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INTRODUCTION 

This paper gives an account of some old and new results on the topic of 
best approximation by polynomials and related functions. The starting point 
is the following theorem, discovered simultaneously by Favard [5] and Achieser 
and Krein [ I], which improves part of the famous 191 I theorem of D. Jackson. 

THEOREM 1.1. Let W,* consist of all functions f on [-n, v] for which 
f, f’,...,f(‘L+l) arc continuous and 2vperiodic and If+l)(x) -f’“-l)( y)l < 
I x - y i,for all x, y E [+T, ~1. Let T, be the linear span of { 1, cos x ,..., cos mx, 
sm x,..., sin mxj andset 

Then L,, = K,(m + l)-” where 

K, = (4/7~) f (-l)j(fi+l) (?j -1 I>-n-1. 
j=O 

(O-1) 

(0.2) 

Furthermore, there is a solutionf,, of (0.1) such thatfp’(x) = sign(cos(m + 1) x) 
ifn is ecen, fr’(~) = sign(sin(m + 1) x) zj”n is odd. If go is any other solution 
to (0.1) then g,,(x) = Af,(x - x0) + c where h = & 1, x0 E [-r, ‘rr], and c is 
a constant. 

In Section 1 we give a proof of Theorem 1 .l which presents some new 
features. In Section 2 we investigate the analogous problem for approxima- 
tion by algebraic polynomials of degree m on [- 1, l] where the periodicity 
requirement on f in the definition of W,* is dropped. Theorem 2.1 states that 
any solution f. has the property that jr’ assumes only the values 1 and -1 
and has exactly m - n + 1 sign changes in (-1, 1); that is, fO is a perfect 
spline with exactly m - n + 1 knots. When m = n - 1, the lowest value of 
m for which the problem makes any sense, the solution,f, is a multiple of the 
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Chebyshev polynomial of degree II. We then show in Theor~n~ 3.2 that 
Theorem 1. I can be combined with a rexult about entire function\ ofc\ponen- 
tial type to give a simple proof of a theorem of S. N. Bernstein on 111~ ;I\), mp- 
totic behavior as t77 + cc of the best constant. In Section 3 tic apply 
Theorems I.1 and 2.2 to give a brief proof of a theorem of M. G. Kre~n on 
best approximation on the real line by entire functions of expo~~cn~l:~l type 
less than 0. We close this circle of ideas by showing that Krein’x thcorcm 
easily implies the value of B,,,,, given in T.heorem I.]. In Section 4 \\e si\e ;! 
very short proof of Babenko’s theorem, the “analytic” version ol‘!lie i-a\ al-d 
Achieser-Krein theorem. Section 5 gives bounds for best ;ipPrc’\im:ltioll 
when the class of functions is determined by a modulus of continuitk condi- 
tion on the Mth derivative. 

We make use of several standard notations. Iff’is a continuou\ iuiicllon on 
the interval I, then E,,,(J; I) is the distance from f’to the space T,,, 0: :ligcbraic 
polynomials of degree 177 or less in the supremum norm 

If g is a continuous, periodic function on [---v. TT], then E,,,*( g) ih the cl~s~ice 
from g to the space T,,, of trigonometric polynomials of degree /ii OI- 1s~ in 
the supremum norm 

We make constant use of the fact that the dual space of C(/) I\ LIIC \pacc 
of finite regular Bore] measures on I and that the dual space ofthc LX>III~IIUOU~ 

periodic functions on [ in. ~1 is the space of periodic finite regular i3orel 
measures p on [ --x, ~1: p( n) ~~ ~(7). We aiso use the \erh \l;illdard 
duality relation: if Y is a subspace of a Banach space .I’ and .Y,, \ tllcll 

i nf{; .r,, s : ,\- i: )’ ; :- sup{l(s,,) : I 2: 1. /C I.- I 

where Y consists of those elements of the dual space of X’ which \;1n1\1; on I 

I. APPKOXIMA~IOP. HY TRIGONOMETRIC POI YWMIALS 

We do the proof when 17 is even; the proof for 17 odd require\ only minor 
modifcations. Let 

I),,(.\-) i I .27i)( I )” 2 x I, (‘8,’ 
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For each f E W,* we know f In) exists a.e. and is bounded by one and further 

f(t) = j-= f’“‘(x) D,(t - x) dx. 
-77 

Note that j’T,fcn)(x) dx = 0 since f(“-l’(~~) = f(“-l)(-7). Moreover, if h is 
any function in the unit ball of L” with mean-value 0, then there is a unique 
function HE W,* with Hen) = h; H is just the convolution of h and D, . 

