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a b s t r a c t

A famous result by Drozd says that a finite-dimensional representation-infinite algebra
is of either tame or wild representation type. But one has to make assumption on the
ground field. The Gabriel–Roitermeasuremight be an alternative approach to extend these
concepts of tame and wild to arbitrary Artin algebras. In particular, the infiniteness of the
number of GR segments, i.e. sequences of Gabriel–Roiter measures which are closed under
direct predecessors and successors, might relate to the wildness of Artin algebras. As the
first step, we are going to study the wild quiver with three vertices, labeled by 1, 2 and 3,
and one arrow from 1 to 2 and two arrows from 2 to 3. The Gabriel–Roiter submodules
of the indecomposable preprojective modules and quasi-simple modules τ−iM , i ≥ 0
are described, where M is a Kronecker module and τ = DTr is the Auslander–Reiten
translation. Based on these calculations, the existence of infinitely many GR segments
will be shown. Moreover, it will be proved that there are infinitely many Gabriel–Roiter
measures admitting no direct predecessors.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Throughout, by Artin algebras or finite-dimensional algebras we always mean connected ones. That is, 0 and the identity
are the only central idempotents. Let Λ be an Artin algebra and modΛ the category of finitely generated left Λ-modules.
For each M ∈ modΛ, we denote by |M| the length of M . The symbol ⊂ is used to denote proper inclusion. We first recall
the original definition of the Gabriel–Roiter measure [12,13]. Let N = {1, 2, . . .} be the set of natural numbers and P (N)
be the set of all subsets of N. A total order on P (N) can be defined as follows: if I ,J are two different subsets of N, write
I < J if the smallest element in (I\J) ∪ (J\I) belongs to J . Also we write I ≪ J provided I ⊂ J and for all elements a ∈ I ,
b ∈ J\I , we have a < b. We say that J starts with I if I = J or I ≪ J . Thus I < J < I ′ implies that J starts with I , whenever
I ′ does.

Let M ∈ modΛ and M•: M1 ⊂ M2 ⊂ · · · ⊂ Mt be a chain of indecomposable submodules of M . Thus the set of the
lengths of these indecomposable modules |M•| := {|M1|, |M2|, . . . , |Mt |} is a subset of N. Let µ(M) = max{|M•|} with the
maximum being taken over all possible chains M• of indecomposable submodules of M . We call µ(M) the Gabriel–Roiter
(GR for short) measure of M . If M is an indecomposable Λ-module, we call an inclusion X ⊂ M with X indecomposable
a GR inclusion provided µ(M) = µ(X) ∪ {|M|}, thus if and only if every proper submodule of M has GR measure at
most µ(X). In this case, we call X a GR submodule of M . Note that the factor of a GR inclusion is always indecompo-
sable [12]. This provides the first proof of the fact that any non-simple indecomposable module is an extension of two
indecomposables.
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Remark. There is a different way [13] to define the Gabriel–Roiter measure for anΛ-moduleM , which is a rational number,
by induction as follows:

µ(M) =


0 ifM = 0;
maxN⊂M{µ(N)} ifM is decomposable;
maxN⊂M{µ(N)} +

1
2|M|

ifM is indecomposable.

These two definitions (orders) can be identified. Namely, for each I = {ai|i} ∈ P (N), let µ(I) =
∑

i
1
2ai . Then I < J if and

only if µ(I) < µ(J).

A subset I of N is called a GR measure for Λ if there is an indecomposable Λ-module M with GR measure µ(M) = I .
Using the GR measure, Ringel obtained a partition of the module category for any Artin algebra of infinite representation
type [12]: there are infinitely many GR measures Ii and I i with i natural numbers, such that

I1 < I2 < I3 < · · · · · · < I3 < I2 < I1

and such that any other GR measure I satisfies Ii < I < I j for all i, j. The GR measures Ii (resp. I i) are called take-off (resp.
landing) measures. Any other GR measure is called a central measure. An indecomposable module is called a take-off (resp.
central, landing) module if its GR measure is a take-off (resp. central, landing) measure. Ringel also showed in [12] that all
landing modules are preinjective in the sense of Auslander and Smalø [2]. In [5], it was shown for tame quivers that all
indecomposable preprojective modules are take-off modules.

Let Λ be an Artin algebra and I, I ′ be two GR measures for Λ. We call I ′ a direct successor of I (or I a direct predecessor
of I ′) if, first, I < I ′ and second, there does not exist a GRmeasure I ′′ with I < I ′′ < I ′. The so-called Successor Lemma in [13]
states that any GR measure I different from I1, the maximal one, has a direct successor. However, there is no ‘Predecessor
Lemma’. For example, the minimal central measure (if it exists) does not have a direct predecessor.

Definition 1.1. Let Λ be an Artin algebra. A sequence of GRmeasures for Λ is called a GR segment if it is closed under direct
successors and direct predecessors.

As a direct consequence of Ringel’s partition theorem and the Successor Lemma, wemay easily obtain a characterization
for representation-finite Artin algebras.

Lemma 1.2. Let Λ be an Artin algebra. Then the following are equivalent.
(1) Λ is of finite representation type.
(2) Λ admits only one GR segment.
(3) Λ admits a finite GR segment.

Let us simply denote by k an algebraically closed field. Drozd’s famous theorem [7,8] says that a finite-dimensional
representation-infinite k-algebra Λ is of either tame or wild representation type. Note that tameness makes no sense for
arbitrary fields.

Motivated by Lemma 1.2, we want to characterize tame and wild algebras using the GR measure and to extend the
concepts of tame and wild to arbitrary Artin algebras. Let ndp (Λ) denote the number of the GR measures, different from
the minimal one I1, for Λ, which do not admit direct predecessors. It is clear that ndp (Λ) = 0 for any representation-finite
Artin algebra. It was shown in [6] that 1 ≤ ndp (Λ) < ∞ for each tame hereditary algebra over an algebraically closed field.
An positive answer of the following conjecture will obviously give an alternative characterization of tameness and wildness
and will thus provide a method to generalize these notions to arbitrary Artin algebras.

Conjecture 1.3. Let k be an algebraically closed field andΛ be a finite-dimensional k-algebra of infinite representation type. Then
the following are equivalent.
(1) Λ is of wild type.
(2) Λ admits infinitely many GR segments.
(3) There are infinitely many GR measures having no direct predecessors.

