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INTRODUCTION

This paper gives an account of some old and new results on the topic of
best approximation by polynomials and related functions. The starting point
is the following theorem, discovered simultaneously by Favard {S] and Achieser
and Krein [1], which improves part of the famous 1911 theorem of D. Jackson.

THeEOREM 1.1. Let W, * consist of all functions f on [—m, m] for which
L [l f71) are continuous and 2w-periodic and | f @V (x) — fmV(y)| <
| x — yiforall x,ve[—m, ). Let T, be the linear span of {1, cos x,..., cos mx,
sin x,..., sin mx} and set

Bnm = Sup lnf ilff § i L®(~m,7) * (01)
feW,* seT,,
Then B,,. = K, (m -+ 1)=" where
Ky = (4fm) Y (1" (27 + 1)L, (0.2)

j=0

Furthermore, there is a solution f, of (0.1) such that f {”(x) = sign(cos(m -+ 1) x)
if nis even, f{"(x) = sign(sin(m + 1) x) if n is odd. If g, is any other solution
to (0.1) then gy(x) = Afp(x — x) -+ ¢ where A = 1, xoe[—m, 7], and c is
a constant.

In Section 1 we give a proof of Theorem 1.1 which presents some new
features. In Section 2 we investigate the analogous problem for approxima-
tion by algebraic polynomials of degree m on [—1, 1] where the periodicity
requirement on fin the definition of W, * is dropped. Theorem 2.1 states that
any solution £, has the property that f\* assumes only the values 1 and —1
and has exactly m — n 4 1 sign changes in (—1, 1); that is, f; is a perfect
spline with exactly m — n + 1 knots. When »m = n — 1, the lowest value of
m for which the problem makes any sense, the solution f; is a multiple of the
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Chebyshev polynomial of degrce #. We then show in Theorem 2.2 that
Theorem L.l can be combined with a result about entire functions ol exponen-
tial type to give a simple proof of a theorem of S. N. Bernstein on the asymp-
totic behavior as m > o of the best constant. In Section 3 we apply
Theorems 1.1 and 2.2 to give a brief proof of a theorem of M. G. Krem on
best approximation on the real line by entire functions of exponential type
less than o. We close this circle of ideas by showing that Krein's theorem
easily implies the value of 5,,, given in Theorem I[.1. In Section 4 we give a
very short proof of Babenko’s theorem, the “analytic™ version ol the Favard
Achieser—Krein theorem. Section 5 gives bounds for best approximation
when the class of functions is determined by a modulus of continuity condi-
tion on the nth derivative.

We make use of several standard notations. If fis a continuous function on
the interval /1, then E,(/: 1) is the distance from fto the space =, ot algebraic
polynomials of degree m or less in the supremum norm

"

Effily inf if0) Y aw
U(yeoailly, o 7

Lo

if g is a continuous, periodic function on [—m, =], then £,,%( g) is the distance
from g to the space T,, of trigonometric polynomials of degree /2 vr less in
the supremum norm

‘ . a 2 )
E. % g) il e(x) | - Y (@, coskx - bysin k)

ipsonny Ay it - 1 J

We make constant use of the fact that the dual space of C(/} i~ the space
of finite regular Borel measures on / and that the dual space of the conunuous
periodic functions on [ 7. 7] is the space of periodic finite regular Borel
measures p on [—m a]: p(- ) — p(w). We also use the very standard
duality relation: if ¥ is a subspace of a Banach space X and x, o V. then

inf{i xg - x':xeVi=sup{lix,): [ < 1./=Y-,

where Y consists of those elements of the dual space of X" which vanish on ).

[. APPROXIMATION BY TRIGONOMETRIC POLYNOMIALS

Proof of Theorem |

We do the proof when # is even; the proof for # odd requires only minor
modifications. Let

D) 2m0 D2y ke

.
a0
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For each f'e W, * we know f™ exists a.e. and is bounded by one and further

@) = [ 7909 Dult — ) dx.

Note that |7, f™(x) dx = 0 since f*V(7) = f*-V(—x). Moreover, if 4 is
any function in the unit ball of L= with mean-value 0, then there is a unique
function H € W, * with H™ = h; H is just the convolution of #and D,, .