Let X be any (real) periodic measure on [-‘rr, ~1 with total variation at 
most one which is zero on T, and let f E W,*. Then by the duality relation 
we have 

= 1 .c f’“‘(4 DA(X) dx 1 
where 

DA(x) = 1” D,(t - x) dh(r). 
-* 

Now let X vary over all measures orthogonal to T, of total variation at most 
one and let fen) vary over all functions in the unit ball of L” with mean-value 
zero. Due to the duality relations we find that 

Pnnl = syp {distance in L1 from D, to the constants}. 

Actually, this supremum is a maximum since both W,* and the unit ball of 
the space of measures are compact. Now we choose a specific ;\; X consists of 
2m + 3 point masses at the points --rr + knjm + 1, k = 0, I,..., 2m + 2 
with weights 1/4m + 4, --1/2m + 2, 1/2m + 2 ,..., -1/2m + 2, 1/4m + 4, 
respectively. For this h, 

D,(x) = (m + l)-” D,((m $- 1) x) 

since A is orthogonal to cos kx unless k is a multiple of m + 1 in which case 
the integral has the value 1. Since h is orthogonat to T,“, and has total variation 
one we have 

B lz,ll 3 (m + l)-” [distance of D,((m + 1) x) to R in Ll]. 

Note, however, that the L1 distance of D,((m + 1) x) to the constants is the 
same as the distance of D,(x) to the constants by periodicity and that this 
number is four times 

s 
?i’a D,(x) dx = (I/n) f (2k + I)-np1 (-1)“‘. 

0 7<=0 
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Hence, 

On the other hand, let S be the best L1 approximation to D,, from T,,,; then 

D, -- So 1 --: (m 1) I1 K,,: 

see [lo, p. I141 for the details. IffE Wn*, then 

j(s) -- .x(x) 1” f”“‘(t)[D,l(.i t) -- S(.v ~~ t)] c/t 
. 77 

where s(x) is some element of T,,, . Thus, p,?,,( D, S 1 so that 

P/U,, (m I ) ” K,, . 

Suppose now that FC W,,” and that the distance of F from T;,, is /3,,jg, . 
Then 

F(.\.) .s(.\.) 1. F’“‘(t)[D,,(.v t) .S( .\- t,] tlr 

where s E T,,, so that 

Hence, F(“‘(t)(D,(.q, - t) S(x,, t)) 0 a.e. and F’!“(r), I where 
&(X” - t> - S(x,, t) ;’ 0. However, D, ~~ S changes sign at the points 
k,/m --I- 1, k -7 0, :Z I..... Ii III and only there [IO, p. 1181, so that F must 
have the indicated form. 

PUOCI~ Let H be a function in U,. which attains the maximum value of the 
left-hand side. If Q is any element in T, , then the convolution of /?(“I and Q 
is identically zero. Hence. 

H(x) :=~m L7 H’“‘(t)[D,,(x --- t) - Q(.v r)] r/l 
. 7 

so that 

I[ I distance of‘ D,, to 7‘ in I,’ 

0. I) ” A-,, 
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by Theorem 1.1. On the other hand, the function 

G(x) = (r + 1)-” $ kg<, (-I)“‘“+” (2k + 1)-,-l cos ((2k + l)(r t 1) s) 

is in UI, and 11 G /I= = (Y + 1))” K, . This completes the proof. 