For wild algebras, however, it is difficult to calculate the GRmeasures of the indecomposable modules or to determine if
a GR measure has a direct predecessor or not. In this paper, we will study the following wild quiver

1 // 2
''
77 3

and the category of finite-dimensional representations (simply called modules) over an algebraically closed field k.
After some preliminaries, the GR submodules will be calculated for all the indecomposable preprojective modules
(Proposition 3.1) and the take-off part will also be described (Proposition 3.3). In particular, in contrast to the case of
tame quivers, the take-off part contains only finitely many preprojective modules. The GR measure of the indecomposable
projective module P1 is the minimal central measure, thus is a GR measure which does not admit a direct predecessor
(Proposition 3.4). An indecomposable module with dimension vector (0, a, b) is called a Kronecker module. The GR
submodules of the modules of the form τ−iM, i ≥ 0 are described, whereM is a Kronecker module and τ is the Auslander–
Reiten translation (Propositions 3.7, 3.10 and 3.12). Based on these calculations, the existence of infinitelymanyGR segments
will be shown (Theorem 3.11). Finally, in Section 4 infinitely many GR measures will be constructed such that they do not
admit direct predecessors (Theorem 4.1). Thus the above conjecture is shown for this special case.
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2. Preliminaries and examples

2.1. Some basic properties of the Gabriel–Roiter measure

We refer to [1,11] for general facts of Auslander–Reiten theory and refer to [12,13] as general references to GRmeasures.
We collect some results concerning GR measures, which will be used later on.

Lemma 2.1 ([12]). Let Λ be an Artin algebra and X and Y1, . . . , Ym be indecomposable Λ-modules. Assume that f : X→


Yi
is a monomorphism.

(1) µ(X) ≤ max{µ(Yi)}.
(2) If µ(X) = max{µ(Yi)}, then f splits.

Proposition 2.2. Let Λ be an Artin algebra and X ⊂ M a GR inclusion.

(1) If all irreducible maps N→M with N indecomposable are monomorphisms, then the GR inclusion is an irreducible map.
(2) Every irreducible map to M/X is an epimorphism.
(3) There is an irreducible monomorphism X→ Y with Y indecomposable and an epimorphism Y→M.
(4) There is an epimorphism τ−1X→M/X.

The proof of the above statements can be found for example in [3,4].

2.2. Kronecker quiver

Let Q be the Kronecker quiver

1
''
77 2 .

Nowwe describe the GRmeasures, which will be very useful in our later discussion. The finite-dimensional representations
over an algebraically closed field k are simply called modules.

The GR measure of the indecomposable module with dimension vector (n, n + 1) is {1, 3, 5, . . . , 2n + 1}. The take-off
modules are these preprojective modules as well as the simple injective module.

Every indecomposable regular module with dimension vector (n, n) has GR measure {1, 2, 4, 6, . . . , 2n}. An
indecomposable module is in the central part if and only if it is a regular module.

The GRmeasure of the indecomposable module with dimension vector (n+1, n) is {1, 2, 4, . . . , 2n, 2n+1}. The landing
part consists of all the non-simple indecomposable preinjective modules.

2.3. A wild quiver

We refer to, for example, [9,10] for some basic results on wild hereditary algebras. From now on, we fix an algebraically
closed field k and consider the following wild quiver:

1 // 2
''
77 3 .

The Cartan matrix C and the Coxeter transformation Φ are the following:

C =

 1 0 0
1 1 0
2 2 1


, Φ = −C−tC =

 0 1 0
3 3 2

−2 −2 −1


, Φ−1

=


−1 −1 −2
1 0 0
0 2 3


.

Onemay calculate the dimension vectors of indecomposable modules using dim τM = (dimM)Φ ifM is not projective and
dim τ−1N = (dimN)Φ−1 if N is not injective. The Euler form is ⟨x, y⟩ = x1y1 + x2y2 + x3y3 − x1y2 − 2x2y3. Then

dimHom (X, Y ) − dimExt 1(X, Y ) = ⟨dimX, dimY ⟩

for any two indecomposable modules X and Y .
The Auslander–Reiten quiver consists of one preprojective component, one preinjective component and infinitely many

regular ones. An indecomposable regular module X is called quasi-simple if the Auslander–Reiten sequence ending with X
has an indecomposable middle term. For each indecomposable regular moduleM , there is a unique quasi-simple module X
and a unique natural number r ≥ 1 (called quasi-length of M and denoted by ql (M) = r) such that there is a sequence of
irreducible monomorphisms X = X[1]→ X[2]→ · · ·→ X[r] = M .

Let Pi and Qi, i = 1, 2, 3, denote the indecomposable projective and injective modules corresponding to the vertices
1, 2, 3, respectively. We also denote by H(1) an indecomposable module with dimension vector (0, 1, 1). Note that the
indecomposable modules with dimension vector (0, 1, 1) are actually parameterized by the projective line P1

k . We are
not going to specify the parameters when our consideration does not depend on them. The following is part of a regular
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component of the Auslander–Reiten quiver containing some H(1):

( 6 8 5 )

((QQQQ
Q ( 2 4 3 )

((QQQQ
Q ( 2 4 5 )

((QQQQ
Q ( 2 8 11 )

· · · ( 2 3 2 )

((QQQQ
Q

66mmmmm
( 1 2 2 )

((QQQQ
Q

66mmmmm
( 1 3 4 )

((RRRR
R

66lllll
· · ·

( 1 2 1 )

66mmmmm
( 1 1 1 )

66mmmmm
( 0 1 1 )

66mmmmm
( 1 2 3 )

Lemma 2.3. (1) For each i ≥ 0, τ−iH(1) contains no proper regular submodules. In particular, a GR submodule of τ−iH(1) is
preprojective.

(2) For each i ≥ 0, τ iH(1) has no proper regular factors. In particular, a GR factor of τ iH(1) is preinjective.

Proof. We show (1) and (2) follows similarly. If X is a proper regular submodule of τ−iH(1), then the inclusion X ⊂ τ−iH(1)
induces a proper monomorphism τ iX→H(1). This is impossible because H(1) has no proper regular submodules. �

Lemma 2.4. (1) There is a sequence of monomorphisms

H(1)→ τH(1)→ · · ·→ τ iH(1)→ τ i+1H(1)→ · · · .

(2) There is a sequence of epimorphisms

. . . → τ−(i+1)H(1)→ τ−iH(1)→ · · ·→ τ−1H(1)→H(1).

Proof. (1) By above lemma, a non-zero homomorphism from τ iH(1), i ≥ 0, to a regular module is a monomorphism. On
the other hand,

dimHom (H(1), τH(1)) − dimExt 1(H(1), τH(1)) = ⟨dimH(1), dim τH(1)⟩
= ⟨(0, 1, 1), (1, 1, 1)⟩
= 0.

Since Ext 1(H(1), τH(1)) ≠ 0, Hom (H(1), τH(1)) ≠ 0 and thus there is a monomorphism H(1)→ τH(1). Therefore, there
is a sequence of monomorphisms

H(1)→ τH(1)→ · · ·→ τ iH(1)→ τ i+1H(1)→ · · · .

(2) follows dually. �

It is easily seen that the inclusions H(1)→ τH(1)→ τ 2H(1) are both GR inclusions. The GR measures of τ iH(1) are

µ(H(1)) = {1, 2}, µ(τH(1)) = {1, 2, 3}, µ(τ 2H(1)) = {1, 2, 3, 4}

and

{1, 2, 3, 4} < µ(τ iH(1)) < {1, 2, 3, 4, 5} = µ(Q3)

for all i ≥ 3, where Q3 is the indecomposable injective module with maximal length.