Let A be any (real) periodic measure on [—m, 7] with total variation at
most one which is zero on 7, and let f€ W, *. Then by the duality relation
we have

Bun = | SO ()

= [ £76) D) dx |

where

Dy(x) = f D,(t — x) dX(1).
Now let A vary over all measures orthogonal to T, of total variation at most
one and let f vary over all functions in the unit ball of L* with mean-value
zero. Due to the duality relations we find that

Bam = sup {distance in L! from D, to the constants}.

Actually, this supremum is a maximum since both W, * and the unit ball of
the space of measures are compact. Now we choose a specific A; A consists of
2m 4 3 point masses at the points —z + kw/m + 1, k=0, 1,..., 2m - 2
with weights 1/4m -+ 4, —1/2m -+ 2, 12m + 2,..., —12m + 2, 1/4m + 4,
respectively. For this A,

Dy(x) = (m + 1)7" Dy((m + 1) x)

since A is orthogonal to cos kx unless & is a multiple of m -+ 1 in which case
the integral has the value 1. Since A is orthogonat to T, and has total variation
one we have

Bam = (m -+ 1)~ [distance of D,((m -+ 1) x) to Rin L1].

Note, however, that the ! distance of D,((m + 1) x) to the constants is the
same as the distance of D,(x) to the constants by periodicity and that this
number is four times

/2 fd
J;J D,(x)dx = (1jm) > 2k + 1) (=D~
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Hence,

(I?I - ])'l B"'" e (4/77') i (7])/; (2/( l)f—nfl - Kn ;

koz=)
On the other hand, let S be the best L approximation to D, from 7,,; then
"D, =S|y =(m )y K

see [10, p. 114] for the details. If fe W,*, then
f(x) — s{x) = , FONIDx 1) — Sy — 1)) dt

where s(x) is some element of 7,, . Thus, 8,,, = D, -- S | so that
/3nm (”7 : l) " Kn-
Suppose now that £ ¢ W, * and that the distance of F trom T,, is (3, .

Then )
Fx) = sx) - | FoWIDLs 1) St Ddr

where s € T,, so that

.Bnm S Sy T F(;xl)) - S(;'\.())
ot FUO DXy - 1) — Sy - 1)
b 5rzm .
Hence, FO(XDx, — ) -S(x, 1)) >0 ae. and F"(r), - | where
D, (xy —t) — S(x, - t)+ 0. However, D, — S changes sign at the points
ka/m -+ 1,k =0, -=1...., 4-m and only there [0, p. [18], so that F must
have the indicated form.

COROLLARY [.2. Let r be a positive integer and let U, consist of all
Sunctions fin W, * for which f(k) = 2=)" [T_f(tye "' dr - O when  k I

Then
max:fi, - - K, .
feu,

Proof. Let H be a function in U, which attains the maximum value of the
left-hand side. If Q is any element in 7, . then the convolution of A" and Q
is identically zero. Hence.

Hx) = | HO(O[Dx — 1) — Qv - )] dr
so that
H o, distance of D, to 7", in !
(r - H"K,
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by Theorem 1.1. On the other hand, the function

G = (r+ D7 3 (<100 2k + 1) cos (2K -+ e + 1) )

k=0

isin U, and | G|l. = (r + 1)™ K, . This completes the proof.

2. APPROXIMATION BY ALGEBRAIC POLYNOMIALS

Let I be the closed interval [—1, 1] and let w7, denote the space of algebraic
polynomials of degree m or less. Let W, consist of all functions f on I for
which f, f,..., f "1 are absolutely continuous and | f™ | <1 a.e. Let

pyy = SUP Em(f)- (2.1
few,

In this section we prove two theorems. The first describes a property of any
solution of (2.1); the second is a simple proof of a theorem of S. N. Bernstein
on the asymptotic behavior of «,,, as m — co.

THeOREM 2.1.  Let f be a solution of (2.1). Then f™ assumes only the
values 1 and —1 and has exactly m — n + 1 sign changes in (—1,1). If
m = n — 1, then fis a constant multiple of the nth Chebyshev polynomial.