2. APPROXIMATION BY ALGEBRAIC POLYNOMIALS 

Let Z be the closed interval [ - 1, I] and let rr, denote the space of algebraic 
polynomials of degree m or less. Let W, consist of all functions .f on Z for 
whichf, f’,..., f(+l) are absolutely continuous and 1 ffn) I ,< 1 a.e. Let 

(2.1) 

In this section we prove two theorems. The first describes a property of any 
solution of (2.1); the second is a simple proof of a theorem of S. N. Bernstein 
on the asymptotic behavior of CX,, as m + 03. 

THEOREM 2.1. Let f be a solution of (2.1). Then ftn) assumes only the 
z>alues 1 and - 1 and has exactly m - n + 1 sign changes in (- 1, 1). If 
m = n - 1, then f is a constant multiple of the nth Chebysheu polynomial. 

Proof. The proof closely resembles the proof of the first part of 
Theorem 1.1. 

lff E W, and iff’“)(-1) = 0 for v = O,..., n -- 1, then 

f(x) = p.‘(t) qx, t) dt 

where 0(x, t) = (x - t)F-‘/(n - I)!; that is, 0(x, t) equals (x - t)“-l/(n - l)! 
for - 1 < t < x and 0 for x :G I < 1. Further, if h is in the unit ball of 
L”(Z), then H(x) == JI h(t) 6(x, t) dt is in W, . 

Let h be a (real) measure on I which is orthogonal to 7~, and has total 
variation at most one; let f E IJV’~ . Then by the duality relation 

where 

F,(t) = j, 13(x, t) dA(x). 
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As ,I runs over the measures of total variation at mojt one which are ortho- 
gonal to 7~,,, and as,f’runs over I4’,, we find that 

The supremutn is actually a maximum and equality hold5 in (2.2) tar it 
measure X with 117 2 points in its support. To see this let I-I be :I function ii> 
IV,, whose distance to n,,, is l,,,., Such ;I function exists since U,, ih cornpacl. 
Let P E iT,,, be the polynomial of degree /?I which i\ closest to II. Then there 
are points I . .\-,, . .Y, ” .\-I., I I at which N(.Y,:) PLY, ) i . 
(--I)“, /, O,..., I?? j 1. Let X be a measure supported on (.v, : /, 0 ._... 
MI ~-~ 11 of total mass one which is orthogonal to rTi,.,: let /I,,. be the kceight 01‘ 
h at .Y,, . k ~ 0 . . . . ~ 111 ~.~ I; it is easy to see that ( I )“’ A, 0 ant! hence 
c;(‘-’ ( I )” x,, I. Then 

Hence, equality holds in (1.2). We have also \hct~\n that if H K,, i\ :tt 
distance ,I,!!,, from TT,,, then there is a measure (1, depending on H. with /II 2 
points in its support which is orthogonal to pi,,, and which satisfies 

‘,,,,I .I; H’u’f. 

Hence. H”‘)F 0 a.e. and H’“’ I 
(nz ~~ II + 1)s’; derivative of the function 

where k’ 0. However. I-‘, 16, the 

B(.Y) .I, (.\- t)“‘,m! t/A(t) 

which is a B-spline and so F,, has precisely 111 /7 I Leros in ( /, I ): see 
[4, p. 741. In particular, in the case 111 II I, the smallest value of jil ICji 
which ‘Y,,,,, is fi.nite, we find that F,, . 0 on ( I, 1 ) and so H is a polynomial 
of degree 17: clearly, I-I must be the Mth Chebyshev polynomial suitably 
normalized and 

t,,,,- I 2 ” ‘.‘/I! 

For emphasis wc restate the primary COI~C~LI~IOI~ 01‘ lkorem 2 i !.ot /I 

.solufioft of@. I ) i.s ft pcrfcvt .hpliitcz \l,it/l cwwt[j. 111 ii I /i/l~~/(’ Oil ( ! II 
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Comments. (1) It would be most interesting to prove that there is only 
one solution of (2.1) and to locate its knots. Of course, the solution in the 
trigonometric case (Theorem 1.1) is also a perfect spline; its knots are 
regularly spaced at intervals of z-/m --t- 1. There is a temptation to try the 
substitution x = cos 0 to turn the algebraic problem into a trigonometric 
problem. Of course this will not work since the condition : f(,l) : C. I is not 
carried into anything useful. 

