distributions for the transition strains remained mono-
disperse for these calculations. Again, the results obtained for D/ = 0.000 reproduce the stress–strain
Fig. 5. The effects of varying random distributions for the transition strain, �1, on the continuum-scale stress–strain response. Results
obtained for a monodisperse distribution are plotted as a solid line, while the results obtained for different ranges of �1 are plotted as
dashed lines.



Fig. 6. The effects of varying random distributions for the initial solid-volume fraction, /0, on the continuum-scale stress–strain
response. Results obtained for a monodisperse distribution are plotted as a solid line, while the results obtained for different ranges of
/0 are plotted as dashed lines. For the given initial density, a cellular material with a wider dispersion of initial solid-volume fractions
possesses a higher stiffness than one with a more narrow dispersion, suggesting that increasing degrees of polydispersity in the
distribution of /0 produce an increasingly stiffer cellular material.
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response obtained using a monodisperse distribution for /0, as expected. As the range of /0 increases, how-
ever, the average tangent modulus increases for all levels of strain. This is not intuitive, as the average initial
solid-volume fraction, /0, remains constant. These results suggest that increasing degrees of polydispersity
in the distribution of /0 produce an increasingly stiffer cellular material, and thus, extend the conclusions
made by Van Der Burg et al. (1997) to finite-strain regimes of behavior.

Results obtained using Gaussian distributions for �1 are shown in Fig. 7. Again, the effects of introducing
varying degrees of polydispersity into the distribution for �1 on the continuum-scale stress–strain response
are investigated. For each calculation, A0 ¼ 0.32; A1 ¼ 0.045; �1 ¼ �0.12, and �2 ¼ �0.97, and results are
plotted for r�1 ¼ 0.000, 0.020, 0.040, and 0.060. For the reasons mentioned above, results are plotted only
for r�2 ¼ 0.010, and once again, the distribution for the initial solid-volume fraction remained monodis-
perse for these calculations. The results obtained for r�1 ¼ 0.000 reproduce the stress–strain response ob-
tained using a monodisperse distribution for �1, as expected. As the standard deviation increases,
however, the average tangent modulus decreases for low-to-moderate strain, as some cells soften prior
to reaching deformations corresponding to �1. And although the stress at moderate strain is affected
slightly, the average tangent modulus in this regime of behavior remains unaffected.

Results obtained using Gaussian distributions for /0 are shown in Fig. 8. Again, the effects of introduc-
ing varying degrees of polydispersity into the distribution for /0 on the continuum-scale stress–strain re-
sponse are investigated. For each calculation, A0 ¼ 0.32; A1 ¼ 0.045, �1 ¼ �0.12, and �2 ¼ �0.97, and



Fig. 7. The effects of varying Gaussian distributions for the transition strain, �1, on the continuum-scale stress–strain response. Results
obtained for a monodisperse distribution are plotted as a solid line, while the results obtained for different standard deviations in the
distribution of �1 are plotted as dashed lines.
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results are plotted for r/ = 0.000, 0.005, 0.010, and 0.015. The distributions for the transition strains re-
mained monodisperse for these calculations. Again, the results obtained for r/ = 0.000 reproduce the
stress–strain response obtained using a monodisperse distribution for /0, as expected. As the standard devi-
ation increases, however, the average tangent modulus increases for all levels of strain. Once again, despite
the fact that the average initial solid-volume fraction, /0, remains constant, increasing degrees of polydis-
persity in the distribution of /0 produce an increasingly stiffer cellular material.

Results obtained using the stochastic constitutive model and Gaussian distributions for �1, �2, and /0 are
shown in Fig. 9. For each calculation, A0 ¼ 0.32; A1 ¼ 0.038; �1 ¼ �0.12, and �2 ¼ �0.97, however, the
calculated stress–strain response obtained using four different stochastic material representations are
shown. Results are plotted for r�1 ¼ 0.060 and r/ = 0.000, r�1

¼ 0.040 and r/ = 0.005, r�1 ¼ 0.020 and
r/ = 0.010, and r�1

¼ 0.000 and r/ = 0.015. Again, for the reasons mentioned above, results are plotted
only for r�2 ¼ 0.010. The results obtained for r�1 ¼ 0.060 and r/ = 0.000, and for r�1 ¼ 0.000 and
r/ = 0.015, represent lower and upper bounds, respectively, on the stress–strain response for this particular
set of average material parameters. The experimental results also are shown in Fig. 9 and one can see that
the data is contained within these bounds. Also, one can see that the results obtained for r�1 ¼ 0.020 and
r/ = 0.010 reproduce the experimental stress–strain response quite well.

