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1. Introduction

It was shown in [6] that ifM is a X’-CS module, i.e., a module such that every direct
sum of copies oM is CS, thenM is a direct sum of uniform modules. However, while
it is known that every countably'-injective module is already -injective, a countably
X-CS-module need not even have an indecomposable decomposition [4, 12.19]. A natural
problem is then to find out if there exists a cardigaduch that eack-X'-CS moduleM
(i.e., eachM such that every direct sum of copies Mf indexed by a set of cardinality
R is CS) has an indecomposable decomposition. This problem was studied in [7], where
it was shown that every quasi-continugsis- >'-CS module is a direct sum of uniform
modules. But this response involves the quasi-continuity of the module as an additional
condition and so in the same paper it was asked (cf. [7, Remark 2.9]) whethekgvery
CS-module is already a direct sum of uniforms.

The main result of this paper (Theorem 2.6) provides an affirmative answer to this
guestion. Not surprisingly, bearing in mind the fact that cardinal numbers play an important
role in this result, the proof relies on infinitary counting arguments based on set-theoretic
results introduced by Tarski in the 1920s that were also used by Osofsky in module theory
(cf. [10]). Since the analogous result for theCS case [6] has a much stronger hypothesis
and does not depend on cardinality assertions, it seemed reasonable to expect that it should
have a proof not requiring counting arguments. On the way to our main result, we show,
in Corollary 2.4, that this is indeed the case by proving the existence of indecomposable
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decompositions fo’-CS-modules in a much more direct and simpler way, using only
module-theoretic methods.

Throughout this paper all ringR will be associative and with identity, and Ma®l-
will denote the category of righR-modules. By a module we will usually mean a right
R-module. We refer to [2,11] for all undefined notions used in the text.

2. Results

Recall that a submodul& of an R-module M is said to be closed (iM) when K
has no proper essential extensionsvn If L € M, then a closed submodulé of M
that containd. as an essential submodule (we then wiit€, K) is called an essential
closure ofL in M. The moduleM is called CS (or an extending module, cf. [4]), if every
closed submodule is a direct summand. An (internal) direct@pL; of submodules of
amoduleM is called a local direct summand of if @;_ L; is a direct summand ao¥/
for every finite subsef” C J. If, furthermore @, .; L; is a direct summand a¥/, then we
will also say that the local direct summag@@; L; is a summand oM.

Recall also that ifM is a module,oc[M] is defined as the full subcategory of
Mod-R whose objects are all the submodulesMfgenerated modules [11:[M] is a
Grothendieck category and hence it has injective hulls. The injective objeatg\bf are
just the M -injective modulesM is called quasi-injective when it is injective #1M] and
X-quasi-injective when every direct sum of copiesMfis quasi-injective. The quasi-
injective hull of M is precisely the injective hull a#7 in o[M]. We will denote by X| the
cardinality of a sefX.

We begin with a technical lemma which will be very useful later on.

Lemma 2.1. Let M bea CSmodule and p: M — N be an epimorphism. If there exists
a submodule X € M such that X N Kerp =0 and p(X) C. N, then Kerp is a direct
summand of M.

Proof. Let K = Kerp and L an essential closure o€ within M, which is a direct
summand ofM becauseM is CS. SinceX N K = 0 by hypothesis and& is essential
in L, we also have thaX N L = 0. It is then easily checked that X) N p(L) =0 and,
sincep(X) is essential inV, it follows thatp(L) = 0 and hencé. C K. ThereforeK = L
is a directsummand o¥. O

By [4, 2.4, 8.2], if M is a CS-module whose quasi-injective hullXsquasi-injective,
then M has an indecomposable decomposition. MoreoveX;-quasi-injective module
is a direct sum of indecomposable quasi-injective modules, but the converse is not true
(see B.L. Osofsky’s example for a non-artinian commutative self-injective local ring in [5,
24.34]). However, we have:

Lemma 2.2. If M is a CSmodule whose quasi-injective hull is a direct sum of uniform
modules, then M itself isa direct sum of uniform modules.
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Proof. Let M be CS and) the quasi-injective hull oM. Suppose thaf is a direct sum

of uniforms butM is not. Then, by [7, Lemma 2.6] there exists an essential local direct
summandPy M, of M and an element € M such thatcR N (Py M») € D M, for

any finite subsef’ C N. Now, for eachn € N, let Q,, be an essential closure #f,, in Q.
Then@y 0, is a local direct summand @ and, in fact, a direct summand ¢f by [8,
Theorem 2.22]. Since

P c.mc. 0
N
we see thaD = @y 0,. Thus there exists a finite s€tC N such thatr € @ 0, and so

ko (@) corn (@ o) nme (@ e.)nm =B,
N N F F
which is a contradiction and completes the proofi

The next result is a module-theoretic version of Oshiro’s [9] characterization of right
X'-CSrings as the ringR such that the class of projective rightmodules is closed under
essential extensions, cf. also [4, Corollary 11.11]. Recall that, for a maduladd N
denotes the class of all the modules isomorphic to direct summands of direct sums of
copies ofN.

Theorem 2.3. Let M bearight R-module. Then the following conditions are equivalent:

(i) MisX-Cs
(i) MisCSandAddN isclosed under N-generated essential extensions, for each direct
summand N of M.

Proof. Suppose first that (i) holds. Since the class3CS-modules is closed under
direct summands, we can takRé= M and suppose that belongs to Adas andY is
an M-generated essential extensionof We then have an epimorphispt M) — v
for some sef and, sinceX € Add M, we can assume that the canonical inclusjaf X
into Y factors througlp, i.e., there existg : X — M) such thatp o ¢ = j. Therefore,
p(g(X))) =Im(p o q) is an essential submodule &f and, sinceg(x) N Kerp =0, it
follows from Lemma 2.1 that Kep is a direct summand o). This shows that’
belongs to Addv.

For the converse, suppose now thdtis CS and, for each direct summandof M,
AddN is closed undev-generated essential extensions/lfs a set andQ denotes
the quasi-injective hull oy ") then, becaus@ is an M-generated essential extension
of M we have thap belongs to Adad/. Thus, by Kaplansky’s theorem [2, 26.1,is
a direct sum ot-generated modules, whetre= max(Ro, |[M|) and, using [4, 2.4], we see
that Q is in fact aX'- M-injective module (and & -quasi-injective module). Moreover, it
follows from Lemma 2.2, thas/ is a direct sum of uniform modules, say = @, M;.
For each € I, let M; be the quasi-injective hull a¥Z;. Then, our hypothesis implies that
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M; € AddM; and, sinceM; has the exchange property, we have th&t= M;, so that
eachM; is a quasi-injective module. Then it follows from [3, Theorem 3.3] thais a
X-CS-module. O

As a consequence of the preceding results we obtain a module-theoretic proof of the
existence of indecomposable decompositionsfe€S-modules.

Coroallary 2.4. Every X¥-CS-moduleis a direct sum of uniform modules.

Proof. It follows from the proof of Theorem 2.3 that the quasi-injective hull of every
X'-CS-module isX¥-quasi-injective, and hence it has an indecomposable decomposition.
Then the result follows from Lemma 2.20

We are now going to improve this result by showing that, as in the injective case, there
exists a fixed cardinal such that if the direct sums of copies of a module indexed by this
cardinal are CS, then the module has an indecomposable decomposition. First, we give a
useful lemma, which is very likely known, but whose proof we include for completeness.

Lemma25.Let M C, Q and X a closed submoduleof Q. Then X N M isclosedin M.

Proof. By [4, 1.10], it is enough to showthatK "M C Z C, M, thenZ/(X N M) <,
M/(X N M). To prove this, letn € M such thatn ¢ X; we must show that there exists
r € Rsuchthatm e Z butrm ¢ XN M. SinceZ C, M C, Q, we have thaZ C, 0 and
SoX+Z <, Q.SinceX € X+ Z <, Q andX is closed inQ we have, again by [4, 1.10],
that (X + Z)/ X C. Q/X and so there existse R such thatrm € X + Z butrm ¢ X.
Then we see thatm € M N (X + Z) = (by modularity)(M N X) + Z = Z. However,
rm ¢ X and hencem ¢ X N M, completing the proof. O

We are now ready to give our main result.
Theorem 2.6. Every R1-X'-CSmoduleis a direct sum of uniform modules.