(2) The formula 

where h is the sum of m -+ 2 point masses shows that a,,,, is the maximum of 
then? !- 1st divided difference offat points ~ 1 -5, x,, < x, < ... < x,,, 1 :-i I 
wherefis restricted only by the condition that 1 fl”) j < 1 on [ -- 1, I]. 

(3) In the trigonometric case there is a constant C such that fl,,,,, 
(nz + 1)” < C for all choices of m and n. (In fact, C = n/2 will work). There 
is no such number for the algebraic case since 01,.,-~ == 2-‘j’~l(n!)-l, and 
hence ‘u,,,,~@ - co as II -+ cc. However, for n fixed r,,mll does remain 
bounded as Theorem 2.2 shows. 

We now use Theorem I.1 and some other facts to give a proof of the 
following theorem of Bernstein 121, proved in 1947; see [ 11, p. 2931 for a proof 
in the English language. 

THEOREM 2.2. limit,,,-, m%n,,r = K, where K, is the constant given by (0.2). 

Proqf. For the first part of the proof it is technically somewhat easier to 
work on [---QT, ~1. Let lliillM be the number analogous to a,,,, for the interval 
[-r, ~1; then iu ,,,,, = +u,,,,, . We shall show that 

Let h lie in the unit ball of Lr(-n, n); then N(X) =y s D,(x - t) h(t) dt is in 
W&n, n) and differs from the usual nth indefinite integral of It by an 
algebraic polynomial of degree 17 - 1. Hence, as in the proof of Theorem I. 1 
or Theorem 2.1 

‘In,,, := max{ll D, i,LLj 

where the supremum is taken over all measures A on [-n, V] which are 
orthogonal to r, and which have total variation at most one. 

Let E be a small positive number and let r be the greatest integer in 
m/( I +- G) V. We shall need the following standard fact, which dates back at 
least to Bernstein in 1912 (See [IO, p. 771). 
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Lt3lhlA 2.3. Let R 1 arid icjt E, brl the ~~liip.w .Y (x ‘2)( R R i ) cos V. 
J‘ ~ (n,!2)(R -~ R I) sin 0. 0 0 27~. Supp0.w ,f is holol~lorphic 011 fml 
)lYthitT E, und bounded by M OII I<,< Thw 

E,,,(,f: 5T. 77) 2MR “‘(R I) ‘. (7.3) 

Continuing the proof of Theorem 2.2 we take j-(z) @‘,.: in Lemm.1 3.3. ‘ 
The maximum of j’(z)1 on I:‘, is at most exp[(k/2)( R R-‘)7;]. When 
0 k r, this in turn is no more than exp[m( R R ‘):‘2( I E)]. Chooac 

R so close to I that 

exp[( R R ‘)i2(l <)I pR 

where p . I. Then we have the estimate 

E,.,(c”~ . n. T) 2(R I) ‘p” (1.4) 

for 0 k /‘. 
Now let 11 be any continuous, %-periodic function on [ 7-r. 71 which ih 

bounded by I. Let h be a measure on [ n, z-1 which is orthogonal to ;5!,, and 
has total variation I or less. Then 

where i/(k) 

Then 

I’- h( f ) D,\( t ) tit H,(O) L + I, “i/(k),\(X) (7.5) 
. 7 , /, 0 

The estimate (2.4) shows that j(k) ’ 2( R ~~ I)--‘@” if k I’ and thus the 
second sum in (2.5) is no larger than 4m(R I) * p”‘. Furthermore. the ,lth 
derivative of H, (recall II is even) differs from 

by the term 

1 i/C x ) ,I( k ) P’ ’ 12.71 
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We know that (2.7) does not exceed 4m(R - 1)-l p” and (2.6) is clearly 
bounded by 1. (We extend h to be 2n-periodic on R.) Hence, Corollary 1.2 
implies that 

/ H?(O)1 .< II H, !ioj < (r + I)-,’ &(I + 4m(R - 1)-l p”). 