3. The Gabriel–Roiter submodules

In this section, the take-off part and the minimal central measure will be described. We will also characterize the GR
submodules of the indecomposable preprojective modules and the regular modules of the form τ−iM, i ≥ 0 for Kronecker
modules M (meaning the indecomposable modules with (dimM)1 = 0). As a consequence of these calculations, we may
obtain infinitely many GR segments. This partially answers our conjecture positively in this special case.

3.1. The Gabriel–Roiter submodules of the preprojective modules

The dimension vectors of the indecomposable projective modules are dim P3 = (0, 0, 1), dim P2 = (0, 1, 2) and
dim P1 = (1, 1, 2). The beginning part of the preprojective component is the following:

( 1 1 2 )

((QQQQ
Q ( 0 3 4 )

))RRRRR ( 3 8 12 )

( 0 1 2 )

##))

66mmmmm
( 1 4 6 )

##))

66mmmmm
( 3 11 16 )

##--

55lllll
· · ·

( 0 0 1 )

55 ;;

( 0 2 3 )

55 ;;

( 2 6 9 )

55 ;;

· · ·

Proposition 3.1. (1) For each i ≥ 0, τ−iP2 is, up to isomorphism, the unique GR submodule of τ−(i+1)P3 .
(2) Up to isomorphism, τ−iP3 is the unique GR submodule of τ−iP1 for each i ≥ 1.
(3) A GR submodule of τ−iP2 is isomorphic to τ−(i−1)P1 if i is odd, or τ−iP3 if i is even.
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Proof. (1) Since τ−iP2


τ−iP2→ τ−(i+1)P3→ 0 is a right minimal almost split morphism and the irreducible maps
between the involved indecomposable modules are monomorphisms, a GR submodule of τ−(i+1)P3 is isomorphic to τ−iP2
(Proposition 2.2(1)).

(2) Let X and Y be indecomposable preprojective modules. Then X is called a predecessors of Y if there is path
of irreducible maps X = X1→ X2→ · · ·→ Xn = Y for some n > 1. We first show that µ(τ−rP3) > µ(X) for
all predecessors X of τ−rP3. This is obvious for r = 1. Since the irreducible maps τ−(r−1)P1→ τ−rP2→ τ−(r+1)P3 are
both monomorphisms, µ(τ−(r+1)P3) > µ(τ−rP2) > µ(τ−(r−1)P1). Because there are the irreducible monomorphisms
τ−(r−1)P3→ τ−(r−1)P2→ τ−rP3, we haveµ(τ−(r−1)P3) < µ(τ−rP3). Note that a predecessor of τ−(r+1)P3 is either isomorphic
to τ−rP2 or τ−(r−1)P1, or a predecessor of τ−rP3. Therefore, we can finish the proof by induction.

Nowwe show that τ−iP3 is a GR submodule of τ−iP1 for each i ≥ 1. Since there is a sectional path τ−iP3→ τ−iP2→ τ−iP1,
the composition of the irreducible maps is either an epimorphism or a monomorphism. For each i ≥ 1,

|τ−iP3| − |τ−iP1| = |τ−iP3| + |τ−(i−1)P1| − |τ−iP2|
= (2|τ−iP3| + |τ−(i−1)P1| − |τ−iP2|) − |τ−iP3|
= |τ−(i−1)P2| − |τ−iP3| < 0.

Thus there is a monomorphism from τ−iP3 to τ−iP1. Since a GR submodule of τ−iP1 is one of its predecessors, it is sufficient
to show that neither τ−iP2 nor τ−(i−1)P1 is a GR submodule of τ−iP1. But this is obvious because the irreducible map
τ−iP2→ τ−iP1 is an epimorphism and Hom (τ−(i−1)P1, τ−iP1) = 0.

(3) Since all irreducible maps N→ τ−iP2 with N indecomposable are monomorphisms, a GR submodule of τ−iP2 is
isomorphic either to τ−(i−1)P1 or τ−iP3. Firstly, we show for each i ≥ 1 that τ−(i−1)P1→ τ−iP2 being a GR inclusion implies
that τ−(i+1)P3→ τ−(i+1)P2 is a GR inclusion. If this is not the case, then τ−iP1→ τ−(i+1)P2 is a GR submodule. Then we have

µ(τ−iP3) < µ(τ (−i−1)P1) < µ(τ−iP2) < µ(τ−(i+1)P3) < µ(τ−iP1) < µ(τ−(i+1)P2).

Since τ−iP3 is a GR submodule of τ−iP1, µ(τ−(i−1)P1) starts with µ(τ−iP3). In particular, there exists a submodule X of
τ−(i−1)P1 such that µ(X) = µ(τ−iP3). Because X is not isomorphic to τ−iP3, X has to be a predecessor of τ−iP3 and thus
µ(X) < µ(τ−iP3) by the discussion in (2). This is a contradiction.

Secondly, we show that τ−iP3→ τ−iP2 is a GR inclusion implies that τ−iP1→ τ−(i+1)P2 is a GR inclusion. It is sufficient
to show µ(τ−(i+1)P3) < µ(τ−iP1). We may assume i ≥ 1. Then τ−iP3 is also a GR submodule of τ−iP1. Since the irreducible
map τ−iP2→ τ−iP1 is an epimorphism, we have µ(τ−iP1) > µ(τ−iP2). Note that τ−iP2 is a GR submodule of τ−(i+1)P3. Thus
µ(τ−(i+1)P3) < µ(τ−iP1).

Now the statement follows by induction and the facts that P3 is a GR submodule of P2 and P1 is a GR submodule of
τ−1P2. �

The following observations can be easily checked:

• µ(τ−iP2) > µ(X) if X is a predecessor of τ−iP2 for every i ≥ 0.
• µ(τ−iP1) > µ(X) for all predecessors X of τ−iP1 if i is even, or i is odd and X � τ−(i−1)P1, τ−iP2.

3.2. The take-off part and the minimal central measure

As before, let P1 be the indecomposable projectivemodulewith dim P1 = (1, 1, 2). If X is a non-injective indecomposable
proper factor of P1, then X has dimension vector dimX = (1, 1, 1) andµ(X) = {1, 2, 3}. Thus a non-simple indecomposable
moduleM � P1 with Hom (P1,M) ≠ 0 has GR measure µ(M) > µ(P1) = {1, 3, 4}.

Lemma 3.2. Let M be an indecomposable module, which is neither simple nor injective.

(1) The GR measure of M is {1, 3, 5, . . . , 2n + 1} if and only if dimM = (0, n, n + 1).
(2) The GR measure of M is {1, 2, 4, . . . , 2n} if and only if dimM = (0, n, n).

