View metadata, citation and similar papers at core.ac.uk

Vol. 18 No. 1

CHINESE JOURNAL OF AERONAUTICS

<
brought to you by .{ CORE

provided by Elsevier - Publisher Connector

February 2005

Wavelet Denoising of Flight Flutter Testing Data for
Improvement of Parameter Identification

TANG Wei, SHI Zhong-ke

( Department f Automation, North Western Polytechnical University, Xian

Abstract:
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The accuracy of modal parameter estimation plays a crucial role in flutter boundary predic

tion. A new wavelet denoising method & introduced for flight flutter testing data, which can improve the

estimation of frequency domain ident ification algorithms. In this method, the testing data is first prepro-

cessed with a gradient inverse weighted filter to initially lower the noise. The redundant wavelet trans

form is then used to decompose the signal into several levels. A“ clean” input is recovered from the noisy

data by level dependent t hresholding approach, and the noise of output is reduced by a modified spatially

selective nose filtration technique. The advantage of the wavelet denoising is illustrated by means of sim-

ulated and real data.
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New or modified aircraft often necessitates
flight flutter tests to verify safety margins and to
prevent catastrophic flutter. These tests typically
consist of flight under different conditions of air
speed and altitude while applying some form of ex
citation to the structure. Most commonly used
method of predicting the onset of flutter is to ex
trapolate trends of modal damping ratio. It is
drawn from the fact that the damping of at least
one mode becomes zero at the onset of flutter. Fur
ther information of flutter testing and analysis has
been reviewed in references "7

Flight data often has so low signalto-noise ra
tio that sophisticated techniques are required. Clas

sical frequency transfer function identification has

been used for modal parameter estimation. T he
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GTLS ( Generalized Total Least Squares) and
BTLS ( Bootstrapped Total Least Squares) have
been implemented successfully to get consistent es
timation from noisy data®. But this way need
considering the noise frequency covariances of mput
and output, which are almost impossible to know
for an impulse excitation testing with finite testing
and without reference signal. In order to reduce
the effect of noise under this condition, the true
signal from the noisy data would be recovered.
When using “clean” data, accurate modal parame-
ter still can be achieved by simple identification al-
gorithm. Therefore, denoising of testing data plays
an important role in flutter testing carried out by
impulse excitation.

Recently several wavelet methods have been
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proposed and showed success in removing noise
from noisy signall*®'. But it is still difficult to re
cover signal form low SNR signal such as the flur
ter testing data.

This paper focus on investigating wavelet
based denoisng method for flight flutter testing ex-
cited by impulse. A new wavelet denosing method
combined with the gradient inverse weighted filter
is introduced. The adopted techniques will be de
scribed in detailed in Section 2. In Section 3, per
formance of the method will be valued by artificial
noise and real noisy signal. Section 4 illustrates the

conclusions.

1  Theory and Description of the Method

A discrete model of noisy signal is considered

F(i)= S(i)+ T(i) (i=1, -, N) (]
where F is the noisy signal; S is the true signal; T
is the noise caused by atmospheric turbulence.

T he discrete wavelet transform can be repre
sented as a matrix multiplication

w= WF
where F is a 1 X N input vector; Wis N(L+ L)
X N matrix; L is the number of levels of decom po
sition; w is the wavelet coefficients matrix.

T hen the noise would be removed according to
the different properties of noise and signal such as
the coefficients level or correlation.

T he denoising procedure is shown in Fig. 1.
T he flutter signal is first preprocessed with a gradr
ent inverse weighted filter. A redundant wavelet
transform is then applied to decompose the corrupt-
ed signal into sub-bands. The level dependent
adaptive thresholding approach is used to get a

Input excitation Response data
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!

‘ Redundant wavelct transform |

(GCV threshold denoising | | Spatially selective noise ﬁltration‘

|Invert wavelet transform |

| System identification |

Fig. 1 Algorithm structure of flutter test data

enhancement based on wavelet denoising

“clean” input. While a modified spatially selective
filiration technique is used to suppress the noise in
response. Finally, the inverse transform synthe
sizes the enhanced signal. Each of the stage is fur
ther detailed in the follow ing section.
1.1 Gradient inverse weighted fil ter

Wavelet denoising has the best performance
when the noise level is not too high. A ccordingly,
the purpose of preprocessing is to initially low er the
noise level of the noise signal while minimizing the
distortion of the true signal. For this, a nonlinear
filtering algorithm GIW ( gradient inverse weight-
ed) presented by Wang!”'is implemented. The fiF
ter is based on the general form of Eq. (3) . Exper
iments have shown that it can preserve edge and
smooth noise effectively. Meanwhile, the modal
frequency of aircraft mostly distributes at low fre-
quency, the response has smooth curve, and the
filter could get better performance.

