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Stem Cell Niches: Famished Paneth
Cells, Gluttonous Stem Cells

Adult tissue stem cells adjust to environmental changes. A new study in
the mouse intestine reveals that caloric restriction causes Paneth cells to
repress mMTORC1 signaling; this in turn stimulates proliferation of neighboring

stem cells.
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“... And |, already going blind, groped
over my brood

Calling to them, though | had watched
them die

For two long days. And then the hunger
had more

Power than even sorrow over me.”
Dante, Inferno, Canto 33

Caloric restriction promotes

longevity, in part by reducing the

risks of cancer, diabetes, and
atherosclerosis [1], and many cultures
and religious groups fast regularly.
But starvation is a powerful and primal
trigger and, to promote survival,

it elicits robust metabolic responses,
including glycogenolysis and reduced
insulin secretion. Another response
might be to protect vulnerable stem
cells, salvaging them for rapid tissue
replenishment when energy is less
scarce. A recent report from Yilmaz

et al. [2] elucidates a novel signaling
mechanism by which Paneth cells in
the intestinal stem cell (ISC) niche help
amplify ISC numbers during, and many
months after, a period of prolonged
caloric restriction. This occurs
non-autonomously, through repression
of mammalian target of rapamycin
complex 1 (mTORC1) signaling in
Paneth cells.

Self-renewing stem cells in the adult
bone marrow, skin, and gut repopulate
these tissues continually, producing
first an intermediate population of
transit-amplifying progenitors; these
progenitors eventually differentiate
into functional, post-mitotic cells. Stem
cell activity must at some level respond
to environmental changes, particularly
toxic and deprivation states; indeed,
starved fruitflies reduce proliferation of
both germline stem cells and ISCs [3,4].
Alternatively, proliferation of some
stem cells can increase at the expense
of progenitors or differentiated cells;
for example, caloric restriction
enhances hematopoietic stem cell

activity in BALB/c mice [5]. The signals
recruited in the stem cell niche to
achieve these diverse ends are mostly
unknown, but the mTORC1 complex
is one vital node in pathways that
coordinate cell growth with nutrient
and energy availability [6]. By revealing
non-autonomous, mMTORC1-mediated
increases in ISC proliferation under
fasting conditions, Yilmaz et al. [2]
elaborate on this mechanism in the
mouse intestine.

Stem cells located in intestinal crypts
expand and differentiate to replace
the entire surface lining of absorptive
and secretory cells every few days.

In this epithelium, enterocytes of

a single type absorb nutrients, but
there are three varieties of secretory
cells; one of these, the Paneth cells,
reside at the bottom of each crypt in
the small intestine, where they produce
microbicidal peptides to help maintain
a sterile environment [7]. Judging

by long-term lineage tracing studies,
intestinal surface renewal seems to
rely on two distinct ISC populations.
The more abundant population is
nestled among Paneth cells in the crypt
base, expresses the surface protein
LGRS5, and replicates approximately
once a day [8]. As LGR5" cells in

mice can replenish the adjoining
epithelium for months, they represent
bona fide self-renewing stem cells. A
second, less abundant population of
quiescent, LGR5™ stem cells replicates
infrequently, expresses some
combination of the crypt-restricted
molecular markers BMI1, mTERT,
HOPX and LRIG1 [9-12] and occupies
a distinct niche higher in the crypt.
This population of stem cells
interconverts with LGR5* cells [11,13]
and replenishes lost LGR5* cells [14].

Quiescent BMI1* LGR5™ stem cells
thus respond physiologically to
damage or depletion of the LGR5*
compartment, but what about the
workhorse population of LGR5* stem
cells? Does their ability to divide and
differentiate respond to environmental
cues? If so, LGR5* stem cells would

likely receive the necessary signals
from their niche, a unique mix of
mesenchymal cells, myofibroblasts,
Paneth cells, and other epithelial cells
in or near the crypt base. In particular,
Paneth cells produce both Wnt and
Notch, drivers of ISC activity [7], and
they abet optimal expansion of single
cultured Lgr5* cells; because Lgr5* cell
numbers fall in proportion to Paneth
cell deficiency in some mouse models,
recent attention has centered on these
niche cells [15].