Proof. We show (1) and (2) follows similarly. By the description of the GR measures of the Kronecker modules, dimM =

(0, n, n + 1) implies that µ(M) = {1, 3, 5, . . . , 2n + 1}. For the converse implication, we use induction on the length. It
is clear that µ(M) = {1, 3} if and only if M is the projective module P2, i.e., dimM = (0, 1, 2). Now assume that µ(M) =

{1, 3, 5, . . . , 2n+1, 2n+3}with n ≥ 1. Then aGR submoduleX ofM has GRmeasure {1, 3, 5, . . . , 2n+1}. Thus by induction
dimX = (0, n, n + 1). Since the GR factor M/X has length 2, its dimension vector is dimM/X = (1, 1, 0) or (0, 1, 1). In
the first case,M/X is the indecomposable injective module Q2. However, Q2 cannot be a GR factor module, since there is an
irreducible monomorphism S2→ I2 (Proposition 2.2 (2)). Therefore, dimM/X = (0, 1, 1) and dimM = (0, n+1, n+2). �

Proposition 3.3. A non-simple indecomposable module M is a take-off module if and only if dimM = (0, n, n + 1) for some
n ≥ 1. Thus the take-off measures are of the form {1, 3, 5, . . . , 2n + 1} for n ≥ 0.
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Proof. Let µn = {1, 3, 5, . . . , 2n + 1}. Then by Lemma 3.2 it is sufficient to show that µn+1 is a direct successor of µn for
each n ≥ 0. Assume for a contradiction that

{1, 3, . . . , 2n + 1} = µn < µ < µn+1 = {1, 3, . . . , 2n + 1, 2n + 3}.

Then µ = {1, 3, . . . , 2n + 1,m1,m2, . . . ,ms} with m1 > 2n + 3. In particular, there exists an indecomposable module X
with length |X | = m1 containing some Y with dimY = (0, n, n + 1) as a GR submodule such that the corresponding GR
factor X/Y has length m1 − (2n + 1) > 2. Assume that dimX = (a, b, c). By the description of the GR measures of the
Kronecker modules, we have a ≠ 0 and thus Hom (P1, X) ≠ 0. Note that X is obvious not injective. Therefore either there
is a monomorphism P1→ X , or X contains an indecomposable submodule with dimension vector (1, 1, 1). It follows that
µ ≥ µ(X) > µ(P1) > µr for all r ≥ 0. This contradiction implies that µn+1 is a direct successor of µn for each n ≥ 1. �

Proposition 3.4. The indecomposable projective module P1 is a central module and µ(P1) is the minimal central measure. In
particular, µ(P1) does not have a direct predecessor.

Proof. Sinceµ(P1) = {1, 3, 4} > µr = {1, 3, 5, . . . , 2r +1} for all r ≥ 0, P1 is a central module. Assume for a contradiction
that µ is a central measure such that µ < µ(P1). Then

{1, 3, 5, . . . , 2r + 1} = µr < µ < µ(P1)

since µr is a take-off measure for each r ≥ 0. It follows that µ starts with {1, 3, 5, . . . , 2n + 1, 2n + 2} for some n ≥ 2.
Therefore, there is an indecomposable module M with length 2n + 2 such that it contains an indecomposable module
X with dim = (0, n, n + 1) as a GR submodule by Lemma 3.2. If the dimension vector of M is (1, n, n + 1), then
Hom (P1,M) ≠ 0 andµ(M) > µ(P1). However, this is not possible becauseµ(M) ≤ µ < µ(P1). Thus the only possibility is
that dimM = (0, n + 1, n + 1) and µ(M) = {1, 2, 4, . . . , 2n} by Lemma 3.2. This is again a contradiction. Therefore, µ(P1)
is the minimal central measure and thus does not admit a direct predecessor. �

3.3. The Gabriel–Roiter submodules of τ−iM with M a Kronecker module

For each integer a > 0 and λ ∈ P1
k , we denote by H(a)λ a representative of the isomorphism class of the indecomposable

modules with dimension vector (0, a, a) and parameter λ, and by Ha and Ha for a ≥ 0 those of indecomposable modules
with dimension vectors (0, a, a+ 1) and (0, a+ 1, a), respectively. An indecomposable module X is isomorphic to a proper
submodule (resp. factor) of Ha (resp. Ha) if and only if X is isomorphic to Hb (resp. Hb) for some b < a. Similarly, an
indecomposable module Y is isomorphic to a submodule (resp. factor) of H(a)λ if and only if Y is isomorphic to Hb or H(b)λ
(resp. Hb or H(b)λ) for some b < a. The GR measures are µ(Ha) = {1, 3, 5, 7, . . . , 2a + 1}, µ(H(a)λ) = {1, 2, 4, 6, . . . , 2a}
and µ(Ha) = {1, 2, 4, 6, . . . , 2a, 2a + 1}.

3.3.1. First properties of Kronecker modules
Before we characterize the GR submodules of τ−iM with M a Kronecker module, we combinatorially describe these

modules in the regular components.

Lemma 3.5. (1) H(a)λ is a quasi-simple module for each a ≥ 1 and λ ∈ P1
k .

(2) Ha is a quasi-simple module for each a ≥ 4 and Ha is a quasi-simple module for each a ≥ 1.
(3) Any two regular modules of above three kinds are in different regular components except the pair (H1,H4), where τ 2H4 = H1.

Proof. We show (1) and (2) follows similarly. Assume that H(a)λ is not a quasi-simple module. Then there is a quasi-simple
moduleX and an integer r ≥ 2 such thatX[r] = H(a)λ. ThenX ∼= Hb orH(b)λ for some 0 < b < a. Thus dimX = (0, b, b+1)
or dimX = (0, b, b). However, the dimension vector of τ−1X is

(0, b, b′)


−1 −1 −2
1 0 0
0 2 3


= (b, 2b′, 3b′)

for b′
= b or b + 1. It follows that (dimH(a)λ)1 = (dimX[r])1 ≥ b. This is a contradiction. Therefore H(a)λ is quasi-simple.

Nowwe prove (3). It is clear that (dim τH(1)λ)1 = 1 = (dim τ−1H(1)λ)1. It follows from Lemma 2.4 that (dim τ iH(1)λ)1
≠ 0 for any i ≠ 0. In particular, τ iH(1)λ does not isomorphic to Hb or Hb for any b, or H(b)γ for any b > 1 or b = 1 and
γ ≠ λ. If a ≥ 2, the short exact sequence 0→H(1)λ→H(a)λ→H(a − 1)λ→ 0 induces an exact sequence 0→ τ iH(1)λ→
τ iH(a)λ→ τ iH(a − 1)λ→ 0 for each integer i. Thus (dim τ iH(a)λ)1 > (dim τ iH(1)λ)1 ≥ 1 for every i ≠ 0. It follows that
H(a)λ is the unique indecomposable moduleM with the property (dimM)1 = 0 in the component containing H(a)λ.