T he inverse gradient of ith point of signal is
defined as

. {1/d(1, b d(i k) 20

2 if d(i,k)=0

where d(i,k)=lx(i+ k)- x(i)l,kEV.
with
V:{— (m-1)/2, ...-2,- 1, ,2...(m- 1)/2}.
T he general form of the filter is
Y(i)= K(i)x(i)+ (1= K(i))y(i) (3)

K(i)= D(i)/(1+ D(i)),

D(i)= 2 W(k),
y(i)= 2W(i kjx(i.k).
W(i, k)= S(i,k)/k;&i,k).

with

where m is the length of window and it is odd;
K( i) is an optimal weighted coefficient; x (i) is
the center point in the window;y (¢ ) is the weight-
ed sum of local point in filtering window; X (i) is
the output value.
1.2 Redundant wavelet transforms

Level dependent threshold is applied to deal
with the correlated noise!®! and GCV ( Generalized
Cross Validation) is used to estimate the threshold.
The problem occurs from the fact that the GCV es
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timation is only asymptotically optimal, but the
flutter test data is finite and the number of avail
able wavelet coefficient decreases if the scale gets
coarser when using decimated wavelet transform.
Here an alternative wavelet transform known as
Nomr decimated Wavelet Transform, or Redundant
T ransform will be used to deal with the problem,
which can provide the same number of coefficients
at all scales. The number is equal to the size of o
riginal input data. Ref.[ 9] has mentioned it. T he
other advantage is the coefficients of “ clean” re
sponse at each scale with the similar curve. Coefft
cients show strong correlation across scales, which
could be used to recover the signal.
1.3 Wavelet threshold denoising for input

T he measured impulse input signal has a high
SNR, so a wavelet threshold way will be used dr
rectly after preprocessing. T he threshold is chosen
by a GCV algorithm! "', which do not need any es
timation of the noise energy. The estimated
threshold valve is the minimum of the following

Generalized Cross Validation function

]% lly — yall
GCV( N = 2 (4)
No
N

where N is the total number of wavelet coefficients
and Ngis the number of those coefficients that are
replaced by zeros; y is the noisy data; y A is the re

stored data; the threshold A= arg min GCV( N .
A compromise threshold' "' between hard and

soft threshold is used, that is,

Sign(wj,k)(le,ﬂ— (lg lwj i | >\
0 |w,-, PR
(5)

where w; i is the kth wavelet coefficient at jth

W) )=

level; @;j is the wavelet coefficient after threshr
olding; A is the estimated threshold; a is a com-
prise factor and 0 <a < 1. The parameter can be
regulated to get the best result, here a= 0. 5.

Fig. 2 illustrates the wavelet thresholding the

noisy im pulse excitation, and the result is shown in
Fig. 3. The dashed lines indicate the boundaries

between two successive frequency resolution level.

The horizontal lines are the thresholds at deferent

level.
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Fig.2 Wavelet thresholding the noisy

impulse ex citat ion
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Fig.3 Wavelet coefficients after thresholding

1.4 Improved spatially selective noise filtration
technique for response

Wavelet threshold denoising works well for
impulse, but this method fails to deal with response
signal. The problem arises form the low SNR and
decayed envelope of response. As illustrated in
Fig. 4, most coefficients of true signals below the
high thresholds estimated by GCV will be replaced
by zeros, which will lead to the distortion of sig-
nal. As an alternative method, a modified spatially
selective noise filtration technique has been used in
the response signal denoising, which is proposed by
Xull

Magnitude

NP

Fig.4 Thresholding the response signal

Wavelet transform of a simulated true response
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has been shown in Fig.5. The coefficients at each
scale form a similar curve with the original data.
T he coefficients have strong correlation with other
scales. In Xu’ s paper, the correlation of wavelet
coefficients at several adjacent scales is used detect
the locations of edges. If Xu’ s algorithm is used dr
rectly in flutter testing data, the correlation calar
lation depending on the noisy reference scale would
be inaccurate, because the coefficients at adjacent

fine scales all have a high noise level.
1

Magnilude

N

Fig.5 Coefficients of true output signal

A modification has been made in this paper to
adapt the practical application. In practice, true
signals of flutter test almost distribute at low fre
quency, while the noise at high frequency band,
therefore the wavelet transform at coarser scale will
have a high SNR. In order to achieve better re
sults, the coarse scale is chosen, which has the
highest SNR as reference scale. So the correlation
calculation in Xu’ s algorithm is rewritten as Eq.
(6)

Cory(m,n)= W(m,n) W(L,n),

n=12 .., N

m=12 ..L-1,L+1 ... M+1 (6)
where W denotes the wavelet coefficients (contairr
ing low pass coefficients) ; M is the total number of
levels; N is the number of coefficients at each
scale; and L is the reference level that has the highr
est SNR.