Results obtained using Gaussian distributions for �1, �2, and /0 also are shown in Fig. 10. For each cal-
culation, A0 ¼ 0.32; A1 ¼ 0.038; �1 ¼ �0.12; r�1

¼ 0.020; �2 ¼ �0.97, and r�2 ¼ 0.010. The stress–strain
response obtained for /0 ¼ 0.0300 using three different distributions for /0 are shown and compared with
results obtained using monodisperse distributions for /0 and three different values of the average initial



Fig. 8. The effects of varying Gaussian distributions for the initial solid-volume fraction, /0, on the continuum-scale stress–strain
response. Results obtained for a monodisperse distribution are plotted as a solid line, while the results obtained for different standard
deviations in the distribution of /0 are plotted as dashed lines.
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solid-volume fraction, /0. Results for /0 ¼ 0.0300 and r/ = 0.000, /0 ¼ 0.0300 and r/ = 0.005,
/0 ¼ 0.0300 and r/ = 0.010, and /0 ¼ 0.0300 and r/ = 0.015 are plotted as thin solid lines with open data
points. Results for /0 ¼ 0.0304 and r/ = 0.000, /0 ¼ 0.0316 and r/ = 0.000, and /0 ¼ 0.0335 and
r/ = 0.000 are plotted as dashed lines. The results show that for a given initial density, a cellular material
with a wider dispersion of cells possesses a higher stiffness than one with a more narrow dispersion and that
the effects of increasing the degree of polydispersity produces the same stiffening effects as increasing the
initial solid-volume fraction.
6. Concluding remarks

It has been long recognized that the characteristic, nonlinear, mechanical response exhibited by cellular
materials at the continuum scale is inherently related to the intricate structure and the physical mechanisms
of deformation occuring at the length scale associated with an individual foam cell. Previous efforts to mod-
el the macroscopic mechanical response of cellular materials, therefore, have focused attention on simplified
mechanical descriptions of single, idealized, foam cells or suitable representative structures. The advantage
of using a single-cell approach to model the response of cellular materials lies in the fact that the simple
mechanical descriptions provide the most tractable means of incorporating cellular-scale deformation
mechanisms into a continuum-scale response model. Such efforts lead to more physically based modeling
capabilities than can be achieved through purely phenomenological or numerical modeling approaches.



Fig. 9. The continuum-scale stress–strain response of a polyurethane foam subjected to quasi-static uni-axial compression.
Experimental results are plotted as solid data points, while the results obtained for different Gaussian distributions are plotted as lines.
Particular stochastic material representations provide upper and lower bounds on the stress–strain response, while a suitable choice for
the stochastic representation reproduces the experimental stress–strain data quite well.
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The single-cell view alone, however, oversimplifies the actual physical response taking place in the under-
lying structures as cellular materials deform. Most often, the single-cell approach has been used to calculate
initial, linearly elastic properties of cellular materials, but rarely to generate a description of the evolving
nonlinear properties. Previous modeling efforts largely have ignored the disordered nature of the underlying
cellular structure. Many of the models that have been developed have been formulated on the basis of an
assumed structural uniformity that does not exist in materials with disordered structure, and such models
have come to rely on nonphysical mechanisms at the cellular scale, such as buckling, to describe certain
features in the material response at the continuum scale. Most importantly, a physically based constitutive
model that is valid through the large deformations for which these materials are intended previously has not
been forthcoming.

In the present work, the development of a continuum-scale constitutive model begins with a cellular-
scale mechanical response description generalized to accommodate finite strain. As in previous studies,
the mechanical model used is based on cellular-scale deformation mechanisms. But unlike in previous stud-
ies, the nonlinear response associated with large deformations is considered. The cellular-scale mechanical
model then is averaged over an ensemble of foam cells, forming a continuum-scale constitutive model that
relates the macroscopic stress rate in the cellular material to the macroscopic strain rate. Various stochastic
material representations are considered through the use of probability density functions for the relevant
material parameters, and closure models for the continuum-scale constitutive model are obtained.