Instead of H(a)λ, we simply write H(a) in the following proof, since the parameter is not so important. We show that Ha

and Hb (similarly Ha and Hb) are not in the same component. Without loss of generality, we may assume that τ iHb
= Ha for

some i > 0. Since H(b) is a submodule Hb, τ iH(b) is thus a submodule of τ iHb
= Ha. Thus τ iH(b) is isomorphic to H(c) or

Hc for some c < a. It follows that this H(b) and H(c) or Hc are in the same component. This is a contradiction.
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To finish the proof, it is sufficient to show that Ha and Hb are not in the same component with only one exception. If
Hb = τ iHa for some i > 0, then as before, we have a monomorphism τ iH(a)→ τ iHa

= Hb. Thus τ iH(a) is isomorphic to
Hc for some c < b. This is a contradiction since H(a) and Hc are not in the same component. Therefore the only possibility
is Ha

= τ iHb for some i > 0. If b > 4, Hb−1 is a regular submodule of Hb with factor H(1). Thus τ iHb−1 is a submodule of
τ iHb = Ha with factor τ iH(1). Since any indecomposable factor of Ha is of the form Hc with c < a, τ iH(1) is isomorphic
to some Hc . This is again a contradiction. Thus Ha

= τ iHb may happen only in case b = 4. An easy calculation shows that
τ 2H4 = H1. �

Lemma 3.6. Let M be an indecomposable regular module with dimension vector dimM = (a, b, c). Then the quasi-length of M
satisfies ql(M) ≤ a + 1. Moreover, if a = 1 and ql(M) = 2, then dimM = (1, 2, 2) or (1, 3, 4) = (1, 2, 2)Φ−1.

Proof. Assume for a contradiction thatM = X[r] for some quasi-simplemodule X and r ≥ a+2. Then
∑r−1

i=0 (dim τ−iX)1 =

a ≤ r − 2. It follows from previous discussions that there are 0 ≤ i < j ≤ r − 1 such that (dim τ−iX)1 = 0 = (dim τ−jX)1
and (dim τ−sX)1 = 1 for all 0 ≤ s ≠ i, j ≤ r − 1. The only possibility is that dim τ−iX = (0, 2, 1) and dim τ−jX =

dim τ−(i+2)X = (0, 4, 5). But in this case dim τ−(i+1)X = (2, 2, 3), which contradicts (dim τ−(i+1)X)1 = 1.
If a = 1 and ql (M) = 2, then (dimX)1 = 0 or (dim τ−1X)1 = 0. If dimX = (0, x, y), then dim τ−1X = (x, 2y, 3y). It

follows that x = 1, y = 1 and thus dimM = (1, 3, 4). If dim τ−1X = (0, x, y), then dimX = (3x−2y, 3x−2y, 2x− y). Thus
3x − 2y = 1 and the only possibility is x = y = 1. It follows that dimM = (1, 2, 2). Note that (1, 2, 2) = (1, 3, 4)Φ . �

3.3.2. The Gabriel–Roiter submodules
Now we start to calculate the GR submodules of τ−iM for Kronecker modulesM and for all i ≥ 0.

Proposition 3.7. Up to isomorphism, τ−iHa is the unique GR submodule of τ−iHa+1 for each a ≥ 1 and i ≥ 0. It follows that all
τ−iH(1)λ are GR factor modules.

Proof. Since Hb is a GR submodule of Hb+1 with regular GR factor module H(1)λ (different embeddings give rise to different
factors), we have monomorphisms τ−iHb→ τ−iHb+1 with factors τ−iH(1)λ. In particular, µ(τ−iHb) < µ(τ−iHb+1) < · · · <
µ(τ−iHb+r) = µ(τ−iHa) for all r = a − b > 0.

Assume that X is a GR submodule of τ−iHa+1. If X is a regular module, then the monomorphism X→ τ−iHa+1 induces
a monomorphism τ iX→Ha+1. It follows that τ iX ∼= Hb for some b ≤ a. However, µ(τ−iHb) < µ(τ−iHb+1) for all b. Thus
X ∼= τ−iHa. Similarly, if X ∼= τ−jP is preprojective for some indecomposable projective module P and some j > i + 1,
then τ−(j−i)P ∼= Hb and thus j − i ≤ 1, which is impossible. Thus X ∼= τ−jP for some indecomposable module P and some
j ≤ i + 1.

For a = 1, 2, all modules τ−iHa+1 are preprojective and the statement is the same with that τ−iP2 is a GR submodule of
τ−(i+1)P3 and τ−iP3 is a GR submodule of τ−iP1, which we have proved (Proposition 3.1). If a = 3, then the GR submodule
X of τ−iH4 has to be preprojective since H4 contains no regular submodules. In this case, X ∼= τ−jP for some projective
module P and some j ≤ i + 1. Note that X is a predecessor of τ−iH3 in the preprojective component. If i is odd, then
µ(τ−iH3) = µ(τ−(i+1)P1) is larger than all µ(Y ) if Y is one of its predecessors. Thus τ−iH3→ τ−iH4 is a GR inclusion. If i is
even, then the only predecessors of τ−iH3 with GR measures larger than µ(τ−iH3) are τ−(i+1)P2 and τ−iP1. In both cases,
we get monomorphisms from τ−1P2 and P1 to H4, respectively. This is a contradiction. Therefore, τ−iH3 is a GR submodule
of τ−iH4.

Finally, assume that a ≥ 4. It is sufficient to show that a GR submodule X of τ−iHa is regular for each i ≥ 0. If X
is preprojective, then as before, X is a predecessor of τ−iH3. Again if i is odd, then µ(X) ≤ µ(τ−iH3) < µ(τ−iHa), a
contradiction. If i is even, we may repeating the arguments as in the case a = 3 and get a contradiction.

We finish the proof. �

Remark. Since τ−iH(1)λ are GR factors, we may obtain, for any natural number r , that a GR inclusion X→ Y such that
|Y/X | ≥ r . However, for tame quivers, the dimension vectors of the GR factors are always bounded by δ, where δ is the
minimal positive imaginary root [4].

Proposition 3.8. Fix a λ ∈ P1
k and simply denote H(1)λ by H(1). For each i > 0, a GR submodule of τ−iH(1) is isomorphic to

τ−(i−1)P1 if i is odd;
τ−(i−1)P2 if i is even.