This implies that 

IS ii h(t) DA(t) dt 
-ii 

-5 (r 1 1)” K,(l -t 4m(R - I)-’ pTTb) + 4m(R - 1)-r pn” 

52 %+(I t E)~ nPK, + 4m(R - I)-’ #)‘(l + (u + 1)” K,). 

Hence, olnlll = supl,l,~r iJZrr h(t) DA(t) dt 1 is also bounded by the same 
quantity so that 

in” & R1n < +‘(I + 6)” K, t- 4mnf1pwk(R - I)-’ (1 + (Y $- l)-” K,) 

and this yields lim ~up,,-,~ (mn&,) < +(l + c)7L K, . Since E is arbitrary, 
we have established 

To prove that lim inf,,, (nPcx nnL) >, K, we return to the interval I = 
[ - 1, l] and use a few elementary facts about entire functions of exponential 
type. 

Let E > 0 be given. Let m be a positive integer and define 

F,(x) = (4/n) f (-I)” (2k -t 1)-,-l cos((2k + l)(l -t c) mx), 
(I 

-co<.x<cc 

and set F(x) = F,(x). Suppose for each m in a sequence of m + co there is a 
polynomial pm of degree m with 

where 6 is independent of m. Then a change of variables yields 

where y,,(x) = p,,,(x/m), -cc SC x < co. Now 

q::)(O) = n+pk)(O), k == O,..., m 



Let I:, , (7 0. be the spce 01‘ entire fLincli~~ii4 01 expniientiai Icpc !: \( 

them r; which are bounded on the real a\i\. SL1ci1 l‘L111clion f’ileccsarilq \:lti\tic\ 

the growth condition 

f( \- i i ) (" " ( SLIP i(t)) 
~/ , I 

tbr some p CT. In this section we use Theorem\ I. I i and 2.3 10 gi\,c 2 h~inpk 

proof of the following theorem of Krein [9]. 
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Proof. Again we take II to be even. Let 

Then F, E V, ; suppose G E E,, and 11 G - F, 11 < K,(l - 8) ‘J-~, 6 > 0. Let 
F(x) = a%F,(x/o) and H(z) = u”G(z/a). Then 11 F - HIj(-,,,) < (1 - 8) K, 
and H is entire of exponential type less than 1. Since F is 2z--periodic, we may 
assume H is also and hence H is constant. But the distance from F to the 
constants is K, . Thus, the distance from F, to E, is K,o-” so that yna 3 
K&Y’. 

On the other and, let f E P’, , E > 0, and let Z, be the interval 1, = [-m/o 
(1 - E), m/~(l - E)]. Let p,“& be the best approximation to f on I,n from 7~, , 
let gJx) = f(mx/u(l - E)) and q&x) = p,(mx/u(l - E)). Then 

so that by Theorem 2.2 

Hence, ~1 qlll ( I < C for all m so that 

by Markov’s inequality. Hence, some subsequence of {~mf converges uni- 
formly on compact subsets of the plane to an entire function G of exponential 
type less than g which must satisfy 

:'f - G /m(--rs,m4) < K,/a’“(l - E)“. 

Hence, 

for eachfE V, and each E > 0, so that 

and this completes the proof. 
To complete the circle of ideas in Theorems I. 1, 2.2, and 3.1 we show that 

Theorem 3.1 easily implies the value of the constant Pnln in Theorem 1 .I. Let 
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J’E w,* and extend f periodically to the line. Then, because a 2v-periodic 
function in E,,,+l is a trigonometric polynomial of degree 112 or less, we have 

But the left-hand side does not exceed K,(m 1. I) ” by Theorem 3.1. Hence, 
pnlll St K&z -.I- I ) ‘j. On the other hand, the function 

, 
F,,,(s) =~ (Ill I )- ‘I -; c (cos(2k I)(/?1 I) .Y)(- I)h”< “.:(2/l I),’ ’ 

0 

lies in W,, * and has 2m -; 3 alternation on [ -~ 7. Z-] and hence the best 
approximation to F,, from T,,, is zero; thus 