The stochastic constitutive model is used to calculate the continuum-scale mechanical response of a low-
density, open-cell, polyurethane foam to finite-strain uni-axial compression. The stress–strain response



Fig. 10. The corresponding effects of increasing degrees of polydispersity and increasing average initial solid-volume fraction on the
continuum-scale stress–strain response. Results obtained for a monodisperse distribution are plotted as a solid line, the results obtained
for /0 ¼ 0.0300 and different standard deviations in the distribution of /0 are plotted as thin solid lines with open data points, and the
results obtained for r/ = 0.000 and different values of the average initial solid-volume fraction are plotted as dashed lines. The results
show that the effects of increasing the degree of polydispersity produces the same stiffening effects as increasing the initial solid-volume
fraction.
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obtained using the stochastic constitutive model is compared to experimental data, and the effects of var-
ious stochastic material representations on the macroscopic behavior are studied. Results demonstrate that
for a given initial density, a cellular material with a wider dispersion of cells can possess a higher stiffness
than one with a more narrow dispersion and that increasing the material�s degree of polydispersity can pro-
duce the same stiffening effects as increasing the initial solid-volume fraction. Additionally, particular sto-
chastic representations are shown to provide upper and lower bounds on the stress–strain response of the
cellular material under investigation, while suitable choices for the stochastic representation are shown to
accurately reproduce the stress–strain response through the large deformations associated with densifica-
tion, where most other models and direct numerical simulations fail.

The objective of this work is to develop a more physically based constitutive model, and thus a more
predictive capability for simulating the mechanical response of disordered cellular materials. Coupling a
nonlinear, cellular-scale, mechanical model with a stochastic material representation provides a more real-
istic depiction of the response of these highly disordered materials and affords the opportunity to study
these materials through the large deformations for which they are designed. The stochastic approach, fur-
thermore, allows one to investigate the effects of variability in cellular-scale structure and properties on the
continuum-scale response of these materials.

Future research will focus on generalizing the model presented here to include a more complete physical
description of the relevant cellular-scale deformation mechanisms. Specifically, in addition to the dominant
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bending mechanisms already considered, axial, torsional, strain-softening, and contact mechanisms will be
represented in the construction of the cellular-scale constitutive model. The mechanics of closed-cell foams
also will be considered. Furthermore, appropriate numerical techniques will be pursued to investigate and
quantify the true stochastic nature of the cellular-scale material parameters. A likely candidate in this re-
gard is the Material Point Method discussed by Bardenhagen et al. (2004). In future work, the Voigt and
Reuss approximations will be relaxed and models will be developed for the cross-correlation terms that ap-
pear in the expressions for the average rates of stress and strain. The constitutive model will be generalized
to three dimensions and both path- and rate-dependent response will be considered. Additionally, a mod-
eling approach suitable for describing the response of cellular materials to shock and other highly dynamic
loading conditions will be pursued. Modeling the rate-dependent dynamic response of cellular materials re-
quires a description for the coupled effects of the permeating fluid. Extensions of the constitutive model
developed here for such situations are the subjects of several forthcoming articles.
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Angewandte der Mathematik und Mechanik 9 (1), 49–58.

Schjødt-Thomsen, J., Pyrz, R., 2004. Influence of statistical cell dispersion on the local strain and overall properties of cellular
materials. American Institute of Physics Conference Proceedings 712 (1), 1630–1638.

Talalay, J.A., 1949. Load-carrying capacity of latex foam rubber. Industrial and Engineering Chemistry 46 (7), 1530–1538.
Triantafyllidis, N., Schraad, M.W., 1998. Onset of failure in aluminum honeycombs under general in-plane loading. Journal of the

Mechanics and Physics of Solids 46 (6), 1089–1124.
Van Der Burg, M.W.D., Shulmeister, V., Van Der Geissen, E., Marissen, R., 1997. On the linear elastic properties of regular and

random open-cell foam models. Journal of Cellular Plastics 33 (1), 31–54.
Voigt, W., 1889. Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper. Annalen der Physik und Chemie
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