Proof. Let X be a GR submodule of τ−iH(1). Then X is preprojective by Lemma 2.3. If X = τ−jP for some indecomposable
projective module P and j > i, then we obtain a monomorphism from τ iX to H(1). But this is impossible since the unique
proper submodule of H(1) is the simple projective module. Thus X = τ−rP for some indecomposable projective module
P and some r < i. Clearly, P1 is a GR submodule of τ−1H(1) with H(1) as a GR factor. We thus obtain monomorphisms
τ−(i−1)P1→ τ−iH(1) for all i > 0. By the same reason, we get monomorphisms τ−iP2→ τ−iH(1). We can finish the proof by
applying the description of the GR measures of the preprojective modules. �

Corollary 3.9. Fix a λ ∈ P1
k . Then µ(P) < µ(τ iH(1)) < µ(τ jH(1)) for all i < j and all preprojective modules P.
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Proof. It is sufficient to shown µ(τ−iH(1)) > µ(τ−(i+1)H(1)) for all i ≥ 0. This is clear for i = 0. Now assume i > 0 is odd.
We use the following diagram to indicate the homomorphisms:

τ−(i−1)P1
GR //

GR
��

τ−iH(1)

τ−iP2 GR
//

epi

88qqqqqqqqqq
τ−(i+1)H(1)

epi

OO

Here GR stands for GR inclusions and epi for epimorphisms. Since |τ−iH(1)| > |τ−iP2|, we have µ(τ−iH(1)) > µ(τ−iP2). It
follows from µ(τ−(i+1)H(1)) = µ(τ−iP2) ∪ {|τ−(i+1)H(1)|} that µ(τ−iH(1)) > µ(τ−(i+1)H(1)). The case that i > 0 is even
follows similarly. Finally, using the description of the GR submodules of τ−iH(1) and those of preprojective modules, we
can easily deduce that µ(τ−iH(1)) > µ(P) for all i and all preprojective modules P . �

Proposition 3.10. Fix a λ ∈ P1
k . For each i ≥ 0 and a ≥ 1, τ−iH(a) is the unique, up to isomorphism, GR submodule of

τ−iH(a + 1).

Proof. Since there is a monomorphism τ−iH(1)→ τ−iH(a + 1), the above corollary implies that the GR submodules of
τ−iH(a+ 1) are regular modules for all i ≥ 0. Let X be a GR submodule of τ−iH(a+ 1). Then τ iX is a submodule of H(a+ 1)
and thus isomorphic to H(b) or Hb for some b < a + 1. Thus X ∼= τ−iH(b) or X ∼= τ−iHb.

Since there is a monomorphism from τ−iH(a) to τ−iH(a + 1), it is sufficient to show that µ(τ−iH(a)) ≥ µ(X). This
is obvious for X ∼= τ−iH(b). Assume that X ∼= τ−iHb for some b < a + 1. We consider the dimension vectors of the
form (0, c, c + 1). Note that (0, c, c + 1)Φ−1

= (0, c, c)Φ−1
+ (0, 0, 1)Φ−1

= (0, c, c)Φ−1
+ (0, 2, 3). This implies

|τ−1Hc | > |τ−1H(c)|. Since (0, 2, 3) = dimH2, (0, 2, 3)Φ−i is a positive vector, namely dim τ−iH2 for each i ≥ 0. It follows
that |τ−iHc | > |τ−iH(c)| ≥ |τ−iH(1)| for all c ≥ 1. Since τ−iHc is a GR submodule of τ−iHc+1 and µ(τ−iH3) < µ(τ−iH(1)),
we have µ(τ−iHc) < µ(τ−iH(1)) ≤ µ(τ−iH(a)). Thus for a ≥ 1, τ−iH(a) is a GR submodule of τ−iH(a + 1). �

The following result is a direct consequence of Proposition 3.10 and Corollary 3.9, which answers partially our conjecture
in this special case.

Theorem 3.11. There are infinitely many GR segments.

Proof. Let us keep the notations as before and fix a parameter λ ∈ P1
k . Let i ≥ 1. Since

τ−iH(1) ⊂ τ−iH(2) ⊂ τ−iH(3) ⊂ · · · ⊂ τ−iH(m) ⊂ · · ·

is a sequence of GR inclusions, we have for eachm ≥ 1

µ(τ−iH(m)) = µ(τ−iH(1)) ∪ {|τ−iH(2)|, . . . , |τ−iH(m)|}.

Note that µ(τ−iH(1)) < µ(τ−(i−1)H(1)) by Corollary 3.9 and |τ−iH(1)| > |τ−(i−1)H(1)| by Lemma 2.4. Therefore,

µ(τ−(i−1)H(1)) > µ(τ−iH(1)) ∪ {|τ−iH(2)|, . . . , |τ−iH(m)|} = µ(τ−iH(m)).

for all m ≥ 1. In particular, τ−(i−1)H(1) and τ−iH(1) are not in the same GR segment since there are infinitely many GR
measures lying in between.

The proof is completed. �

Proposition 3.12. For each a ≥ 1, the GR submodules of τ−iHa, i ≥ 0 areτ−iH(a)λ, λ ∈ P1
k, i = 0, 1;

τ−(i−1)P1, i ≥ 2, a = 1;
τ−iH(a − 1)λ, λ ∈ P1

k, i ≥ 2, a ≥ 2.

Proof. First assume that a = 1. Note that τ−2H1 is H4 and the GR submodules of τ−iH1 is already known as τ−(i−1)P1 for
any i ≥ 2. Every indecomposable module H(1)λ is a GR submodule of H1 with factor S2, which is not injective. It follows
that there is a monomorphism τ−1H(1)λ→ τ−1(H1). We claim that it is actually a GR inclusion. Note that τ−1H(1)λ has
GR measure {1, 3, 4, 6} > µ(P) for any preprojective module P . Thus a GR submodule of τ−1H1 has to be regular. Assume
that X is a GR submodule of τ−1H1. We obtain a monomorphism τX→H1, and therefore, X has dimension (0, 1, 1). Thus
τ−1H(1)λ is a GR submodule of τ−1H1 for each λ.

Now we consider the case a ≥ 2. Since there is a monomorphism H(1)λ→Ha for each λ with indecomposable regular
factor Ha−1, the GR submodules of τ−iHa are regular. Let X be a GR submodule of τ−iHa, then there is a monomorphism
τ iX→Ha. It follows X is either isomorphic to τ−iHb or τ−iH(b)λ for some b ≤ a. From the description of the GR submodules
of these modules, we know that the GR submodules of τ−iHa are of the form τ−iH(b)λ with b as large as possible. We may
calculate the dimension vectors as follows:

(0, a + 1, a)Φ−2
= (a + 1, 2a, 3a)Φ−1

= (a − 1, 5a − 1, 7a − 2),
(0, a, a)Φ−2

= (7a, 2a, 3a)Φ−1
= (a, 5a, 7a),

(0, a − 1, a − 1)Φ−2
= (a − 1, 2a − 2, 3a − 3)Φ−1

= (a − 1, 5a − 5, 7a − 7).
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Comparing the dimension vectors, we conclude that the GR submodules of τ−iHa for a ≥ 2 and i ≥ 2 are τ−iH(a − 1)λ for
all λ ∈ P1

k , and the GR submodules of τ−iHa are τ−iH(a)λ for i = 0, 1. �

In general, for each i > 0, τ iH(a)λ is not a GR submodule of τ iH(a + 1)λ.