Proof. The proof closely resembles the proof of the first part of
Theorem 1.1.
Iffe W, and if f*(—1) =0 for v = 0,..., n — 1, then

v_

0 = [ 50 Bx, 1) di

where 0(x, 1) = (x — )77 /(n — 1)!; that is, 6(x, 7) equals (x — )" }/(n — 1)!
for —1 <t < x and O for x <<t < 1. Further, if 4 is in the unit ball of
L=(I), then H(x) == [, h(t) 0(x, 1) dt is in W, .

Let A be a (real) measure on I which is orthogonal to =, and has total
variation at most one; let f'€ W, . Then by the duality relation

o = | f, F(x) dA)

== Ulf<'n)(r) Fy(t) dt ‘

where

Fi(t) = f] 0(x, 1) dA(x).

640/21/1-4
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As A runs over the measures of total variation at most one which are ortho-
gonal to 7, and as fruns over W, we find that

Voo Sup Foog, (2.2
The supremum is actually a maximum and equality holds in (2.2) tor a
measure A with - 2 points in its support. To see this let / be a function in
W, whose distance to =, 1s «x,,, . Such a function exists since W, is compacl.
Let P <7, be the polynomial of degree m which is closest to #. Then there
are points -1 =T X, <X, N, I at which H{(x;) - P(\v.) ™
(— 1), k=-0,.,m { 1. Let A be a measure supported on {x,: A 0.
m - 1} of total mass one which is orthogonal to =,,: let A, be the weight of
Aat x,, k= 0,..m - L it is easy to see that {-1)* A, = 0 and hencc
S (= 1) A, - 1. Then

|
o2 (H(X) - Py

Lo 0

[(H - PYdN  [Hd

| HOE, dy
~ 7

oy N -

Hence, equality holds in (2.2). We have also shown that if H W, is at

distance «,,,, from 7, then there is a measure A, depending on H, with m 2
points in its support which is orthogonal to =, and which satisfies

X

| HOE

.I a

Hence, H"F, -0 a.e. and H" I where # - 0. However. /7, is the
(m — n -+ Dst derivative of the function

B(x) ‘ (x - )"l dMt)

A

which is a B-spline and so F, has precisely m - n | zeros in (- 1. 1): sce
[4, p. 74]. In particular, in the case m =~ n - |, the smallest value of y1 (or
which «,,, is finite, we find that F, > 0 on ( -1, 1) and so H is a polynomial
of degree n: clearly, H must be the nth Chebyshev polynomial suitably
normalized and

v 2-0 !

T

For emphasis we restate the primary conclusion of Theorem 2.4, fach

solution of (2.1) is a perfect spline with exactlym - Vhknotsont 111,
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Comments. (1) 1t would be most interesting to prove that there is only
one solution of (2.1) and to locate its knots. Of course, the solution in the
trigonometric case (Theorem 1.1) is also a perfect spline; its knots are
regularly spaced at intervals of =/m -+ 1. There is a temptation to try the
substitution x = cos 6 to turn the algebraic problem into a trigonometric
problem. Of course this will not work since the condition | f ' < 1 is not
carried into anything useful.

(2) The formula

a1
N = AX MAx | fdA
no Y1

where A is the sum of m -+ 2 point masses shows that «,,, is the maximum of
the m -+ 1st divided difference of fat points — 1 <l xy << x3 << -+ << x,,,.1 =< |
where fis restricted only by the condition that | f™ | < lon[—1, 1]

(3) In the trigonometric case there is a constant C such that S,,,
(m + 1) << C for all choices of m and ». (In fact, C == 7/2 will work). There
is no such number for the algebraic case since «, ,_; == 27"*{n!)~1, and
hence «, ,_n" — 0 as n— oc. However, for n fixed «,,m" does remain
bounded as Theorem 2.2 shows.

We now use Theorem I.I and some other facts to give a proof of the
following theorem of Bernstein [2], proved in 1947; see [11, p. 293] for a proof
in the English language.