Proof. Using Lemma 2.2, itis enough to show that the quasi-injective@uwf M has an
indecomposable decomposition. Suppose, on the contrary, that this is not the case. Then,
by [8, Theorem 2.22], there exists a local direct summ@hgQ; in Q0 which is not a
direct summand. In particula€p,; Q; is not M-injective. By Baer’s criterion (cf. [11,
16.3]), there exists a cyclic submoduksk € M and a submodul® € m R, together with
a homomorphism: X — @, Q; which does not have an extensiomi®. Since eaclQ;
is M-injective, so is each sup, Q;, with F a finite subset of, and so we have that
Imz € P Q; for every finite F < 1. If we denote byp; : P, Q; — Q; the canonical
projection, this implies that there exists a countable infinite/set/ such thatp; oz # 0
foreachj € J.

Let nowr : P, Qi — @, Q; be the canonical projection and get= 7 o 1. Let Q'
be an M-injective hull of @, Q; contained inQ. By the M-injectivity of Q’, there
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existsh:mR — Q' extendingg. Let x = h(m) and chooser; = mr; € X such that
pjot(xj)#0. Thenwe see thédt(mr;) =xr; elImgandp;(xr;) = p; ot(x;) #0.

Now, since/ is countable, we have by [6, Lemma 2.1] that there exist subkesc 2/
such that:

(i) Ais a partition ofJ with | 4| = Ro and|A| = Rq for everyA € A.
(i) ACK, |K|=R1and|K|=RgforeachK € K.
(i) KN K'is afinite set for alk, K’ € K such thatk # K'.

Consider, for eachk € I, M-injective hulls in Q" of @y 0; and P;_ ¢ 0;,
respectively, sayQg, and Q’, so that, axp; 0, is essential inQ’, we have that
Q' =0k @ Q%. Now, letex € End(Q’) be the idempotent corresponding@ under
this decomposition, so thalx = ex Q' and Q% = (1 — ex)Q’. Then we have that
eK|Q_/ = 1Qj if jek andeK|QJ. =01if j ¢ K. Setxg =ex(x) andYx = Qg N M,
observe that’x S, Qx asM <, Q. SinceQg is an M-injective hull of @, Q; in Q'
and hence inQ, itis a direct summand af and so, a3/ <, Q, Yk is a closed submodule
of M by Lemma 2.5. Then, sinc¥ is CS, we see thdtx is, in fact, a direct summand
of M.

We know thatQ ¢ is anM-generated module (see [11, 16.3]) and so, if we consider the
countable subset @k :

Ag ={pi(xrj)|ieK, jeJ}U{xk}
there exists a countable st and a homomorphism:
K - M) Ok

such thatAg € Imng. Consider now the morphis@ : Yx @& M%) — Q induced
by mx and the inclusion otk in Q. SinceYk is a direct summand off and 2 is
countable,Yx & M%) js a direct summand o#/ ™ and hence a CS-module. Since
gk (Yg) =Yg C. Qx andYx NKergx = 0, Kergg is a direct summand dfy @ M%)

by Lemma 2.1. Hence lgy is isomorphic to a direct summand &k @ M), Call
Mg =Imgx C Qx =ex Q.

Letnow f: @y Mg — Y xc Mk € ) i Qk S Q' be the epimorphism induced by the
inclusions of theMy in Q". LetN =}, My =& 4 Ma C )y Mk, where the equality
follows from the fact thatA is a partition. Then it is clear tha&¥ N Ker f = 0. Moreover,
since@; Qj S. 0" and P 4 Q4 contains@; Qj, we have thatV =P 4 M4 S,
D404 S Q. Thus we see thatv S, Im f. Now, for eachK € K, Mg is a
direct summand ofM® and |K| = R4, hence@, M is a direct summand of
M®®Y — ) Since M is R1-X-CS, so is@, Mk, and hence it follows from
Lemma 2.1 thatf: @y Mx — >, Mk is a split epimorphism. Let:} , Mgy —
Di Mk besuchthaf oe =1y, .