Proposition 3.13. Any GR factor of τH(a)λ is isomorphic to the simple injective module. In particular, τH(a)λ is not a GR
submodule of τH(a + 1)λ.

Proof. If a = 1, then dim τH(1)λ = (1, 1, 1) and dim τH(2)λ = (2, 2, 2). There does not exist an epimorphism
H(1)λ→H(2)λ/H(1)λ. Thus τH(1)λ is not a GR submodule of τH(2)λ by Proposition 2.2(4). Now assume that a > 1.
As before, it is easily seen that a GR submodule of τ iH(a)λ is regular and has GR measure not smaller than µ(H(1)λ).

Let 0→ X
f

→ τH(a)λ→ Y→ 0 be a GR sequence, that is, f is a GR inclusion. If Y is not injective, we get the following
exact sequence 0→ τ−1X→H(a)λ→ τ−1Y→ 0. Then τ−1X is isomorphic to H(b)λ or Hb for some b < a. Because Hb is
cogenerated by H(1)λ, τHb is cogenerated by τH(1)λ. Thus µ(τHb) < µ(τH(1)λ) and τ−1X is not of the form Hb. Assume
that τ−1X = H(b)λ for some b < a and therefore b = a−1 since X is a GR submodule. However, an easily calculation shows
dim τH(a)λ = (a, a, a) and

dim τH(a − 1)λ[2] = dim τ−1H(a − 1)λ + dimH(a − 1)λ
= (0, a − 1, a − 1) + (a − 1, a − 1, a − 1)
= (a − 1, 2a − 2, 2a − 2).

Thus, there does not exist an epimorphism from τH(a − 1)λ[2] to τH(a)λ. This contradiction implies that in the above GR
sequence concerning τH(a)λ, Y has to be injective. It follows that Y is isomorphic to Q1 or Q3, the indecomposable injective
modules.

If Y is isomorphic to Q3, then dimX = (a, a, a)− (2, 2, 1) = (a−2, a−2, a−1) and then dim τ−1X = (0, a, a+1). This
is impossible since (dimX[2])1 = a − 2 < a = (dim τH(a)λ)1. Thus the GR factor Y of τH(a) is isomorphic to the simple
injective module Q1 and the GR submodule X of τH(a) has dimension vector (a − 1, a, a). In particular, τH(a)λ is not a GR
submodule of τH(a + 1)λ because dim τH(a)λ = (a, a, a) ≠ (a, a + 1, a + 1). �

3.4. The Gabriel–Roiter measures of indecomposable modules of small dimensions

In this section, we try to determine all possible GR measures of indecomposable modules with dimensions not greater
than 6.

Lemma 3.14. (1) An indecomposable module M has GR measure {1, 2, 3} if and only if dimM = (1, 1, 1) or (0, 2, 1).
(2) An indecomposable module M has GR measure {1, 2, 3, 4} if and only if dimM = (1, 2, 1).
(3) An indecomposable module M with dimension vector (1, 2, 2) and ql (M) = 2 has GR measure {1, 2, 3, 5}.
(4) An indecomposable module M with dimension vector (1, 3, 4) and ql (M) = 2 has GR measure {1, 2, 8}.
(5) An indecomposable module M has GR measure {1, 3, 4, 6} if and only if dimM = (1, 2, 3), i.e., M ∼= τ−1H(1)λ for some

λ ∈ P1
k .

Proof. (1) and (2) are obvious.
(3) Note thatM = X[2] for a quasi-simple module X with dimension vector (1, 1, 1). Thus {1, 2, 3} < µ(M) < µ(Q3) =

{1, 2, 3, 4, 5}, the maximal GR measure. Thus µ(M) = {1, 2, 3, 5}.
(4) M = X[2] for a quasi-simple module X with dimension vector (0, 1, 1). It is easily seen that Hom (H1,M) = 0 =

Hom (τH(1)λ,M) for all λ ∈ P1
k . Thus {1, 2, 8} ≤ µ(M) < {1, 2, 3}. In particular, a GR submodule Y of M is regular and

thus τY is a submodule of τM with dim τM = (1, 2, 2). It is not difficult to see that the only possibility is dimY = (0, 1, 1).
Thus µ(M) = {1, 2, 8}.

(5) If dimM = (1, 2, 3), then M ∼= τ−1H(1)λ for some λ ∈ P1
k . Thus the projective module P1 is a GR submodule of M .

Conversely, if µ(M) = {1, 3, 4, 6}, then M contains P1 as a GR submodule and the corresponding GR factor has dimension
vector (0, 1, 1). Thus dimM = (1, 2, 3). �

LetM be an indecomposable module with dimension vector dimM = (1, 2, 2) or (1, 3, 4). By Lemma 3.6, we know that
ql (M) ≤ 2. The GRmeasure ofM is already determined in case ql (M) = 2 by previous lemma.What about the GRmeasures
of those M with ql (M) = 1?

Lemma 3.15. Let M be an indecomposable module with dimension (1, 2, 2) or (1, 3, 4) and ql (M) = 2. If N is a quasi-simple
module with dimN = dimM, then µ(N) < µ(M).

Proof. Let dimM = (1, 2, 2). We have seen that µ(M) = {1, 2, 3, 5}. If N is a quasi-simple module with dimN = (1, 2, 2),
then µ(N) does not start with {1, 2, 3}. Otherwise, N contains some indecomposable module X with dimension vector
(1, 1, 1) or (0, 2, 1) as a GR submodule. If dimX = (1, 1, 1), then there is an epimorphism from X[2] to N , which is
impossible since dimX[2] = (1, 2, 2) = dimN . Note that dimX = (0, 2, 1) is either not possible, since otherwise, the
factor contains the projective simple module. Therefore, µ(N) < {1, 2, 3} < µ(M).
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Now let dimM = (1, 3, 4) and N be a quasi-simple module with dimension vector dimN = dimM . Then N does not
contain any H(1)λ as a submodule for any λ since otherwise, τN with dim τN = (1, 2, 2) contains a submodule module
with dimension vector (1, 1, 1). This is not possible by above discussion. Therefore µ(N) < {1, 2} < µ(M). �

Wemay ask the following question in general.

Question. LetM andN be indecomposable regularmodules such that dimM = dimN and ql (M) > ql (N). Doesµ(M) > µ(N)
hold?

We may calculate precisely the GR measures of the quasi-simple modules N with dimN = (1, 3, 4) and M with
dimM = (1, 2, 2). Since µ(N) < {1, 2}, µ(N) starts with µ(P1) = {1, 3, 4}. On the other hand, µ(N) does not contain
7. Namely, assume that it is not the case and let X be a GR submodule of N . Then the GR factor N/X is simple and thus
dimX = (0, 3, 4) or (1, 2, 4). However, the first vector corresponds the preprojective module H3 and the second vector
is not a root. Similarly, a detailed discussion shows that µ(N) does not contain 5. Therefore, the only possibility is that
µ(N) = {1, 3, 4, 6, 8}. Thus any GR submodule ofN is of dimension vector (1, 2, 3). It follows that any quasi-simplemodule
M with dimM = (1, 2, 2) contains a submodule of dimension vector (1, 2, 3)Φ = (0, 1, 1). Thus the GR measure of M is
either {1, 2, 4, 5} or {1, 2, 5}, and both possibilities occur.