THEOREM 2.2, limit,, . m"«,,, = K, where K, is the constant given by (0.2).

Proof. For the first part of the proof it is technically somewhat easier to
work on [—m, 7]. Let &,, be the number analogous to «,,, for the interval
[—m, 7]; then &, = 7"x,,, . We shall show that

hm sup &y, = 7K, .

Let 4 lie in the unit ball of L .(—, m); then H(x) = [ D, (x — t) h(t) dt isin
W (—mn,w) and differs from the usual nth indefinite integral of / by an
algebraic polynomial of degree n — 1. Hence, as in the proof of Theorem 1.1
or Theorem 2.1

32mn = max{h D)\ ‘\Ll}

where the supremum is taken over all measures A on [—m, 7] which are
orthogonal to 7, and which have total variation at most one.

Let € be a small positive number and let r be the greatest integer in
mf(l - €) m. We shall need the following standard fact, which dates back at
least to Bernstein in 1912 (See [10, p. 77)).
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LEMMA 2.3, Let R == 1 and let E be the ellipse x = (w2 R -~ R ) cos b,
y =72 R — RV sin 8.0 =2 0 < 27, Suppose [ is holomorphic on and
within Ey and bounded by M on £y, . Then

Efe a.m) L 2MR "(R o (2.3)
Continuing the proof of Theorem 2.2 we take f(z) ¢ in Lemma 2.3.
The maximum of  f(z) on E, is at most exp[{k/2)}(R — R-')=]. When

0 - k& r,this in turn is no more than explm(R R 1H/2(1 - €)]. Choose
R so close to | that

expl(R R 1Y)/2(I €} pR
where p <2 1. Then we have the estimate
Eef —mom) AR 1)t pm (2.4)

for Ok .

Now let 4 be any continuous, 27-periodic tfunction on [ - 7. 7] which is
bounded by 1. Let A be a measure on [, «] which is orthogonal to =,, and
has total variation 1 or less. Then

(" wy Danydr [ H dao

Sk kY AK)
A /()
where i(k) — (1/27) jﬂn M) e dr and MKk) [7. e dA(x). Set

Hoxy - Y ko hik) Mky e,

Then

T
"N

[" oy Daoyde H©O) S ko k) Atk (2.3

The estimate (2.4) shows that | MY = 2(R — 1yt p" if 1k rand thus the
second sum in (2.5) is no larger than 4m(R — 1)1 p™. Furthermore. the nth
derivative of H, (recall n is even) differs from

Z k) Mk) et r: N )y dA () (2.6)

by the term

N k) Mk et (2.7
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We know that (2.7) does not exceed 4m(R — 1)7! p™ and (2.6) is clearly
bounded by 1. (We extend 4 to be 2m-periodic on R.) Hence, Corollary 1.2
implies that
| HO) < H llo < (r + 1) Ku(1 4 4m(R — 1)1 p™).

This implies that

f " Wty Dy(¢) di

< (r+ DK (1 4 4m(R — 1) p™) + 4m(R — 1)~ p™
<ol + " m"K, + 4m(R — )7L p™(1 + (r + )™ K,,).

Hence, &, = supi_« ij‘:, h(t) Dy(t)dt| is also bounded by the same
quantity so that

M & < (1 + " K,y + 4R — 1)1 (1 4 (r + 1) K,)

and this yields lim sup,,., (m"&,,) < #"(1 + €)” K, . Since € is arbitrary,
we have established

lim sup (m*a,,,) < 7K, .
m-o

To prove that lim inf,, . (" x,,) = K, we return to the interval [ =
[—1, 1] and use a few elementary facts about entire functions of exponential

type.
Let € > 0O be given. Let m be a positive integer and define

Fo(x) = (4fm) i (—1)* 2k ++ 1)1 cos((2k + 1)(1 + €) mx),
0

— 0 <X < ®

and set F(x) = F;(x). Suppose for each m in a sequence of m — oo there is a
polynomial p,, of degree m with

HFm'pm HL"C(I)é(l - 8) Kn’ 8 >O’

where 6 is independent of m. Then a change of variables yields
1Fx) — 4, oy < (1 — ) K,

where ¢,,(x) = p,(x/m), —w© < x < 0. Now

giN0) = m*p(0),  k=0,.,m
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and by a classical inequality of Markov |3. 46, (83)1.