4. AN ANALYTIC VERSION OF I-HE FAVARWACHIESER-KREIN THEOREM 

If we view Theorem 1.1 on the unit circle, then it says that a continuous 
function whose nth derivative is never larger than I can be approximated by a 
sum of the form 

with an error of no more that K,(m -: I)-“. The “analytic” version of this 
theorem would be to approximate a function whose negative Fourier coefi- 
cients are zero by a sum of the form 

that is, approximate an analytic function on the unit circle by a polynomiai 
of degree m in the complex variable Z. This is the content of the theorem of 
Babenko [ 10, p. 1261 which is somewhat more general. 

THEOREM 4.1. Lrt R +-J I and let A,(R) consist of all utxrl~.tic functions ,f’ 
on : z < R which satisfy 1 ,f (“‘(z) ‘. 1 ,for z I c: R. The;, for m > II -- 1. 
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Proof. Assume R > 1; the case R = 1 follows by taking limits. Let 
f~ A.(R); then 

f(z) = f UjZj 

so that 

f’“‘(Z) = f ((j $- n) !/j!} aj+,Z’, Izl <R. 
0 

Let C~ = k !/(k + n)!, k = 0, I ,..., and set 

G(d) = Rn-m-lei(?n+l)O 

1 
c,,e,+l + 2 f R-I(‘c,,-,+~+~ cos k% . 

I;=1 I 

Then it is straightforward to check that 

(l/277) lo2nf(n)(ReiB) einsG(t - %) d% = f(e”‘) + pr(eif) 

where p, is a polynomial of degree m which depends on f. Hence 

However, the term in the brackets in the formula for G is nonnegative since 
(eke> is nonnegative with nonnegative first and second differences. Hence, 
SU,%~A,(R) inf,,, Ilf- 4 II < R”--Tn-lcm--n+~ . 

On the other hand, the function F(z) = Rn-m-l~,-,+l~m+l lies in A,(R) and 
is at distance Rn-m+~c,-,+l from rr,,, . This proves the first part of the theorem. 

TffF A,(R) has maximum distance d = Rn-+lc,,-,+l from rrrn , then 

d < lift pf lln = I J’(e”“9 + PA@9 

= 1 & Jo2’f(“)(Reie) einsG(to - %) d% 1 

1 
2n <-- 

s 27r 0 
I f(“)(Reie) eineG(to - %)I d% 

< II fYReie)llm II G(fo - %)!I, 
e d. 

Hence, fcn)(Reie) eineG(to - %) has constant argument and 1 fcn)(Reie)l = 1 
where G(t, - %) # 0. Since G cannot vanish on a set of positive measure, we 
find that 

f(d(Reie) = j@m-n+l)o 

where 1 h 1 = 1. Hence, f(z) = ARn-m-lcv~-n+l~“-’ + p(z) where p E 7~,-~ . 



5. OTIIEK Moou1.l ot- coru I lNlll-l\r 

Theorem I. 1 may be viewed ;I> establishing the distance i‘ri)m 7;,, IO the SC‘L 

of those function> ,f’ for which ,f’“m’) satistieh the Lipschitr condition 
f’+‘)(x) f’” “( .I.), \- j ’ for all .Y. -1’ in [ T. ~1. With that in tnind 

we can ask for the distance from I’,,, to the 5et of functions ~“for which,it” Ii 

has some other modulu\ of continuity. We look at this question when the 

tnodulub of continuity cu is, CCUWCIW: we do not get the precise distance (fat 

this set [X. Section 51) but do establish upper and lower bounds which are 

not too far apart. The techniques are elementary but we do make use of ;I 

theorem of KorneEuk on the precise value of the constant for the low~t- 

order cast. For simplicity in exposition we impose the modulus of continuity 

condition on the r?th derivative, 

Dt:Fiht i ioN. Let (0(/z) be ;I continuou\. concavt’ positi\/e. increa\inp 

function on [0,2n] with w(O) 0 and w(/T, i7,) o(h,l co(li.,) \.I C 

define -l!‘+<, to be all those functions .f for which {I f’......i”,’ are continuou, 