So far, we have known the GR measures of the indecomposable modules M with lengths not greater than 6 except
dimM = (2, 2, 2) and (1, 3, 2). If dimM = (2, 2, 2), then aGR factor ofM is the simple injectivemodule by Proposition 3.13.
Thus a GR submodule of M has dimension vector (1, 2, 2). Note that M always contains an indecomposable module with
dimension vector (1, 1, 1). Therefore, µ(M) = {1, 2, 3, 5, 6}.

There are several possibilities for dimM = (1, 3, 2). First of all, there is always a monomorphism from any
indecomposable module with dimension vector (0, 1, 1). Let X be a GR submodule ofM and Y be the corresponding factor.
Then |Y | ≠ 2, since otherwise, X has dimension vector (1, 2, 1). However, there does not exist an epimorphism from τ−1X
to Y because dim τ−1X = (1, 1, 1) and dimY = (0, 1, 1) (Proposition 2.4(4)). Thus Y is a simple module or |Y | = 3. Thus
only the following possibilities might occur: {1, 2, 3, 6}, {1, 2, 3, 5, 6}, {1, 2, 4, 5, 6}, {1, 2, 5, 6}.

4. Gabriel–Roiter measures admitting no direct predecessors

Ringel showed in [13] that each GRmeasure different from I1, the maximal GRmeasure, has a direct successor. However,
there are GR measures admitting no direct predecessors in general. We have shown in [6] for path algebras of tame quivers
that only finitely many GR measures do not admit direct predecessors. As we have mentioned in introduction, we want to
know if the number of the GR measures admitting no direct predecessors relates to the representation type (tame or wild).

It should be very difficult to answer this question in general. Now we come back to the quiver we considered above and
keep the notations as before. We have seen that µ(P1) = {1, 3, 4} is the minimal central measure and it does not have a
direct predecessor. In this section, we will show the following theorem:

Theorem 4.1. Let n ≥ 1 and µn
= {1, 2, 4, . . . , 2n, 2n + 1}. Then µn does not have a direct predecessor for any n.

Lemma 4.2. (1) For each n ≥ 1, µn is a GR measure.
(2) If M is an indecomposable module with µ(M) = µn. Then dimM = (1, n, n) or (0, n + 1, n).

Proof. It is known that each indecomposable module with dimension vector (0, n + 1, n) has GR measure µn. Thus µn is a
GR measure. On the other hand, a non-injective indecomposable module M has GR measure {1, 2, 4, . . . , 2n} if and only if
dimM = (0, n, n). Thus an indecomposable module with GRmeasure µn has dimension vector (1, n, n) or (0, n+1, n). �

Lemma 4.3. Let M be an indecomposable module with GR measure µ(M) = µn. Then each indecomposable regular factor of M
contains some indecomposable submodule with dimension vector (0, 1, 1).

Proof. By above lemma, dimM = (1, n, n) or (0, n + 1, n). In each case, we have a short exact sequence

0→ X
ι

→ M→M/X→ 0

where ι is a GR inclusion and thus dimX = (0, n, n). Note that the factorM/X is a preinjective simple module. LetM
π

→ Y
be an epimorphism with Y an indecomposable regular module. Then Hom (M/X, Y ) = 0. Since M/X is the cokernel of ι,
the composition X

πι
→ Y is not zero. Since an indecomposable non-simple factor of X has dimension vector (0, a, a) or

(0, a + 1, a), the image of πι contains a submodule with dimension vector (0, 1, 1). �

Lemma 4.4. Fix an n ≥ 1. Let M be an indecomposable module such that µn < µ(M). Then µ(M) starts with µm
= {1, 2, . . . ,

2m, 2m + 1} for some 1 ≤ m ≤ n. In particular, M contains an indecomposable submodule with GR measure µm.

Proof. This follows directly from the definition of the total order on P (N). �

Lemma 4.5. If M is an indecomposable module such that µ(M) is a direct predecessor of µn for some n. Then M is regular.
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Proof. It is easily seen thatµ(P) < {1, 2} for any indecomposable preprojectivemodule P . Moreover, for each preprojective
module, there are infinitelymany indecomposable preprojective oneswith greaterGRmeasures. ThusM is not preprojective.
Let X be an indecomposable regular with dimension vector (1, 1, 1). Then the only indecomposable preinjective module Q
such that Hom (X,Q ) = 0 is S2 ∼= τQ1. Therefore, if Q is neither isomorphic to the simple modules S1, S2, nor isomorphic to
the injective module Q2, there is always a monomorphism from X to Q and thus µ(Q ) starts with {1, 2, 3} = µ1 > µn for
every n > 1. It follows thatM has to be a regular module. �

Proof of Theorem. For the purpose of a contradiction, we assume that M is an indecomposable module such that µ(M)
is a direct predecessor of µn for a fixed n. Thus by Lemma 4.5, we may write M = X[r] for some quasi-simple module
X and r ≥ 1. Since {1, 2, 4, . . . 2n} < µ(M) < {1, 2, 4, . . . 2n, 2n + 1} = µn, it follows that |M| > 2n + 1 and thus
|X[r + 1]| > 2n + 1. In particular, µ(M) = µ(X[r]) < µn < µ(X[r + 1]) since µ(X[r + 1]) > µ(X[r]) and µ(X[r]) is a
direct predecessor of µn. Thus X[r + 1] contains a submodule Y with GR measure µm for some 1 ≤ m ≤ n (Lemma 4.4).
Note that dimY = (1,m,m) or (0,m+1,m) andµ(Y ) ≥ µn. We claim that Hom (Y , τ−rX) = 0. If this is not the case, then
by Lemma 4.3, the image of a non-zero homomorphism, in particular τ−rX , contains a submodule Z with dimension vector
(0, 1, 1). Therefore, there is a proper monomorphism τ rZ→ X , and thus

µn > µ(M) ≥ µ(X) > µ(τ rZ) ≥ {1, 2, 3},

which is a contradiction. Since there is a short exact sequence

0→M = X[r]→ X[r + 1]→ τ−rX→ 0

and Hom (Y , τ−rX) = 0, the inclusion Y→ X[r + 1] factors through X[r]. In particular, there is a monomorphism Y→ X[r].
It follows that

µ(X[r]) ≥ µ(Y ) ≥ µn > µ(M) = µ(X[r]).

This contradiction implies that µn does not have a direct predecessor for any n ≥ 1. �
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