POy it max p )
!
DA,
Hence.
gl 2N, for Ao

This imiplies that o subscquence of ¢, conserges untormiy oo compact
subsets of the plane to an entire function ¢ of exponenual type | or less,
Clearfy. ¢ satisfies the inequality

F—G .. ) —ah
However, since /7 is periodic with period 2w(1 - ¢} T we may assdiie G s
this period and hence (7 is constant, But no constant is within distance A,
of F. This contradiction shows that

hmoant £k, . &,

24 I
However. (1 ey " F, o W, so that

moinf (s, AL .
"

s

Thus.
I int e, A

"

and the theorem is proved.

3. APPROXIMATION ON THE LINE BY ENUIRE FUNCTIONS
or EXpPONENTIAL Ty

Let L, ¢ - 0. be the space of entire functions ol exponential (ype feas
than + which are bounded on the real axis. Such function fnecessarily satisties
the growth condition

v by el osup o Hr))
DR
for some p <. o. In this section we use Theorems 1.1 and 2.2 1o give a simple
proot of the following theorem of Krein {9].

Tarorem 3.1, Let V', consist of all bounded functions [ on « 7. «)
which sarisfy ' fU0 - lLon (- o, x). Let

Voo osuponf o S G
VoG

Then y,,. o "N, where K, is the constant givenn in (0.2,
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Proof. Again we take n to be even. Let

l_% Z ) cos(2k + 1) ox < x < @,

Then F, eV, ; suppose GeE, and |G — F, || < K, (1 —8) o, 8 > 0. Let
F(x) = o"F,(x/oc) and H(z) = ¢"G(z/o). Then || F — H ||(_x.«) < (1 — 8) K,
and H is entire of exponential type less than 1. Since F'is 2#-periodic, we may
assume A is also and hence H is constant. But the distance from F to the
constants is K, . Thus, the distance from F, to E, is Ko so that y,, >
Ko7

On the other and, let fe V,,, € > 0, and let [,, be the interval 7, = [-m/o
(1 — €), m/o(1 — €)]. Let p,, be the best approximation to f on /,, from m,, ,
let g,.(x) = f(mx/o(1 — €)) and g,,(x) = pn(mx/oc(l — €)). Then

n

Hf_ Pm 1[,,, - “ Em — 4m “1
= m(gm; I)
g (xnmmn/om(l - E)w
so that by Theorem 2.2
lim sup E, (/2 I,) << K,/o™(1 — €)™
Hence, || ¢,, |'; << C for all m so that
L p0)] = (1 — e)F mTF | g{P(0)]
< Col(l — e)*

by Markov’s inequality. Hence, some subsequence of {p,,} converges uni-
formly on compact subsets of the plane to an entire function G of exponential
type less than o which must satisfy

\‘\f_ G*“(Axﬂo) g K,,L/O'"(l _ 6)"'.
Hence,
mf Gy < Kpfo™(1 — e)"
for each fe V, and each € > 0, so that

Vo < Kpfo™

and this completes the proof.
To complete the circle of ideas in Theorems 1.1, 2.2, and 3.1 we show that
Theorem 3.1 easily implies the value of the constant 5,,,, in Theorem 1.1. Let
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fe W,* and extend f periodically to the line. Then, because a 2#-periodic
function in E,,, is a trigonometric polynomial of degree m or less, we have

o

inf /-G =l = T

GeE,, SO TeT,,

m

But the left-hand side does not exceed K, (m -i- 1) by Theorem 3.1. Hence,
Bom << K {m - 1)~ On the other hand, the function

Fo(x) = (m - 1)" f; X (cos(2k -+ 1)(m --- 1) Y- )M D2k 1y 1
0

lies in W,* and has 2m - 3 alternation on [-. 7] and hence the best
approximation to f,, from 7, is zero; thus

Bnm = iFm PARE lFm(O)j - Kn/(ln v ])n'