Since A is a partition of J, we know that, for eachi € J, there existsA; € A
such thati € A;. If we call ¢;:D; 0; — @, Q; the morphism induced by thih
projection then, by constructioa;,(xr;) € M4, for eachj € J. In particular, the countable
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set{e; (xrj)}i jes is a subset ofy° 4 My € > - Mg . Let thenZ be the submodule of
> x Mk generated by this set. Sineeis countably generated, there exists a countable
subset < K such thats(Z) C @J Mg . But K is uncountable and so there exists
Ko € K—J.Choose any € Ko. Sincexr; € (B, Q; andek,lo; = 1g;, for j € Ko, while
eK0|Q_/ =0if j ¢ Ko, we have thakg,r; = ek, (xr;) = Zje[(g ej(xr;). Now, {e;} ey is
a set of orthogonal idempotents of &g, O ;) and soe; (xk,ri) = ei(ZjeKo ej(xri)) =
e;(xr;) # 0, because;(xr;) # 0, by construction, for eache J.

Let now o: @ Mx — @JMK and ﬁ:@JMK — @Dy Mg be the canonical
projection, and injection, respectively, and consider the homomorphism:

{=foPoaoce:y Mg— Y M.
K K

Observe that, sincgoe=1,80 @l my is the inclusion, and(Z) € ) 7 Mg, we have
that¢ |z is the canonical inclusion of in )", Mg. On the other hand, I c ZJ Mg
and so¢(xg,) < ZJ Mg. Thus there exists a finite s¢Ki,..., K,} € J such that
C(xky) S Mg, +---+ Mg,. LetnowF = KoN (K1 U---UK,). ThenF is finite because
Ko ¢ J and soKg # K1, ..., K,. SinceKy is an infinite set, there exist € Ko — F.
Now, as we have seeng,rj, = > ej(xrjy) € Z. Therefore, as the restriction ofto
Z is the inclusion, we have:

J€Ko

XKol jo = ¢ (XkoTjo) € Mko N (Mgy + -+ -+ Mk,) S Qko N (Qk, + -+ Ok,)-

Using now [6, Lemma 2.1], we hav@k, N (Qk, + -+ + Qk,) = P Qi, WwhereF is
finite, as we have shown before. Therefarg(xx,rj,) € ¢, (P @) =0, sincejo ¢ F.
But this is a contradiction because we have shownédf{ak,r;) # 0 for eachi € Ko. This
contradiction completes the proofm

We do not now whether everg;-X-CS-module is a¥-CS-module, although the
preceding proof underscores the differences between both concepts and suggests that
maybe this is not the case. The following result, however, exhibits another property of
X' -CS-modules which is also enjoyed By- X'-CS-modules.

Corollary 2.7. The quasi-injective hull of an R1-X-CSmodule is a X-quasi-injective
module.

Proof. Let M be an®;-¥-CS-module and its quasi-injective hull. LeD’ be a quasi-
injective hull of Q® . Then Q’ is also the quasi-injective hull of th&i-X-CS-
module M ®0 and soQ’ has an indecomposable decomposition by Theorem 2.6. By [8,
Theorem 2.22], every local direct summand@fis a direct summand and 280 = Q’

is a quasi-injective module.O

Finally, we give a necessary and sufficient condition forgpX’-CS-module to be
X-CS.
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Corollary 2.8. Let M be aright R-module. Then the following conditions are equivalent:

() MisaX-CSmodule.
(i) M isan N1-X-CSmodule such that every uniform direct summand of M has local
endomorphismring.

Proof. By [1, Proposition 2.3] a uniform¥-CS-module is quasi-injective and so (i)
implies (ii). The converse follows from Theorem 2.6 using [3, Proposition 3.4j.
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