Here the forth level is used as reference to cal
culate the correlation with others. Fig. 6 illustrates
the result by improved algorithm. Fig. 7 illustrates
the result by Xu’ s algorithm. It can be seen that
the improved method can extract signal coefficients
more efficiently from noise and has less distortion

in comparison with original algorithm.

Magnitude

0 1 2 3 K] 5
N/10?

Fig. 6 Coedficients of noisy output filtered by

the improved algorithm

Magnilude

M1y’

Fig. 7 Coelficients of noisy output filtered
by Xu algorithm

2  Results

2.1 Simulation
A two degree freedom model is established to
simulate the measurements. T he natural frequen-
cies are f 1= 14Hz, f2= 30Hz; the damping ratios
are &= 0. 065, &= 0.027. The system is excited
by an impulse signal and the response is measured
from accelerometer. The continuous transfer func-

tion is written as

s s”

s+ 28 05 + (0%+ S+ 25 w5+ W)
(7)

In order to simulate the unmeasured atmo-

H(s) =

sphere turbulence of real condition, arandom white
noise (stander deviation 0= 0. 03) is added to the
excited signal as the unknown input signal. A total
measurement time of 4s is simulated. Two random
noises (stander deviation 0= 0. 1) are added to the
input and the response as the measurement noise.
The sample frequency is 256H z; the data length is
1024.

T he denoising method mentioned above is ap-
plied to reduce the noise of signal. The forth order

Daubechies is selected as the wavelet basis. In the
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simulation, in order to test the improvement of
dentification, an extended discrete transfer func
tion model''™ is adopted to identify the transfer
function and estimate the modal parameter by using
a WLS (Weighted Least Squares) identification alt
gorithms in frequency domain' .

One hundred runs ( for each run new noise se
quence is generated to as unknown input, and mea
surement noise on the input and output) of a Monte
Carlo simulation are performed. In each run of the
Monte Carlo, the denoised signal and noisy signal
are used to identify the modal parameters and
transfer function. The natural frequency and
damping ratio statistically processed. The mean
value and the standard deviation of natural frequerr
cy (my, &) and damping ratio ( mg, &) are com-
pared in Table 1. The denoised data lead to much
better modal parameter estimation than noisy data
although the standard deviations are slightly larger
than the noisy data estimation. Of course, a more

accurate result can be achieved when more complr

cated frequency identification algorithm is applied.
Table1 Comparison of estimation results using
denoised signal and noisy signal.
T denoised signal; 2 noisy signal

f1Hz Mfl/Hz O“/Hz mfz/Hz 0/Z/Hz
14 14. 8305 0.2141 15. 0603 0. 2504
30 30. 0036 0.2080 30. 0782 0. 1894
& me % e, %
0. 065 0. 0366 0.0101 0. 0238 0. 0092
0. 027 0. 0161 0.0053 0. 0061 0. 0036
3
o
=
H
60t 1
0 20 40 60 80 100 120
Frequency / Hz
Fig.8 Denoised averaged FRF (solid line), exact FRF

(dotted line) and noisy averaged FRF (dashed

line)

The comparisons amony averaged frequency
response function (FRF) of denoised signal, exact

discrete FRF, and averaged transfer function of

noisy signal are shown in Fig. 8. It is clear that the
averaged FRF derived from the denoised signal
compares favorably with the “ exact” FRF, espe-
cially at low frequency, whereas that obtained from
the noisy signal is unsatisfactory.
2.2 Real measurement example

T he denoising method mentioned above is used
for practical flight flutter data. The measurements
are carried out by using an impulse ex citation. The
sample frequency is 256Hz;
1024.

The measurement response function H (f)

the data length is

shown in Fig. 6 and Fig. 7 is defined as
Y
H =
()= L (8)
In Fig. 9, H(f)is calculated directly from the

Fourier spectral of noisy measurement. While in
Fig.10, H (f)is calculated by using the denoised
signal. In Fig. 10, two peaks(frequency of flutter
mode) are clearly at about 14Hz and 50Hz, which
can not be seen in Fig. 9. Obviously, the denoised
data will lead to a better result. The synthesized

transfer function using denoised data is shown in

b
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Frequency / Hz
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e
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Fig.9 Measured response function estimated

by noisy data
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Fig. 10 Measured response function estimated

by denoised data
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Fig. 11 Synthesized measured response

function using WLS

3  Condusions

A wavelet denoising method is presented to
process the flight flutter testing data. The applica
bility of this technical is verified by means of Monte
Carlo simulations and application to real flight flut
ter data. The comparisons show that this denoising
method makes it possible to give an accurate result
by a simple linear frequency identification algos

rithm with ashort data.
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