4. AN ANALYTIC VERSION OF THE FAVARD-ACHIESER-KREIN THEOREM

If we view Theorem 1.1 on the unit circle, then it says that a continuous
function whose nth derivative is never larger than I can be approximated by a
sum of the form

e

$(x) = ) e et
with an error of no more that K,(m - 1)~". The “analytic™ version of this
theorem would be to approximate a function whose negative Fourier coeffi-
cients are zero by a sum of the form

that is, approximate an analytic function on the unit circle by a polynomial
of degree m in the complex variable z. This is the content of the theorem of
Babenko [10, p. 126] which is somewhat more general.

THEOREM 4.1. Let R = | and let A,(R) consist of all analytic functions |
on 'z < Rwhichsatisfy | f"(z) 1 for' z! << R Thenform =n — 1.
e e e e DY )
fes}it,ek) plgrt,,li J(2) = P heir = (m -+ ! R ’ -0
If fis a solution of (4.1) then f(z) = Cz™iY 4= p(2) for an appropriate constant
C and polynomial p of degree n - 1.
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Proof. Assume R > 1; the case R =1 follows by taking limits. Let
fe A.(R); then

f(2) =73 a7z
[
so that

f(z) = Z{(J + Yt a2,z <R

Let ¢, = kY/(k + m)!, k = 0, 1,..., and set

x*
Crn—n+1 + 2 Z R_kcm-—n—)»l—Hc cos k0 .

k=1

G(B) = Rn~m-lgitm1o

Then it is straightforward to check that
2m
(1/2m) [ f™(Re) Gt — 6) dB = f(e) + ple’)
0

where p; is a polynomial of degree m which depends on f. Hence

AL =gl < I+ pyl
< N f(Re“Yw | G ly -
However, the term in the brackets in the formula for G is nonnegative since
{c;} is nonnegative with nonnegative first and second differences. Hence,
SupfeAﬂ(R) ianEnm “f_ q H < Rn—-m~1cmwn+1 .
On the other hand, the function F(z) = R* "™ 1¢,,_, ;2™ lies in 4,(R) and

is at distance R*~"™*1¢,, _, ., fromm,, . This proves the first part of the theorem.
If fe 4,(R) has maximum distance d = R*"¢,,_, ., from m,, , then

SIS+ prile = 1 f(€™) + poe™)]
= ‘ _21_ Fﬂf‘”’(Re“’) em0G(ty — 0) df
T Yo

<o | | FW(Re%) emOG(1t, — b)) dO
277 0

S f(Re®) . | Gty — Dy
<d.

Hence, f ™ (Re®) ei*®G(t, — 0) has constant argument and | f ®(Re®)| = 1
where G(t, — 0) # 0. Since G cannot vanish on a set of positive measure, we
find that

f(n)(Reie) = Aetlm-n+1)0

where | A| = . Hence, f(2) = AR ™ ¢ \y_p 2™ + p(z) where pen,_, .
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5. OTHER Mopurt oF CONTINUITY

Theorem 1.1 may be viewed as establishing the distance from 77, (o the set
of those functions f for which f“~" satisfies the Lipschitz condition
FUetxy - fe by o vy torall x, vin [om ] With that in mind
we can ask for the distance from 7, to the set of functions 7 for which f& 1
has some other modulus of continuity. We look at this question when the
modulus of continuity w is concarve: we do not get the precise distance (for
this sec [8. Section 3}) but do establish upper and lower bounds which are
not too far apart. The techniques are elementary but we do make use of a
theorem of KorneiCuk on the precise value of the constant for the lowest-
order casc. For simplicity in exposition we impose the modulus of continuity
condition on the nth derivative.

DEFINITION.  Let w(f1) be a continuous, concave positive. Increasing
function on [0.27] with w(0) — 0 and w(iy : /) wlhy)  wi,). We
define /1%, to be all those functions f for which /. f'..... £’ are continuous
2m-periodic functions on [ &, 7] and for which f"(x - /)y [9(x)
wh), xel[—m 7,0 27

THEOREM 5.1.  Let w be a concare modulus of continuity and let B, (o)
Sup{Eln*(J{):‘/‘E/ * T/I('Ii

nwit*
(Mmyew(mim — 1)y K, (m 1)y 7 LB w) = dalmim © 1)K (0 1) "
(5.1}

where K, , K, .1 are the constants given by (0.2) for n and n - 1. respectively.