Examining the response to caloric
restriction in mouse intestines, Yilmaz
et al. [2] observed mild mucosal
atrophy and reduced proliferation of
transit amplifying progenitors, similar
to prior studies [16]. Surprisingly,
LGR5* and Paneth cells increased
in number, and through elegant study
of mutant mice and organoid cultures,
Yilmaz et al. [2] traced the trophic
effect on LGR5* cells largely to
fasting-induced reduction of mTORCH1
activity in their Paneth cell neighbors.
For example, Paneth cells isolated
from starved mice promoted expansion
of LGR5" ISCs in culture more
efficiently than cells from well-fed mice.
Forced mTORC1 activity reduced
Paneth cell numbers and, indirectly,
their salutary effect on LGR5* ISCs,
even under calorie restriction.
Conversely, specific inhibition of
mTORC1 by rapamycin in well-fed
mice enhanced crypt clonogenicity
non-autonomously. Expression
profiling of calorie-restricted Paneth
cells did not reveal obvious changes
in Wnt or Notch ligands. Rather, it
identified an excess of bone stromal
antigen 1 (Bst1), a secreted enzyme
that elevates local concentrations
of cyclic ADP ribose (cCADPR). Bst1
deficiency abrogated the capacity
of calorie-restricted intestinal crypts
to form organoids, and exogenous
cADPR rescued this effect.

Yilmaz et al. [2] thus shed new light
on how the ISC niche facilitates
a response to starvation. Their work
also raises important questions for
further research, both on how Paneth
cells sense starvation and how different
crypt cell populations maintain
intestinal homeostasis. Insulin and
insulin-like growth factors (IGFs) are
prominent inducers of mMTORC1 activity
[6]. IGF-1 levels decrease in fasting
rodents and rise during feeding [17].
Indeed, Yilmaz et al. [2] report that
insulin and refeeding activated
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mTORC1 to similar degrees in Paneth
cells in fasting mice. Perhaps Paneth
cells are especially sensitive to insulin
in distinguishing starved from fed
states. Second, only Paneth and LGR5*
cell numbers rise in calorie-deprived
mouse intestines; organ mass,
progenitors and enterocyte numbers
all decline. As both enterocytes

and Paneth cells derive from LGR5*
ISCs, one question is whether caloric
restriction promotes Paneth cell
differentiation or prolongs the life

of these cells.

Although LGR5* ISC numbers
faithfully follow those of Paneth cells
in some mouse models [15], they
replicate and function normally in other
mice with severe or total Paneth cell
deficiency [18,19]. Thus, dependence
on Paneth cells, which Yilmaz et al. [2]
confirm in organoid cultures, may be
masked in some contexts in vivo. Their
work, however, leads to the testable
prediction that LGR5* ISC proliferation
will be attenuated in fasting
Paneth-cell-deficient mice. Notably,
the trophic effect of caloric restriction
on LGR5* ISCs is selective; replication
of transit-amplifying progenitors
falters. Is this because of spatial
proximity to Paneth cells, because
LGR5" ISCs are uniquely responsive to
cADPR, or because cADPR regulates
only certain modes of cell division?
LGR5* ISCs divide symmetrically [20]
and, at least in feeding Drosophila,
ISC divisions shift from asymmetric
to symmetrical modes [4]. It will be
interesting to know whether
mammalian ISCs also change
replication modes in fed or starved
states. Lastly, LGR5* and quiescent
LGR5™ ISCs function in a complex,
non-linear hierarchy [11,13,14].

It will be useful to know whether
cADPR-mediated effects on cell
growth extend to other ISC populations
or stimulate interconversion with

LGRS5* cells. Insights into how different
crypt cells respond to environmental
stresses and affect one another will
inform strategies for combating
intestinal disorders of reduced
nutrient absorption, inflammation,

and cancer.
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