‘n-periodic functions on [ x, T] and for which ,/ ““(x I?) ,f’“‘(.u) 

w(h). .Y c- [ T, 571. 0 /7 27T. 

where K,, , K,, 1 NI~J the mmti7t7t.s giw77 his (0.2),fir t7 017~1 17 

Prmf The theoretn of KorneiCuk [6] asserts 

B,,,,,(w) ~LI~~/t:,,,‘(~j) : / (- .1,;,,; ;(IJ(‘li,/l/ I) is 2) 

Also see [9, p. 1231. First we establish the upper bound in (5. I ). !-et S be the 

best L’ approximation to D,, from ‘T,,, , let ,i be any periodic measure which i\ 

orthogonal to T,,, and has total variation 1 or less. let 6’ t~fl:~~ with C;‘“’ I’ 
For an appropriate choice of /\ and G we have 
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Now the function 

u(x) = I’” g(t - s) d/l(t) 

is no larger than &(x/m + 1) by (5.2). Hence, applying Holder’s inequality 
we find that 

since ~ D, - S 1,r == K,(m + l)--“. This gives the upper bound. 
To establish the lower bound we choose a particular g and a particular A. 

First assume M is even. Let g be the even function of period 2r/m + I for 
which 

g(x) = $o(i7/m + 1 - 2x) 0 <<x ,(7r/2(m + l), 
=- &(2x - 7r/m -t 1) n/2@ + 1) <x -sn/m + 1, 

g is in A&; see [IO, p. 451. Let h be the measure with 2m + 3 point masses at 
the points -r + kcr/m + 1, k = 0, l,..., 2m + 2, with weights 1/4m + 4, 
--1/2m + 3, 1/2m -+ 2,..., -1/2m + 2, 1/4m + 4, respectively. Then h is ortho- 
gonal to sin k.v for all k and to cos kx if k is not a multiple of m +- 1; the 
integral of h against cos p(m + 1)x is 1 for all integers p. Since g is 2njm + 1 
periodic and even, 

i * g(t - x) dA (t) = g(x). 
l-77 

Hence, if G(“’ = g, then G E An”, and 

= In g(x) D,(x) cl.\- 
-77 

= (m + 1))” Jy g(x) D,((m -1 1) s) [I-Y 
ii 

since g is 2z-jm + 1 periodic. Continuing 

Now 

c 
li 

g(x/m $- I) D,(x) dx 
*’ 0 

=s 

7712 
g(s/m -t i)[D,(.u) ~ D,(n - x)] d.\- 

0 

= (2/7r) fn”g(x/m + l)(f (2k + 1))” cos(2k + I) s dA-x-. 
. 0 ” 



58 STEPHEN D. FISHER 

Since the sum in the last integral is nonnegative on [0, n/2] we may u\e the 
inequality which is valid for 0 : _ x :: n/2 because of the concavity of(r) 

Hence, 

pn,r,(w) ,_’ -; w(7r;m I) f (2k / I)- ,i (+2 ( , 2x/n) cos(2k I ) .I ri.\- 
0 . 0 

A similar computation gives the same lower bound when n is odd. 

COROLLARY 5.2. Let w(h) -7 h, 0 -i I I. Titm 

I 
--7r’Knt1(m I I) ” ’ sLIp{&*(j):,i““) F Lip,( t)i ;7i’K,,(/li I 1 ” 
77 

Comments. (I) When x 1 the left inequality above ih actually an 
equality. 

(2) For II I the corollary yields the estimates 

;i+ ‘(112 ;- I ) ’ I p,,i,(h‘) i7r’ ‘(111 ‘~ l)-I~’ 

and for M === 2 the estimates 

(J/24) + ‘(m 1) L’ ’ ._ fizn,(hi) (l:I6)7~? ‘(tn I) C I. 

These compare with the exact values 

:(I t)-’ 77’ ym 4~ I ) ’ 

and 

A(2 x1-l + ! ‘( 117 -; I ) .! ’ 

found by Korneieuk; (5, 61, respectively. 
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