Proof. The theorem of KorneiCuk [6] asserts

By w) == suptb,,N(F) /e AT dagmim 1) 15.2)

Also see [9, p. 123]. First we establish the upper bound in (5.1). Let § be the
best L' approximation to D, from T, . let A be any periodic measure which is
orthogonal to T, and has total variation 1 or less, let G = A% with ' ¢
For an appropriate choice of A and G we have

Buwlw)  suplE,“(f): fed)
‘ Gy dA (1)

’ ” ( ’ gt — XHDLx) - S(y)) dy) dA (1)

‘H Gl WY AAND(x) S0
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Now the function
u(x) = ‘ gt — XY dA (1)

is no larger than tw(m/m + 1) by (5.2). Hence, applying Holder’s inequality
we find that

/Bnm(w) < %w(ﬂ/m W‘" l) Kn(’n ™ 1) "
since | D, — S|; == K, (m -+ 1)~ This gives the upper bound.

To establish the lower bound we choose a particular g and a particular A,
First assume # is even. Let g be the even function of period 2=/m - | for
which

2(x) = Jo(m/m + 1 — 2x) 0<x<7m/2m+ 1),

= —lwQx —7/m + 1) m2m+ 1) <x <7/m+ 1,
gisin /Ay ; see [10, p. 45]. Let A be the measure with 2m -+ 3 point masses at
the points —7 + kn/m + 1,k =0, 1,..., 2m + 2, with weights 1/4m +- 4,
—172m+ 2,12m + 2,..., —1/2m + 2, 1/4m + 4, respectively. Then A is ortho-
gonal to sin kx for all £ and to cos kx if k is not a multiple of m - 1; the
integral of A against cos p(m -~ xis | for all integers p. Since g is 2m/m + 1
periodic and even,

[" gt = 0 (0) = g,

Hence, if G = g, then G € A}, and

Bunlw) = | BOr /X0

= [ &%) D) d

=+ 1) [ g0 Dyfm + 1) x) dx

-7

since g is 2r/m + 1 periodic. Continuing
Bnm(w) = (’” + ])~71 fﬂ g(.“(/ln -+ I) D,I,(X) dx

== 2(m 4 1) fﬂ g(x/m + 1) D,(x) dx.
0

Now
(” glx/m + 1) D(x) dx
0

= [etxim + DD — Dm — ) d
0

= (2/m) f:'/a g(x/m + l)(i 2k + D" cos(2k + 1) \) dx.
J, =



58 STEPHEN D. FISHER

Since the sum in the last integral is nonnegative on [0, 77/2] we may use the

inequality which is valid for 0 = x < 7/2 because of the concavity of w
2g(x/m - 1) == w(m/m -+ 1 — 2x/m -+ 1)
= w((m/m - 1)1l — 2x/m))
= (I — 2x/m) w(mim - 1),

Hence,

5 .
Boamlw) = ,,7:;, w(mim - 1) 2k { 1)y ' (1 - 2xfm) cos(hk - 1) vy
1] e

)
4 a ,
—solmim 1)y 2k - )
7T £
I ‘ .
= -— ol - 1)K, .
ks
A similar computation gives the same lower bound when # is odd.

COROLLARY 5.2, Let w(h) — I, 0 <~ - 1. Then

| . L . .
K b 1 SuplE, K(f): f0 E Lipyn) - dm Ky )

ks

Comments. (1) When I the left inequality above 15 actually an
equality.
(2) For n — | the corollary yields the estimates

brtogm = Dy By 7 batom - DT
and for n = 2 the estimates
(1/24) m>(m - 1) 2 o By b)) = (116) 7 (m o+ 1) *
These compare with the exact values
(o ety m - 1y

and

W2 - x)T im0y

found by KorneiCuk; [5, 6], respectively.
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